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Observations of angles or distances between stations of a geodetic network are commonly used to infer 
information about the movement of the surface of the earth. The absence of any observations external to 
the network leads to an ambiguous displacement field. Existing techniques for eliminating this ambiguity 
are all unsatisfactory in some respect. The best technique, an 'inner coordinate' solution, is not appropri- 
ate for networks located in a strike slip fault environment. The inner coordinate solution zeros the rota- 
tion of all stations about their center of mass. Along a strike slip fault like the San Andreas, however, 
motion normal to the fault is less likely than motion parallel to the fault. The solution presented here, an 
'outer coordinate' solution, finds the rotation of the network that minimizes the components of dis- 
placement normal to the fault. Since motion along a strike slip fault is generally expected to be parallel to 
the fault, the displacements obtained with the outer coordinate solution are more reasonable than those 
obtained with other techniques. Examination of a trilateration network near San Francisco Bay demon- 
strates the large effect that the choice of adjustment technique can have on the inferred relative motion of 
the two sides of the fault. The inner coordinate solution gave a rate of about I mm/yr, whereas the pre- 
ferred outer coordinate solution rate was 36 mm/yr. 

INTRODUCTION ADJUSTMENT ALTERNATIVES 

Repeated geodetic observations are frequently used to infer 
information about movement of the crust of the earth. The in- 

teresting parameters to be obtained from the data are usually 
the changes in station position, while the observations consist 
of measured angles and distances between the stations. The 
process of obtaining the station displacements from the ob- 
servations is referred to as adjusting the data, and there is an 
extensive literature discussing the process of adjustment. Such 
an adjustment is a straightforward application of least squares 
techniques. If all observations are made between stations in 
the area of interest, there is no way to detect motion of all the 
stations as a rigid body. Consequently, the station dis- 
placements derived from the observations are ambiguous; the 
addition of an arbitrary translation or rotation will have no ef- 
fect on the residuals to the observations resulting from the ad- 
justment. The displacement ambiguity may be removed by 
making observations outside of the network. For example, the 
rotational ambiguity can be eliminated by observing one or 
more astronomic azimuths. The possible precision of such ex- 
ternal observations is, at present, low in comparison to the 
possible precision of internal observations. 

Without external observations only relative displacements 
are determined. Mathematically, the ambiguity expresses it- 
self as a rank defect of 3 in the coefficient matrix of the nor- 

mal equations. There are a number of solutions to this so 
called 'datum defect' [Welsch, 1979] problem. In this paper, I 
will review two popular solutions and derive a third solution, 
which is particularly appropriate when the tectonic setting of 
the area suggests that a particular azimuth may be preferred. 
Although in this paper the technique is applied only to tri- 
lateration networks (distances measured only), the methods 
apply without any alteration to triangulation or mixed tri- 
angulation-trilateration networks. 
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The issue is illustrated for a very simple network in Figure 
1. Suppose for concretehess that all of the interstation dis- 
tances are measured at each of two times and that the only 
change observed is that diagonal 1-3 lengthens and diagonal 
2-4 shortens. Figure 2 illustrates a few of the possible solu- 
tions, and Figure 3 is a conventional vector displacement dia- 
gram for each of the solutions. All of these solutions are con- 
sistent with the lengthening of 1-3 and shortening of 2-4. 
They differ one from another only in rigid body motions of 
the four points. The traditional way to remove the datum de- 
fect has been to fix the position of two stations. This solution 
eliminates both translational and rotational ambiguities, but it 
can introduce some distortion in the network because the 

length of one line is constrained. In the past, when the obser- 
vations were primarily angle measurements, this was the pre- 
ferred solution. A second alternative is to fix one station and 

the azimuth of one line. This produces a 'free' adjustment, i.e., 
one with no unnecessary constraints. Examples are solutions 
in Figures 2a-2c and 3a-3c. There are two disadvantages to 
this approach. First, the displacements obtained depend on 
the azimuth of the fixed line, as illustrated by the comparison 
of solutions in.Figures 2a-2c and 3a-3c..q,•,-,m,t, dis- 
placements of all the stations depend on the motion of the two 
chosen stations. For example, if the fixed station was dis- 
turbed, a very large vector is added to all the other stations 
and this may obscure the smaller motions of the other stations 
relative to each other. Similarly, a large motion of the fixed 
azimuth station in a direction normal to the fixed line will in- 

troduce an • apparent rotation of the whole network. 
One solution to these problems, which has been much dis- 

