1CCLONIC Geomorpnology Lecture 15

Last Time...
Stress in the Earth's Crust

* Stress in the Earth's crust
seems to indicate that ridge-push
forces may dominate stress
regime in brittle crust. However,
local tectonic conditions may alter
this general trend.

* Weak faults may alter the state
of stress around them. The
maximum principal compressive
stress around these low-friction
faults rotates to resolve a shear
traction along the fault that is
equal to the shear strength of the
fault. o
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In Today'’s Class...
Erosion and Uplift Rates

. Denudation Rates:
- Definition of erosion rates.
- Determining erosion rates.

Il. Uplift Rates:
- Determining uplift rates.
- Removing signal from
Isostatic response.
- Inferring surface uplift.
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Erosion Rates
- Definitions of uplift rates

- Determining erosion rates:

1) Fluvial sediment flux
measurements.

2) Sediment and structural
constraints.

3) Topography.

4) Isotopic sediment composition.

5) Regolith production rates.

6) Bedrock incision rates.

7) Landsliding denudation rates

8) CRN basin-wide denudation rate
estimates.

9) Geochronologic methods.

10) Tectonic denudation.

1.1
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Definitions of Uplift
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figure take from Burbank and Anderson (200T)

* Surface uplift is change in surface (referenced to geoid).
* Rock uplift is change in the position of a rock (referenced to geoid).

* Erosion is change amount of material taken away from top (referenced to geoid; sign is negative for
erosion, positive for deposition).

* Compaction results in density difference, results in negative movement of surface (referenced to geoid).

Total Uplift = Rock Uplift + Erosion/Deposition + Compaction ,
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Denudation Rates, Relief, and Elevation
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figure taken from Burbank and Anderson (2001) after Ahnert (1970) and Pinet and Souriou (19¢

- Denudation rates apparently correlate strongly with both basin relief and
elevation.

* Similar elevations produce different denudation rates, depending on age of

orogen.
.3
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How does one calculate denudation rates?
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figure taken from Burbank and Anderson (2001)
To measure denudation rates, one can look in one of three places:

1) Sediment flux of rivers
2) Assume some original surface geometry and see how much is missing from topography.

3) Look at sedimentary basins that record erosion to see what the volume of material that went into the
basin is.
1.4
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Sediment Fluxes from Rivers
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figure taken from Burbank and Anderson (2001) after Hallet et al. (19¢
- Note that denudation rates in dataset respond differently according to erosion process:

1) Glacial denudation rates increase with increasing basin areas.
2) Fluvial denudation rates decrease with increasing basin areas.

* Measurements made over 10-100 yr timescales, and so it is unclear if these rates are representative
over long timescales of interest to geomorphology. 1.5
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Sediment Fluxes in Rivers

Worldwide

TABLE 7.1. Catchment Area, Sediment Load, SedimentYield, Erosion Rates, and Runoff for World’s Rivers =
with Catchments >250,000 km? (after Milliman and Syvitski, 1992)

Area Load Yield Erosion Runoff
River (x 10® km?) (X 10° t/yr) (t/km? * yr) Rate (mm/yr) (mm/yr)

