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Abstract. Studies of crustal faulting and rock friction invariably assume the effective normal 28 

stress that determines fault shear resistance during frictional sliding is the applied normal stress 29 

minus the pore pressure. Here we propose an expression for the effective stress coefficient αf at 30 

temperatures and stresses near the brittle ductile transition (BDT) that depends on the percentage 31 

of solid-solid contact area across the fault. αf varies with depth and is only near 1 when the yield 32 

strength of asperity contacts greatly exceeds the applied normal stress. For a vertical strike-slip 33 

quartz fault zone at hydrostatic pore pressure and assuming 1 mm and 1 km shear zone widths 34 

for friction and ductile shear, respectively, the BDT is at ~13 km. αf near 1 is restricted to depths 35 

where the shear zone is narrow. Below the BDT αf  = 0 due to a dramatically decreased strain 36 

rate. Under these circumstances friction cannot be reactivated below the BDT by increasing the 37 

pore pressure alone and requires localization. If pore pressure increases and the fault localizes 38 

back to 1 mm, then brittle behavior can occur to a depth of around 35 km. The interdependencies 39 

among effective stress, contact scale strain rate and pore pressure allow estimates of the 40 

conditions necessary for deep low frequency seismicity seen on the San Andreas near Parkfield 41 

and in some subduction zones. Among the implications are that shear in the region separating 42 

shallow earthquakes and deep low frequency seismicity is distributed and that the deeper zone 43 

involves both elevated pore fluid pressure and localization. 44 

1. Introduction 45 

Studies of crustal faulting and rock friction nearly always assume the effective normal stress 46 

σ n
e that determines fault shear resistance during frictional sliding is the difference between 47 

applied normal stress, σn, and pore pressure, p, 48 

 σ n
e = σ n − p  (1a) 49 

[Terzaghi, 1936; 1943]. This effective stress principle is known to hold at low confining stress 50 

and low temperature in laboratory experiments [Handin et al., 1963; Brace and Martin, 1968] 51 

and provides an important explanation for the apparent weakness of some natural faults, 52 

particularly low angle reverse faults [Hubbert and Rubey, 1959; Mandl, 1988; Wang and He, 53 
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1994]. Nonetheless, there is a limit to (1a), a depth below which rocks undergo ductile flow 54 

regardless of the value of effective stress. While often the depth limit is equated with the 55 

'percolation threshold', the point at which porosity transitions from an interconnected network to 56 

a series of isolated pores [Zhu et al., 1995], some high temperature, high confining pressure 57 

experiments with interconnected but lithostatic pore pressure deform by ductile creep [Hirth and 58 

Kohlstedt, 1995], suggesting that the limit is not uniquely related to percolation. Thus, there is no 59 

comprehensive laboratory data or theory that allows estimates of the limit of the effective stress 60 

principle in the Earth's crust. The purpose of the present study is to develop methods with which 61 

to estimate effective stress throughout the lithosphere using friction theory and published results 62 

from laboratory rock deformation. The resulting model for effective stress was suggested 63 

schematically by Thomas et al. [2012] (see their Figure 15) and is a refinement of the qualitative 64 

development of Hirth and Beeler [2015]. Throughout we use the adjective 'deep' to mean near 65 

and below the transition between brittle faulting and ductile flow (BDT). In particular to 66 

understand the role of pore fluid pressure, we focus on its mechanical role in controlling brittle 67 

faulting and the location of the BDT.  68 

Limited understanding of the physical processes that influence effective pressure affects depth 69 

estimates of the BDT, the rheological transition that determines the depth limit of shallow crustal 70 

seismicity. It is the role of effective stress in determining the depth extent of brittle faulting and 71 

seismicity that is the primary application in our study. Typically the BDT is estimated as the 72 

intersection of a ductile flow law whose strength decreases strongly with increasing temperature 73 

and a frictional fault whose shear strength is τ = μσ n
e , where μ is the friction coefficient and σ n

e  74 

obeys equation (1a) (Figure 1a) [Goetze and Evans, 1979]. In this classic approach [also see 75 