cussed recently is the 'inner coordinate' solution [Brunner, 
1979; Welsch, 1979], illustrated by Figures 2d and 3d. For the 
inner coordinate solution the ambiguity is removed by requir- 
ing that the center of mass of the network be stationary and 
that there be no net rotation about the center of mass. In sym- 
bols, if x,,, y,,, u,,, v,, are respectively the position coordinates 
and displacement coordinates of the kth station, then the in- 
net coordinate solution has the property that 
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Fig. 1. A simple horizontal quadrilateral with all six lengths ob- 
served. 
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Fig. 2. Comparisons of initial (dashed lines) and final (solid lines) 
states of quadrilateral in Figure 1, assuming only observed changes 
are a lengthening of 1-3 and shortening of 2-4. North at the top of the 
figure (a) Comer 1 and the azimuth of the line 1-2 are fixed. (b) Cor- 
ner 1 and the azimuth of line 1-3 are fixed. (c) Comer 1 and the azi- 
muth of line 1-4 are fixed. (d) Inner coordinate adjustment. (e) Outer 
coordinate adjustment with the direction NE-SW preferred. 0O Outer 
coordinate adjustment with the direction NW-SE preferred. 
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Fig. 3. Vector displacement diagrams. North at the top of the fig- 
ure. (a) Comer 1 and the direction of line 1-2 are fixed. (b) Comer 1 
and the direction of line 1-3 are fixed. (c) Comer 1 and the direction 
of line 1-4 are fixed. (d) Inner coordinate adjustment. (e) Outer 
coordinate adjustment with direction NE-SW preferred. (f) Outer 
coordinate adjustment with the direction NW-SE preferred. 

weakly dependent on any particular stations. The inner 
coordinate solution is the solution obtained if generalized in- 
verse techniques are used in solving the normal equations. In 
the absence of any a priori knowledge of the deformation field 
it is an excellent choice. 

Along the San Andreas fault system in California, however, 
there is an a priori expectation that station motion will most 
likely be along the direction of the faults and the relative plate 
motion N45 ø W approximately. The expected deformation is 
that shown in Figure 3a, for example, with right lateral shear 
across a line striking N45øW. The solution in Figure 3d, 
which differs from Figure 3a only by a rigid translation and 

Fig. 4. Diagram of a trilateration network. Heavy lines represent 
the San Andreas, Hayward, and Calaveras faults. Light lines repre- 
sent distances observed repeatedly between 1972 and 1979. 
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SOUTHBAY NET DISPLACEMENT RATES 1972-1979 

HOLD HAMILTON - ROSE2RM5 0 •5 km I0 mm/yr I I I I I I 

N 

Fig. 5. Vector displacement diagram for a special solution. Station Hamilton and the azimuth of the line Hamilton- 
Rose2RM5 are fixed. Error ellipses are drawn at 95% confidence level. 

rotation of the network, is clearly not the most transparent 
way of displaying the deformation. It is possible to have the 
advantage of favoring a particular direction without the dis- 
advantage of having the whole solution dependent on one or 
two stations. Two examples are illustrated by the solutions in 
Figures 2e, 2f, 3e, and 3f. In the solution in Figures 2e and 3e 
the direction NE-SW is preferred and in the solution in Fig- 

ures 2f and 3f the direction NW-SE is preferred. The solution 
in Figures 2f and 3f would be appropriate along the San An- 
dreas fault system. These adjustments, which I have called 
outer coordinate solutions, are obtained by requiring that the 
center of mass of the network remain stationary and that the 
components of displacement normal to the preferred direction 
are minimi•.ed. The inner coordinate solution in Figures 2d 

SOUTHBAY NET DISPLACEMENT RATES 1972-1979 

MINDEGO BMT RF • • • • MT STAKE 

INNER COORDINATE O 15 km IO mm/yr 
N 

Fig. 6. Vector displacement diagr• for •c i•cr •ordinatc solution. E•or ellipses are drawn at the 95% •nfidcn• 
level. 
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SOUTHBAY NET DISPLACEMENT RATES 1972-1979 
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Fig. ?. Vector displa•ment diagram for an outer •ordinate solution. Displa•ments pe•endicular to N35øW have •en 
m•mized. E•or ellipses are drawn at the 95% •den• level. 

and 3d can be derived from any of the special solutions in Fig- 
ures 2a, 2b, 2c, 3a, 3b, or 3c by a similarity transformation 
[Brunner, 1979; Welsch, 1979]. An outer coordinate solution 
with any preferred azimuth can likewise by obtained by a sim- 
ilarity transformation of a special solution. The details of both 
transformations are given in the appendix. 