A. High Mountain (>3000 m)
Magdalena (Col) 0.24 220 920 0.341 990
Irrawaddy (Burma) 0.43 260 620 0.230 995
Brahmaputra (Bangl) 0.61 540 890 0.330
Colorado (USA) 0.63 120 190 0.070 32
Indus (Pak) 0.97 250 260 0.096 245
Ganges (Bangl) 0.98 520 530 0.196
Orinoco (Ven) 0.99 150 150 0.056 1100
Yangtze (China) 1.9 480 250 0.093 460
Parana (Arg) 2.6 79 30 0.011 165
Mississippi (USA) 3.3 400 120 0.044 150
Amazon (Braz) 6.1 1200 190 0.070 100
B. Mountain ( 1000-3000 m): South Asia/Oceania
Krishna (India) 0.25 260 0.096 140
Godavari (India) 0.31 170 550 0.204 270
Pearl (China) 0.44 69 160 0.059 690
Huanghe (China) 0.77 1100 1400 0.519 77
Mekong (Viet) 0.79 160 200 0.074 590
C. Mountain (1000-3000 m): N/S America, Africa, Alpme Europe, etc.
Fraser (Can) 0.22 20 0.034 510
Columbia (USA) 0.67 15 22 0.008 375
Limpopo (Mozam) 0.41 33 80 0.030 13
Rio Grande (USA) 0.67 20 >30 >0.011
Danube (Rom) 0.81 67 83 0.031 250
Yukon (USA) 0.84 60 71 0.026 230
Orange (SA) 0.89 89 100 0.037 100
Tigris-Euphrates (Iraq) 1.05 >53(7) >52(7) >0.019 45
Murray (Austr) 1.06 30 29 0.011 21
Zambesi (Mozam) 1.4 48 35 0.013 390
MacKenzie (Can) 1.8 42 23 0.009 170
Amur (USSR) 1.8 52 28 0.010 180
Nile (Egypt) 3.0 120 40 0.015 30
Zaire (Zaire) 3.8 11 0.004 340
D. Upland (500-1000 m)
Vistula (Pol) 0.20 2.5 13 0.005 165
Uruguay (Urg) 0.24 11(?) 45(7) 0.017(?)
Pechora (USSR) 0.25 6.1 25 0.009 415
Hai (China) 0.26 14 55 0.020
Indagirka (USSR) 0.36 14 39 0.014 150
Volta (Ghana) 0.40 19 48 0.018 91
Don (Ukr) 0.42 0.77 18 0.007
Sao Francisco (Braz) 0.63 6 10 0.004
Niger (Nig) 1.2 40 33 0.012 116
Volga (Rus/Ukr) 1.4 19 15 0.006 400
Ob (USSR) 2.5 16 6 0.002 130
Lena (Rus) 2.5 12 5 0.002 205
Yenisei (Rus) 2.6 13 5 0.002 220
E. Lowland (100-500 m)

Yana (USSR) 0.22 3 14 0.005 130
Senegal (Sen) 0.27 1.9 8 0.003 48
Sevemay Dvina (USSR) 0.35 4.5 13 0.005 330
Dnieper (USSR) 0.38 2.1 5.2 0.002 86
Kolyma (USSR) 0.64 6 9 0.003 140
Sao Francisco (Braz) 0.64 6 9 0.003 150
St. Lawrence (Can) 1.1 4 4 0.001 435

table taken from Burbank and Anderson (2001) after Milliman and Syvitski (1992)
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Structural and Stratigraphic Estimations
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figure from Burbank and Anderson (2001) after Burbank et al. (1991).
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Sediment Volumes and
Denudation Rates from
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Topography

- In some cases, initial
geometry of surface (prior
to erosion) can be inferred.

* In these cases,
extrapolating the highest
ridgelines provides an
estimate of the prior
surface topography.

- Subtracting initial
topography from current
topography yields volume
of material removed by
erosion.

- Where start of erosion
can be dated, erosion rates
can be calculated.

Deosai
Plateau

150

1.8



Tectonic Geomorphology Lecture 13

Isotopic Composition of Sediment Load

total isotopic area relative
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rate
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figure from Burbank and Anderson (2001)
- Isotopic composition of sediments may reflect relative rates of

denudation within each basin.

* Based on different isotopic signatures of different lithologies. L9
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CRN Measurements of Regolith Production
Rates

2
T Curvature, C = i
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regolith

* Erosion rates are estimated both for regolith

created under regolith mantle and along exposed Production rate
bedrock. ~p

O
- These measurements may provide good
estimates of the erosion rate at point locations of (0.6 rock
sampling (usually on hillslopes) over the time- depth | 0.8m regolith)
range represented by the CRN isotope system.
* Extrapolation to basin and orogen scale rates P =P. e (-Z/7%)
may be problematic.

figure taken from Burbank and Anderson (2001). .10
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CRN Estimates of Bedrock Incision Rates
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Using Landsliding Frequency to Estimate

Denudation Rates

landslide frequency - Landsliding frequency
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CRN Estimates of Basin
Denudation Rates
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fiaure from Burbank and Anderson (2001) after Brown et al (1995)
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Denudation Rates Using
Thermochronometers

- Some minerals retain evidence of fission events only below
a "closure” temperature.