Brace and Kohlstedt, 1980; Kirby, 1980], the transition from brittle to ductile deformation is 76 

assumed to be abrupt; this ignores intermediate behaviors seen in some laboratory experiments 77 

such as a switch between rate weakening and rate strengthening friction in the brittle regime 78 

[Stesky, 1978; Blanpied et al., 1995; Chester, 1995; Handy et al., 2007] and distributed semi-79 
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brittle flow [Evans et al., 1990] spanning the BDT. These 'transitional' regimes are omitted to 80 

simplify the analysis, allowing the possible role of pore fluid pressure in the switch between 81 

purely brittle to fully ductile flow to be emphasized. As shown here, typically the shear 82 

resistance resulting from friction is assumed to be proportional to depth such as due to both 83 

normal stress and pore pressure increasing following lithostatic and hydrostatic gradients, while 84 

μ is constant. Depth estimates therefore rely on (1a) and the case shown in Figure 1a for San 85 

Andreas-like conditions will be used as a reference example later in this paper. 86 

In other cases where pore fluid pressure is elevated above hydrostatic in the deep crust, 87 

implying an increase in the depth of the BDT, physical limits on effective stress may also be 88 

important in determining the transition depth. Indeed at plate boundaries, where most of the 89 

Earth's earthquake hazard resides, geophysical evidence of deep elevated pore fluid pressure is 90 

widespread. For example, in both the Nankai and Cascadia subduction zones, high fluid 91 

pressures are inferred from Vp/Vs ratios [Shelly et al., 2006; Audet et al., 2009]. Similarly using 92 

magnetotelluric data Becken et al. [2011] image a region of low resistivity adjacent to the San 93 

Andreas fault in central California that they attribute to interconnected fluid at elevated pore 94 

pressure. In all three cases (Nankai, Cascadia, San Andreas) the regions of inferred elevated pore 95 

pressure are associated with non-volcanic tremor, long duration seismic signals with highest 96 

signal-to-noise ratios in the ~2-8 Hz band [Obara, 2002]. This tremor also has properties that 97 

seem to require elevated pore pressure, particularly occurrence rates that are very sensitive to 98 

small stress perturbations. Studies of static stress changes from regional earthquakes report both 99 

an aftershock-like response of deep NVT and LFEs on the SAF to increases of 6 and 10 kPa in 100 

shear stress from the 2003 Mw 6.5 San Simeon and the 2004 Mw 6.0 Parkfield earthquakes 101 

respectively, and quiescent response to decreases in stress [Nadeau and Guilhem, 2009; Shelly 102 

and Johnson, 2011]. Several studies report triggering of NVT on the SAF and elsewhere by 103 

teleseismic surface and body waves that imposed stress transients as small as a few kilopascals 104 

[Gomberg et al., 2008; Miyazawa and Brodsky, 2008; Peng et al., 2009; Hill, 2010; Ghosh et al., 105 
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2009; Shelly et al., 2011]. Additionally, studies of tidal stress perturbations conclude that NVT is 106 

sensitive to stress changes as small as fractions of a kilopascal [Nakata et al., 2008; Lambert et 107 

al., 2009; Thomas et al., 2009; Royer et al., 2015]. On the basis of laboratory determined 108 

material strength, such sensitivity to small amplitude stress change is thought to arise only for 109 

weak faults, moreover, those that have shear strengths similar to the amplitude of the stress 110 

perturbation [e.g., Beeler et al., 2013], which is most easily accomplished at these depths by 111 

elevated pore fluid pressure.  112 

In the case of Nankai and Cascadia, as well as in some other subduction zones, NVT is 113 

spatially and temporally associated with quasi-periodic intervals when fault slip accelerates well 114 

above the long-term rate over a portion of the deep extension of the subduction zone, down-dip 115 

of the inferred locked zone [e.g., Dragert et al., 2001]. In Cascadia these episodic slow slip 116 

events are also sensitive to small stress changes [Hawthorne and Rubin, 2010], providing 117 

additional evidence of elevated pore pressure over a large areal extent of the deep fault. Because 118 

these events show recurring accelerating slip they are often modeled with modified brittle 119 

frictional earthquake models [Liu and Rice, 2005; Segall and Bradley, 2012]. To produce 120 

episodic slip with realistic recurrence intervals, slip and slip speeds, the models require elevated 121 

pore fluid pressure, providing consistency with the tidal and dynamically triggered seismicity 122 

datasets. Collectively these observations of deep NVT and slow slip with tidal correlation, 123 

indicate that in at least a portion of deep crust equation (1a) applies and that brittle frictional 124 

sliding is the predominant faulting mechanism. 125 

Most relevant to our interest in the BDT in the present study, seismicity in these locations is 126 

not continuous with depth and the distribution provides key constraints on fault rheology. 127 

