
SEIZE Laboratory Frictional Studies Of Fault Gouge: A Test Of Hypothe For Controls on the Updip Limit of the Seismogenic Zone Along Subduction Thrusts		
	Chris Marone, MIT; Demian Saffer	
	8/15/2000 – 7/31/2003	OCE 00-01871
 The goal of this work is to understand the role of clays in determining whether slip will be seismic or aseismic within subduction zone megathrusts. 		
 Gouge materials studied include pure Ca-smectite, samples of natural gouge material collected from the San Gabriel, CA fault zone and ODP leg 190, a suite of smectite-quartz mixtures, and a natural illite shale (grain size ranging from 2- 500 μm). 		
 We studied frictional strength and its second-order variations as a function of slip velocity and normal stress in the double-direct shear geometry to shear strains of ~7-30 at room humidity and temperature. Slip velocities were varied from 0.1-200 µm/s and normal stress ranged from 5-150 MPa. 		
 The coefficient of friction (μ) ranges from 0.42-0.68 for the illite shale over a range of normal stresses from 5-150 MPa and sliding velocities from 0.1–200 μm /s, illite shale exhibits only velocity-strengthening behavior, opposite to the widely expected, potentially unstable velocity-weakening behavior of illite. 		
 Smectite sheared under identical conditions exhibits low friction (μ = 0.15-0.32) and a transition from velocity weakening at low normal stress to velocity strengthening at higher normal stress (>40 MPa). 		
 Our data, specifically the velocity-strengthening behavior of illite shale under a wide range of conditions, do not support the hypothesis that the smectite-illite transition is responsible for the seismic-aseismic transition in subduction zones. 		
 We suggest that other depth- and temperature- dependent processes, such as cementation, consolidation, and slip localization with increased shearing, may play an important role in changing the frictional properties of subduction zone faults, and that these processes, in addition to clay mineralogy, should be the focus of future investigation. 		
 Our work needs to be extended to a broader range of conditions applicable to the hypocentral region of subduction zone earthquakes. 		

Publications and Presentations

Papers:

Marone, C., Saffer, D., and K. M. Frye, Weak and Potentially Unstable Frictional Behavior of Smectite Clay, *Eos, Trans., Am. Geophys. Un.*, 80 (46), F689, 1999.

Marone, C. Shaking faults loose, Nature, 408, 533-535, 2000.

Saffer, D. M., Frye, K. M., Marone, C, and Mair, K. Laboratory Results Indicating Complex and Potentially Unstable Frictional Behavior of Smectite Clay, *Geophysical Research Letters, 28,* 2297-2300, 2001.

Green, H.W. II, and C. Marone, Instability of Deformation, Plastic Deformation Of Rocks, Eds. Karato, S. and H. R. Wenk, *Reviews in Mineralogy and Geochemistry*, ISBN 0-939950-63-4, 2002.

Marone, C. Stressed to the quaking point, Nature, 419, 32, 2002.

Saffer, D. M., and C. Marone, Comparison of smectite and illite frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts, Earth and Planetary Science Letters, 215, 219-235, 2003.

Dugan , B., Marone, C., Hong, T. Compaction behavior & permeability of sediments from Sites 1194 and 1198, SR-DR, 17437A, ODP, 2003.

Abstracts:

Marone, C., Saffer, D., and K. M. Frye, Weak and Potentially Unstable Frictional Behavior of Smectite Clay, *Eos, Trans., Am. Geophys. Un.*, 80 (46), F689, 1999.

Shibazaki, B., and C. Marone, Transition process from quasi-static nucleation to high-speed dynamic rupture of a strike-slip fault with a rate- and state-dependent friction law, *Eos, Trans., Am. Geophys. Un.*, 80 (46), F935, 1999.

Montési, L. G. J., Marone, C., Hirth, G., and S. L. Karner, Frictional properties and microstructure of simulated diabase gouge at temperatures up to 400°C., *Eos, Trans., Am. Geophys. Un.*, 80 (46), F689, 1999.

Marone, C. Nonlinear friction constitutive laws for brittle faulting, *Eos, Trans., Am. Geophys. Un.*, 81 (48), F581, 2000.

Marone, C., Saffer, D., Frye K. M., and S.Mazzoni, Laboratory results indicating intrinsically stable frictional behavior of illite clay, *Eos, Trans., Am. Geophys. Un.*, F 2001.

Shibazaki, B., Marone, C., and S. Yoshida, Nucleation process, and the associated convection current in a fault model with dilatancy and fluid movement, *Eos, Trans., Am. Geophys. Un.*, F 2001.

Marone, C., Saffer, D., Friction Mechanics at the updip limit of seismogenic faulting along subduction megathrusts. *Eos, Trans., Am. Geophys. Un.*, F 2003.

Mair, K., Marone, C., and Young, P., Rate dependence of acoustic emissions generated during granular shear *Eos, Trans., Am. Geophys. Un.*, F 2003.

Numelin, T., Marone, C., and Kirby, E., Variations in frictional behavior of fault gouge along a low angle normal fault system, *Eos, Trans., Am. Geophys. Un.*, F 2003.

Selected Invited Talks:

Fall AGU, Special Session: At the Seismogenic Front: Dynamic Processes at Convergent Margins, Dec. 2003.

Costa Rica Seismogenesis Project (CRISP) Workshop, Kiel, Germany, Oct. 2003

Margins Theoretical Workshop: Seismogenic Zone Experiment, Snowbird, Utah, Mar. 2003.

Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Workshop, July, 2003.

Margins Theoretical Workshop: Rheology and Deformation of the Lithosphere, Jan. 2000.