DISCUSSION 

The expected deformation pattern along a strike slip fault is 
basically simple shear, while the inner coordinate solution is a 
pure shear solution [see, e.g., Love, 1944, p. 33]. It is well 
known that these two deformation fields differ only by a rigid 

a ) Outer Coordinate Solution 
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Fig. 8. The displacements parallel to the main trend (N3$øW) of the faults are plotted as a function of the station posi- 
tion along the perpendicular direction (N$$øE). Error bars indicate plus and minus one standard deviation. 
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TABLE 1. Statistics From Three Adjustments 

Inner Outer 

Special Coordinate Coordinate 
Solution Solution Solution 

Y• u•,, mm -376.05 0.002 0.002 
Y• v•,, mm 163.71 -0.002 0.000 
y• u•, a, mm• 8245.6 1323.6 541.9 
• v•, 2, mm 2 1616.9 1646.2 3835.1 
•(uk 2 + vk•-), mm 2 9862.5 2969.8 4377.0 

• (v•k - ut, yk) ,/•rad 0.165 0.0005 -0.172 E (xk 2 + 

Y• - ut, y•, grad 0.340 0.175 0.002 Eyk 2 ' 

body rotation and internal observations cannot resolve rigid 
body motion of the entire network. The difference between 
the various solutions can be critical in interpreting the data, as 
the following example will illustrate. 

One of the most interesting parameters that can be inferred 
from geodetic networks along the San Andreas fault system 
(or any strike slip plate boundary) is the relative motion of the 
two sides. This relative motion is determined by comparing 
the displacements of stations on opposite sides of the fault or 
along a line perpendicular to the plate boundary. Such rela- 
tive motion involves a rotation of the whole network, and con- 

sequently, the relative motion which is inferred from the data 
will depend critically on how the rotation of the whole net- 
work is treated. The effect can be illustrated with the network 

shown in Figure 4. The line lengths were measured period- 
ically between 1972 and 1980. A linear least squares fit to all 
of the observations of a single line as a function of time was 
carried out to obtain the average rate of change for each line 
in Figure 4. These rates were then adjusted by three different 
methods. Displacement rate vectors for the three adjustments 
are given in Figures 5-7. Finally, the displacement parallel to 
the San Andreas fault system (N35ø• was plotted as a func- 
tion of the distance normal to the fault system (N55øE) in 
Figure 8. In the first solution, station Hamilton was fixed and 
station Rose2RM5 was constrained to move along the line 
connecting it to Hamilton. 1'4o error estimate is obtained for 
Hamilton, of course, since it is fixed. A more serious problem 
is that any motion of Rose2RM5 perpendicular to the line 
Hamilton-Rose2RM5 results in apparent motion across the 
fault, since the entire network is required to rotate to accom- 
modate such a motion of Rose2RMS. A further problem with 
the special solution is evident in Figure 8. The error ellipses in 
Figure 5 and the error bars in Figures 8b give the error ha dis- 
placement relative to the fixed station. Since the fixed station 
displacement is less well determined than the center of mass, 
the error estimates are larger for Figures 5 and 8b than for 
Figures 6, 7, 8a and 8c. Next, the special solution was trans- 
formed to an inner coordinate solution (Figure 6). Here the 
entire network is allowed to rotate to a configuration that 
minimizes the lengths of the displacement vectors. It is appar- 
ent from Figure 6 that motion across the fault has been re- 
duced by displacing the northern stations toward the fault and 
the southern stations away from the fault. Finally, the special 
solution was transformed to an outer coordinate solution with 

the azimuth N35øW preferred (Figure 7). This solution of the 
network finds the rotation which minim•es only the com- 
ponent of displacement normal to the fault rather than both 
components. The differences between the three solutions are 
evident in Figure 8. Figures 8b and 8c both imply significant 

amounts of left lateral shear, and both seriously underestimate 
the overall displacement across the network. In fact, for the 
special solution, Figure 8b, the relative displacement across 
the entire network appears to be left lateral. For the inner 
coordinate solution the relative displacement across the net- 
work is inferred to be about I mm/yr, while for the outer 
coordinate solution it is inferred to be about 36 mm/yr, a 
value consistent with other estimates of the plate motion rate 
[Atwater and Molnar, 1973; Minster and Jordan, 1978, That- 
cher, 1979]. 

Some statistics of the three solutions are given in Table 1. 
As expected, the center of mass of all the stations is stationary 
for the inner and outer coordinate solutions. The outer coordi- 

nate solution has the smallest value for the sum of the squares 
of the u components of displacement, and the inner coordi- 
nate solution has the smallest value for the sum of the squares 
of both the u components and the v components. Finally, the 
rotation is zero only for the inner coordinate solution. The 
special solution has significant counter clockwise rotation 
while the outer coordinate solution has significant clockwise 
rotation, consistent with right lateral shear. 