Seismicity is partitioned into two separate and distinct seismic zones. On the San Andreas there 128 

is seismicity above 10 km with typical earthquake source properties and a deeper region between 129 

15 km and 30 km depth with low frequency earthquakes and tectonic tremor [Shelly and 130 

Hardebeck, 2010]. A perhaps related structure is suggested by collected work in Cascadia on the 131 
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composition and mechanical properties of the fault [Wang et al., 2011], non-volcanic tremor 132 

[Wech and Creager, 2008] and geodetic inversions for the megathust earthquake locking depth 133 

[McCaffrey et al., 2007; Burgette et al., 2009; Schmalze et al., 2014]. In that body of literature, 134 

there is separation between the estimated extent of the locked zone of the megathrust earthquake 135 

and the region of active deep episodic slip that is accompanied by tectonic tremor. Studies of 136 

borehole strain [Roeloffs et al., 2009; Roeloffs and McCausland, 2010] and GPS [Bartlow et al., 137 

2011] show that in deep slip events in northern Cascadia between 2007 and 2011, the up-dip 138 

limit of episodic slip is around 50 km east-northeast of the estimated down-dip limit of the 139 

locked zone [Yoshioka et al., 2005; McCaffrey et al., 2007; Burgette et al., 2009]. Notably slip in 140 

these episodic events produces a shear stress concentration on the fault up-dip of the slip zone, 141 

but generates no post-slip event seismicity on this most highly stressed shallow extension. This 142 

suggests that the region between 10 and 15 km depth is ductile. 143 

So, again using the San Andreas as an example, instead of a single BDT as in Figure 1a, 144 

seismicity defines a shallow BDT at around 10 km depth, a transition back to brittle behavior at 145 

around 15 km (DBT) and a second BDT at approximately 30 km. This distribution of seismicity 146 

obviously reflects varying mechanical properties. In other examples of double seismic zones, the 147 

separation is attributed to a rheological contrast at the crust mantle boundary [Chen and Molnar, 148 

1983];  that interpretation does not apply here. More likely the second seismic zone that hosts 149 

NVT on the San Andreas is a region of frictional sliding following the effective stress principle, 150 

equation (1a), activated by elevated pore fluid pressure. Those are the conditions used in Figure 151 

1b to calculate a double brittle zone, for which the pore fluid pressure gradient is elevated to 27.6 152 

MPa/km for depths below 16 km. This second reference case for San Andreas-like conditions is 153 

used later in this paper to consider the role of effective stress in transitions between brittle and 154 

ductile faulting in the lithosphere.  155 

In this paper, the model developed to estimate effective stress is constructed by combining a 156 

contact-scale force balance in which effective stress is controlled by the fractional contact area 157 
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across faults [Scholz, 1992; Skempton, 1960] with experimental observations from static friction 158 

tests that relate the fractional contact area to the ratio of the material yield strength to the applied 159 

normal stress [Dieterich and Kilgore, 1994; 1996]. The pore fluid pressure in the fault zone at 160 

any depth is assumed to be constant. This approach that was developed in an earlier study [Hirth 161 

and Beeler, 2015] using a uniaxial stress state (consistent with the Dieterich and Kilgore [1996] 162 

experiments) is expanded here to the stress state associated with frictional sliding by using the 163 

assumptions of contact-scale yielding and a constant macroscopic friction coefficient. This 164 

portion of the analysis is found in section 3  (A general effective stress relation) and follows a 165 

brief review of laboratory constraints on effective stress for frictional sliding and rock fracture 166 