- By dating a rock with one of these minerals, the time at
which the rock cooled below that temperature may be
inferred.

* By assuming a temperature distribution in the crust, one
can calculate the depth at which the sample cooled below its
closure temperature, and infer an erosion rate.

TABLE 7.2. Radiometric dating systems and closure
temperatures for some minerals

Mineral and dating system Closure temperature
nornblende (K-Ar) 525+25°C
muscovite (K-Ar) 3251+25°C
Hiotite (K-Ar) 300+25°C
<-feldspar (K-Ar) 200+25°C
:phene (fission-track) 275155°C
zircon (fission-track) 300+55°C
:patite (fission-track) 120+20°C
muscovite (Rb-Sr) 500+25°C
hiotite (Rb-Sr) 275125°(.,
monazite (U-Pb) 525+25°C

figure from Burbank and Anderson (2001).
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Using Thermochronometers to Estimate
Cooling Rate of a Sample
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Problems with Inferring Denudation Rates
from T, hermochronometers
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Inferring Denudation Rates from Track Length
Distribution
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figure from Burbank and Anderson (2001) after Fitzgerald et al. (1995)

partlally unannealed |

tracks

- Some minerals have
damage tracks
related to fission
events. These are
tracks in the mineral
lattice (apatite and
zircon are common
minerals where this
damage is observed).

- These tracks heal
over time within a
temperature range.

- By measuring the
distribution of track
lengths, one can
estimate how quickly
the mineral cooled
through this "partial
annealing zone".
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Tectonic Denudation

Exposure of Footwall Rocks

2

XA

* Tectonic denudation may bring rocks to the surface relatively
quickly from large depths.

- While tectonic denudation was invoked to explain most rapid
cooling in the past, measured erosion rates seem sufficient to
account for all measured denudation rates inferred from
thermochronometers.
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Uplift Rates

- Determining uplift rates using:
1) Stratigraphic constraints.
2) River profiles.

- Removing istostacy from total
uplift rates to estimate tectonic
component.

- Paleoaltitude estimations.

- Topographic barrier inferences
from oxygen isotopes

.1
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Constraining Uplift and Uplift Rate From
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figure taken from Burbank and Anderson (2001)
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River Profiles as Indicators of Uplift Rates
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figure from Burbank and Anderson (2001) after lwata et al. (1987) 1.3
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Calculating Tectonic Uplift Over Large
Spatial Scales
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Erosional Unloading and Isostatic Response

A. tectonic loading and uplift
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figure from Burbank and Anderson (2001) after Burbank (1992)

I.5



Tectonic Geomorphology Lecture 13

Paleoaltitude Estimations

- Estimations are often based on
assemblages of different fauna that
reflect environmental temperature and
precipitation conditions.

* Must convert temperature and
precipitation to elevation. Often this is
done using a thermodynamic approach
where the potential energy in a rising air
mass (related to altitude) is converted
to thermal energy and latent heat.

* Often, this approach yields only crude
estimates of paleoelevation, whose
estimated uncertainties (700-950 m)
may often be greater.

1.6
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Inferring Surface Uplift from O Isotopes
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figure taken from Burbank and Anderson (2001) .7
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Important Points:

- Uplift can be grouped into three
major types:

* Erosion/Sedimentation

* Surface uplift

* Rock uplift

- Erosion rates can be measured
using several techniques:

1) Fluvial sediment flux
measurements.

2) Sediment and structural
constraints.

3) Topography.

4) Isotopic sediment composition.

5) Regolith production rates.

6) Bedrock incision rates.

/) Landsliding denudation rates

8) CRN basin-wide denudation rate

estimates. >
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Important Points:

9) Geochronologic methods.
10) Tectonic denudation.

- Uplift Rates may be determined by:
1) Stratigraphic constraints.
2) River profiles.

- Istostacy may play an important role in
deformation and erosion.

- Paleoaltitude estimations may be made
from faunal assemblages.

- Topographic barriers may be recorded by
oxygen isotope records in sediments.
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Next Time...
Short Time-scale (Holocene)

Deformation and
Landscape Response

S.3