APPENDIX 

Brunner [1979] has given an English language discussion of 
the tranformation of a special solution into an inner coordi- 
nate solution. I will review this transformation and then show 

that a very simple modification of the procedure gives the 
outer coordinate solution. 

As a starting point, assume that we have a special solution 
Us and its associated variance-covariance matrix Qs, explic- 
itly. 

Uff = [u•, v•, u2, "', Un, Vn] (A1) 

where u•, v• are the components of displacements of the kth 
station and superscript T indicates the transpose. We wish to 
obtain an inner coordinate solution U,. Ui must be obtained 
from Us by a rigid body motion; consequently, we can write 

U• = Us + Gt (A2) 

G is a constant matrix which depends only on the geometry of 
the network; t is an unknown vector which contains informa- 
tion about the rigid body motion. We take 

R 

t-- S 

a 

where R is the translation in the x direction, S the translation 
in the y direction, and a the rotation about the center of the 
mass. It can be shown the G T must have the form 

1 0 1 0 "' 1 0 

0 1 0 1 ... 0 1 

y• -x• Y2 -x2 ... Yn --Xn 

where the x•,, y•, are the coordinates of the kth station. For rea- 
sons which will be clear shortly, we instead take 

1 / x/-fi 0 1 / x/'fi ... 1 / x/-fi 0 

G T-'- 0 1/x/-fi 0 ..' 0 1/x/-fi (A3) 

y•/D -x•/D y2/D '" yn/D -xn/D 
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where 

D -- • (xk: + yk:) 

and xn. yn must be measured from the center of mass so 

Ex=Ey=0 

There are a number of ways of characterizing the inner 
coordinate solution. A convenient one is as follows: the inner 
coordinate solution is that solution for which the sum of the 

squares of displaceme•!ts is minimized. We use this condition 
to solve (A2) for t. That is, we seek the value of t that will 
minimize Ui. Standard least squares techniques [Bornford, 
1971, p. 630] at once give 

t = -(GrG)-'GrUs (A4) 

Because of our choice of G, GrG is the identity matrix, and 
consequently, 

t = -GrUs (A5) 

Now substitute (A5) into (A2) to obtain 

U,-- (I - GGr)Us (A6) 

This is a standard expression for transforming a special solu- 
tion into an inner coordinate solution [Brunner, 1979]. The 
variance-covariance matrix of Ui is 

Q, = (I - GGr)Qs(I - GGr) r (A7) 

We are now ready to derive the outer coordinate solution, Uo. 
For convenience, take the preferred direction to lie along the y 
axis. This can always be arranged by a suitable rotation of the 
coordinate system. Just as in the inner coordinate solution we 
must have 

Uo = Us + Ht (A8) 

where t is the same as before but H is G with a slightly differ- 
ent normalization: 

1/•/'• 0 ... 0 

H r= 0 l/d• '.' 1/d• (A9) 

y,/E -x,/E .... x./E 

where 

A condition of the form (A8) is required if Uo is to differ from 
Us by only rigid body motions. We cannot use (A8) to find the 
value of t, however, or we will end up with an inner coordi- 
nate solution. Instead of minimizing the squares of all of the 
displacements we want to minimize only their x component. 
We can accomplish this by writing 

U, = Us + Kt (AI0) 

where 

KT• 

1/ •/• 0 l /•j'• 0 ... l / •/-• 0 

0 1/d• 0 1/d• ... 0 l/•j'• 

y,/E 0 y:/E 0 '" y./E 0 

(All) 

E is the same as for (A9). It is clear that if we solve (A 10) by 
least squares for t, we will obtain the value of a that mini- 
mizes the squares of the u component of displacement but not 
the v component. Solving (A10) by least squares gives 

t = -(KrK)KrUs -- -KrUs (A12) 

Now substitute (A12) into (A8) to obtain the desired outer 
coordinate solution: 

Uo = (I - HKr)Us (A13) 

Its associated variance-covariance matrix is 

Qo = (I - HKr)Qs(I - HKr) r (A14) 

In deriving the rigid body translation and rotation vector t 
we did not include the weight matrix of the special solution 
used: 

This omission was intentional. We found the rotation-trans- 

lation which gives the minimum length vectors. That is, U, is 
such that (A2) is satisfied and that U,rU, is minimized. In- 
clusion of the weight matrix P would result in satisfying (A2) 
and minimizing U,rPU,. The U, obtained would then depend 
on the special solution used in deriving it; it might be of inter- 
est in some applications, but it is not as general a result as the 
one obtained above. Brunner [1979] has shown that U, is inde- 
pendent of the special solution from which it is derived. Uo is 
of course not unique, since it depends on the preferred azi- 
muth. 
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