(section 2. Experimental constraints on effective stress). For the model, effective stress 167 

depends on the rate of contact scale yielding and thus is related to the macroscopic strain rate. 168 

Since fault slip rates during the seismic cycle vary from much less than the plate rate (~0.001 169 

μm/s on the San Andreas) to ~ 1 m/s during seismic slip, to make the analysis tractable we 170 

consider slip at the plate rate with a steady-state shear resistance and a constant shear zone 171 

thickness. This approach follows from the previous studies of crustal stress and strength [Goetze 172 

and Evans, 1979], as in Figure 1. Using data on dilatancy and compaction from room 173 

temperature friction experiments we assume a dynamic balance between on-going contact-scale 174 

yielding and shear induced dilatancy to relate macroscopic shear strain to contact-scale strain and 175 

thus to the yield stress at contacts, as discussed in section 4 (Relations between contact scale 176 

and macroscopic strain rates). The necessary laboratory data and flow laws for quartz yield 177 

stress as a function of temperature and strain rate are assembled in section 5 (Yield strength of 178 

asperity contacts). Finally, effective pressure is calculated throughout the lithosphere for 179 

comparison with the two reference cases (Figures 1a and 1b) in section 6 (Results). Our 180 

analysis suggests that a highly efficient effective stress is restricted to portions of the crust where 181 

the yield strength of asperity contacts within fault zones greatly exceeds the applied normal 182 

stress. Because yield strength decreases with increasing temperature and decreasing strain rate, a 183 
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highly efficient effective pressure coefficient is more difficult to maintain at depths where 184 

temperature is high and deformation is distributed. Accordingly, the effective stress in the deep 185 

crust tends to the applied normal stress unless both the shear strain rate and pore pressure are 186 

elevated. 187 

2. Experimental constraints on effective stress 188 

The concept of effective stress,  189 

 σ e = σ −α p , (1b) 190 

was discovered in soil mechanics experiments by Terzaghi between 1919 and 1925, [e.g., 191 

Terzaghi, 1936; 1943]. Here σe is the effective stress, σ is applied stress, p is pore pressure and 192 

α is the effective pressure coefficient, 0 ≤ α ≤1. The underlying principle is that for materials 193 

with interconnected porosity, fluid pressure within the pore space works in opposition to the 194 

applied stresses. Stress dependent properties (frictional strength, elastic compressibility, 195 

poroelasticity) are changed relative to fluid-absent values. The α coefficient characterizes the 196 

efficiency of the pore fluid in opposing the applied stress. There are many different specific 197 

effective stress relationships [Skempton, 1960; Nur and Byerlee, 1971; Robin, 1973]. For 198 

example, for a particular material at specified normal stress, temperature, and pore pressure, 199 

effective stress for poroelasticity (Biot's effective stress) [Rice and Cleary, 1976; Cheng, 1997], 200 

volumetric strain [Geertzma, 1957; Skempton, 1960; Nur and Byerlee, 1971], seismic velocity 201 

[Gurevich, 2004], friction [Hubbert and Rubey, 1959; Mandl, 1988; Hirth and Beeler, 2015], and 202 

pore strain [Robin, 1973], all have the form of (1b) with different values of α. Like Terzaghi, in 203 

the present study we are interested strictly in effective stress for shear failure, in which case σ is 204 

stress normal to the shear zone, σn, and (1b) is the effective stress law for frictional sliding with 205 

an effective pressure coefficient denoted αf throughout. 206 

In many previous low temperature studies of natural faulting and laboratory rock friction 207 

where effective normal stress is considered, αf  is found or assumed to be 1, leading to the 208 

standard effective normal stress relation for faulting (1a) [e.g., Hubbert and Rubey, 1959; Mandl, 209 
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1988] sometimes referred to as Terzaghi’s effective stress. Equation (1a) well characterizes 210 

intact rock failure in experiments on granite, diabase, dolomite, gabrro, dunite, and sandstone at 211 

room temperature [Brace and Martin, 1968] and on dolomite, limestone, sandstone, siltstone and 212 

shale at temperatures up to 300°C [Handin et al., 1963]. There are known limitations to (1a) that 213 

the rock must be inert in the pore fluid, and the fluid is drained and pervasive. High strain rate 214 

loading tests [Brace and Martin, 1968] show an apparent breakdown of (1a) when the rate of 215 

dilatancy exceeds the rate that fluid flows into the incipient fault, resulting in undrained 216 

conditions and a dilatancy hardening contribution to the failure strength. In this case the 217 

externally measured pore pressure is not the pore pressure in the fault and the effective normal 218 

stress is unknown (but can be inferred from the observed shear stress). To meet the requirement 219 

of drained deformation and pervasive saturation, the rock must be sufficiently porous and 220 

permeable. Handin et al.’s [1963] experiments show breakdown of αf = 1 in presumed cases of 221 

low permeability (undrained deformation, shales) and low porosity (non-pervasive fluid, 222 

dolomite, marble, limestone). Because rock failure at low temperature involves dilatancy that 223 

favors high permeability and pervasive fluid distribution [Brace et al., 1966], the requirements 224 

for (1a) to apply are expected at typical laboratory faulting conditions where strain rates are 225 

intermediate between tectonic and seismic rates. Limited stick-slip failure and frictional sliding 226 

experiments on preexisting faults at room temperature on a range of materials, e.g., on sawcut 227 

surfaces of granite [Byerlee, 1967] and simulated gouges of illite and montmorillonite [Morrow 228 

et al, 1992], also confirm (1a). 229 

However, near the BDT ductile deformation tends to reduce porosity and permeability, leading 230 

to an expected breakdown of (1a) in the form of a reduction in αf, as seen in low porosity rocks 231 

by Handin et al. [1963] and references therein. Similarly, in more recent high temperature, high 232 

pressure laboratory experiments some rocks exhibit ductile deformation in the presence of near-233 

lithostatic pore pressure [Chernak et al., 2009] or near-lithostatic melt pressure [Hirth and 234 

Kohlstedt, 1995], rather than brittle failure at near zero shear resistance as required by (1a) [Hirth 235 
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and Beeler, 2015]. There are some natural counterparts of these experiments, mylonites with 236 

near lithostatic pore pressure inferred from fluid inclusions [Axen et al., 2001]. These 237 

observations suggest that under some conditions the BDT is associated with an effective stress 238 

relation with α�  near zero, instead of the fully efficient coefficient (1a) and that the change in 239 

α�  is expected as porosity decreases in the deep crust.  240 

In contrast to these scattered laboratory observations that suggest an “ineffective” effective 241 

pressure at some mid-crustal conditions, observations of microseismicity and tectonic tremor on 242 

the deep extent of some subduction zones and the San Andreas fault (detailed in the 243 

Introduction), particularly the modulation of fault slip and tectonic tremor by kPa or smaller 244 

tidal stresses [e.g., Hawthorne and Rubin, 2010; 2013, Thomas et al., 2009; 2012], are difficult 245 

to explain without allowing friction to operate in the presence of elevated pore pressure with 246 

α�  near one. In light of conflicting seismic, field and laboratory evidence, some of which 247 

suggests limits on (1a), collectively the observations suggest that the effective pressure 248 

coefficient αf can be near zero or near 1 depending on the circumstances. Though cause-effect 249 

relations are unknown, likely controls on αf involve material properties such as ductile strength, 250 

and environmental variables such as pore pressure, temperature, normal stress, and strain rate. To 251 

develop a model for effective stress, in the following section we extend to crustal temperatures 252 

and stresses a physical model of effective stress derived from a contact scale force balance 253 

[Skempton, 1960; Scholz, 1990]. 254 

3. A general effective stress relation  255 

Imagine a representative asperity contact surrounded by fluid at pore pressure p on a fault 256 

surface or within a shear zone (Figure 2). Here and throughout this paper, pore fluid pressure in 257 

the fault zone is assumed to be constant, in full communication with the surroundings (drained). 258 

The macroscopic force applied normal to the asperity N is balanced by the normal force at the 259 

solid-solid asperity contact Nc and the pressure in the pore space [Skempton, 1960]:  260 

 N = Nc + A − Ac( ) p  (2a) 261 
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where Ac is the solid-solid contact area and A is the total area measured in the plane parallel to 262 

the contact. Normalizing by the total area, defining the macroscopic normal stress, σn= N/A, 263 

leads to a definition of effective normal stress, σ n
e  = Nc/ A, as  264 

 σ n
e = σ n − 1− Ac

A






 p , (2b)  265 

an equation of the form (1b) with α f =1− Ac
A

 [Skempton, 1960; Scholz, 1990]. Noting that the 266 

contact normal stress is σc = Nc /Ac, the ratio of σ n
e  to σc for this model is the fractional contact 267 

area,  268 

 σ n
e

σ c
= Ac

A
, (2c) 269 

similar to classic plastic and elastic models of friction [c.f., Bowden and Tabor, 1950; 270 

Greenwood and Williamson, 1966]. In (2b), the effective stress for friction is thus related to the 271 

area along a shear plane that is supported by pressurized pore space relative to area of asperity 272 

contact across the plane. When the area of contact is small a change in pore pressure acts in 273 

nearly exact opposition to the applied fault normal stress. Conversely when the pore space is 274 

small and equi-dimensioned, changes in pore pressure produce nearly no opposition. Here and 275 

throughout this report we assume that the contact stresses are limited by plastic yielding [Bowden 276 

and Tabor, 1950] and that the contacts between grains are not wetted by the pore fluid.  277 

To get a qualitative idea of how αf estimated from (2) might vary with depth in the Earth’s 278 

crust, first consider a rough fault surface uniaxially loaded in true static contact (no resolved 279 

shear stress onto the fault) with no confining pressure (σ3 = 0) and dry as in the experiments of 280 

Dieterich and Kilgore [1996]. The macroscopic principal stresses are coincident with the fault 281 

normal and in-plane directions; the fault normal stress is σ1 = σn (Figure 3a). The corresponding 282 

stress state at a representative contact on the fault is in the same orientation as the macroscopic 283 

stress (Figure 3b); the contact normal stress is the greatest principal stress and also is the 284 

differential stress at the asperity contact. Plasticity on the contact scale requires the contact 285 
normal stress is also the yield stress, σc =σ1

c = σ Δ
c = σ y (Figure 3b). Fractional contact area is  286 
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 Ac
A

= σ n
σ y

. (3a) 287 

Direct measurements of contact area for minerals and analog materials at room temperature show 288 

this to be valid [Dieterich and Kilgore, 1996]. Though (3a) is only strictly applicable to true 289 

static conditions of no shear stress on the fault, using (2c), the implied effective pressure 290 

coefficient is  291 

 α f =1− σ n
e

σ y
. (3b) 292 

[Hirth and Beeler, 2015]. Observations in laboratory tests on strong materials such as granite and 293 

quartz at a few to hundreds of MPa normal stress at room temperature are qualitatively explained 294 

by (3b). αf  = 1 is found at room temperature regardless of confining pressure [Byerlee, 1967] or 295 

rock type [Morrow et al., 1992]. σy for quartzofeldspathic minerals at room temperature is 296 

several GPa [Dieterich and Kilgore, 1996]. Even extrapolating to normal stresses of 500-800 297 

MPa appropriate for the deep crust, we still expect αf  ≈ 1 at room temperature. So at low 298 

temperature faults the fractional area of contact is very small.  299 

The uniaxial compression contact scale stress state used to derive (3b) is not consistent with 300 

that expected during frictional sliding. To include a macroscopic applied shear stress during slip 301 

at elevated confining stress we make an additional explicit assumption of steady-state frictional 302 

sliding μ = τ σ n
e . Because fluid in the pore space supports no shear stress, applying a shear 303 

force balance to the contact model (Figure 2) requires the macroscopic applied shear force S 304 

equals the contact shear resisting force, Sc. This leads to the same type of proportionality 305 

between the macroscopic shear stress, τ = S A , and the contact scale shear stress, τ c = Sc Ac , 306 

seen in equation (2c) for the normal stresses, namely, τ = τ c Ac A. One consequence is that the 307 

ratio of the contact shear and normal stresses is the macroscopic friction coefficient, τ c σ c = μ , 308 

again consistent with familiar assumptions from friction theory [Bowden and Tabor, 1950; 309 

Skempton, 1960; Greenwood and Williamson, 1966]. A more general consequence is that all of 310 

the macroscopic stress components on the fault such as the effective normal stress (σn
e ), the 311 
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effective confining stress (σ 3
e ) and the greatest principal stress (σ1

e ) (Figure 3c), scale from the 312 

analogous contact stresses (Figure 3d) by the area ratio. Similarly, the macroscopic stresses 313 

relate to the material yield stress via the area ratio and a constant, χ, specific to the stress 314 

component of interest, as 315 

 

Ac
A

= σ e

χσ y .  (3c) 316 

 particular value of χ can be determined from the Mohr construction shown in Figure 3d. 317 
For example the contact-scale normal stress is σ c = σ y cos tan−1 μ( ) 2μ . From equation (2c), 318 

then, χ = cos tan−1 μ( ) 2μ . 319 

The contact stress state, derived from the force balance and the assumptions of contact 320 

yielding and steady-state sliding at a macroscopic, constant friction coefficient differs in detail 321 

from the expected stress state at a representative contact on a sliding frictional interface. For 322 

example in Hertz's solution for a uniaxially loaded elastic contact, normal stress varies within the 323 

contact from zero at the edges to approximately 1.3 (4/π) times the mean at the contact center 324 

[Johnson, 1987]. Imposed sliding further alters the stress distribution to be asymmetric about the 325 

contact center with relative tension and compression at the trailing and leading edges, 326 

respectively. An example of these complications, that are ignored in our representative contact 327 

model, are described in more detail in the Supplement 4. There, a solution for a sliding contact 328 

from the contact mechanics literature is developed and compared with that from our model. A 329 

primary concern is whether the average stress model adequately characterizes the stress state at 330 

yield. The supplementary analysis suggests that if spatial variation and asymmetry in the contact 331 

stress are considered, differential stress at yielding during slip is within 10% of the representative 332 

contact model. Nevertheless, that analysis should be considered just one example of the possible 333 

contact stresses during slip, and the size and distribution of deviations from the average stress 334 

state during sliding requires further laboratory and theoretical research, especially at high-335 

temperature conditions where crystal plastic deformation mechanisms become kinetically more 336 
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efficient. Additional considerations and guidance in future work relating contact stress state to 337 

macroscopic shear resistance during frictional sliding may be found in the study of Boitnott et al. 338 

[1992] and references therein. 339 

Throughout the remainder of this paper, we use the representative contact model (Figure 2) to 340 

characterize the average shear and normal stresses at the contact. Issues that arise in true contact 341 

mechanics models such as spatial variability of shear and normal stresses within the contact, 342 

asymmetry of the stresses about the contact [Johnson, 1987] and interactions between contacts 343 

are not considered.  The general form for the resulting effective stress coefficient is 344 

 α f =1− σ e

χσ y
, (3d) 345 

Accounting for physical limits on α�, the general form of a bounded (0 ≤ Ac/A ≤ 1, 0 ≤ αf  ≤1) 346 

effective stress law for faulting is 347 

 
α f =

χσ y −σ
χσ y − p

χσ y > σ

α f = 0 χσ y ≤ σ
 , (4a)  348 

which follows from combining (1b) with (3d) and solving for αf. From inspection, at low values 349 

of σy relative to tress component of interest, αf  ≈ 0, and at high values αf  ≈ 1.  350 

Physically, once the macroscopic differential stress reaches the yield stress, the contact area is 351 

equal to the total area (Ac/A = 1). This limiting condition on effective stress (αf = 0) at elevated 352 

temperature and stress occurs when χσy ≤ σ. The limit is independent of pore pressure and 353 

implies that in porous and permeable materials there is a depth below which friction cannot 354 

determine fault strength, even when the pore fluid pressure approaches lithostatic, consistent 355 

with the limited laboratory data [Chernak et al., 2009; Hirth and Kohlstedt, 1995]. The general 356 

relation for effective stress is 357 



nmb  15 12/3/15 

 

σ e =
σ − p( )

1− p
χσ y











χσ y > σ

σ e = σ χσ y ≤ σ

, (4b) 358 

which results from combining (1b) with (3d) and solving for effective stress.  359 

Accordingly, to calculate effective stress requires specified values of the environmental 360 

variables, pore pressure and applied stress, and knowledge of the material yield stress. The yield 361 

stress also depends on the environment via temperature and fundamentally on the strain rate. 362 

Since fault slip rates during the seismic cycle vary from much less than the plate rate (~0.001 363 

μm/s on the San Andreas) to ~ 1 m/s during seismic slip, to make the analysis tractable in this 364 

study we consider slip at the plate rate at a steady-state shear resistance and constant shear zone 365 

thickness. Thus, in the calculations the strain rates are constant. This approach follows from 366 

previous studies of crustal stress and strength inferred from experimental data [Goetze and 367 

Evans, 1979; Brace and Kohlstedt 1980; Kirby, 1980] (Figure 1). While the dependences of 368 

yield stress on temperature and strain rate have been established in laboratory tests at controlled 369 

temperatures and macroscopic strain rates, the appropriate strain rate for use in (4b) is the fault 370 

normal strain rate due to yielding at the asperity contacts. In the next section we apply friction 371 

theory at steady state to determine a relation between the macroscopic steady-state shear strain 372 

rate and the macroscopic fault normal strain rate. Then we use the macroscopic normal strain rate 373 

to determine the contact-scale normal strain rate due to yielding. 374 

4. Relations between contact scale and macroscopic strain rates. 375 

Following our assumption of steady-state deformation we assume that during frictional sliding 376 

the shear zone has constant volume and that there is no change in thickness or porosity with slip. 377 

This assumption is reasonably well approximated in large displacement friction experiments 378 

[e.g., Beeler et al., 1996]. To estimate the necessary value of the contact scale normal strain rate 379 

due to yielding that determines the area of contact we use friction theory and laboratory 380 
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observations made far from steady-state. During frictional sliding at room temperature, fault 381 

zone porosity varies with sliding rate [e.g., Morrow and Byerlee, 1989; Marone et al., 1990]. 382 

When the fault is sliding at steady state, there is essentially no displacement normal to the fault. 383 

If the imposed sliding velocity is changed, the fault dilates or compacts as observed in the single 384 

asperity study of Scholz and Engelder [1976] due to changes in the contact area. Although quartz 385 

has a yield strength of more than 10 GPa at room temperature [Evans, 1984], indentation studies 386 

show that the contact scale creep rate is easily measurable, and even at 25°C the observations of 387 

dilation and compaction during frictional sliding can be interpreted to result from a dynamic 388 

balance between time-dependent compaction (due to fault normal yielding at the asperity 389 

contacts) and shear-induced dilatancy. These two opposing effects have been observed in lab 390 

faulting tests on initially bare rock surfaces, notably by Worthington et al. [1997] (Figure 4). 391 

Since during steady-state sliding the fault normal displacement δn is constant, dδn  = 0, the 392 

dynamic balance between opposing time-dependent normal yielding and shear-dependent 393 

dilation can be written in terms of the macroscopic normal and shear strains, εn and γ, as  394 

 

∂εn
∂γ

 

 
 

 

 
 
t

ss
= −

1
˙ γ 

˙ ε n( )γ
ss

 , 395 

or in terms of slip δs and fault normal displacement as 396 

 

∂δn
∂δs

 

 
 

 

 
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 
 
 
δs

ss

 , (5a) 397 

[Beeler and Tullis, 1997]. Here V is the imposed sliding velocity.  398 

The nature of the competition makes it difficult to measure either of the steady-state rates in 399 

(5) directly. However, a minimum rate of shear-induced dilatancy may be inferred from 400 

measurements during frictional sliding in which the competing rate of fault normal creep has 401 

been induced to be very low. Such a situation arises during reloading following a long duration 402 

stress relaxation test. During the relaxation test, the loading velocity is zero, however the fault 403 

continues to slip under the shear load, and as the fault slips, the measured strength decreases. 404 

This is accompanied by compaction that is logarithmic in time [e.g., Beeler and Tullis, 1997] 405 
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(Figure 4a). The compaction is presumed to be due to fault-normal creep at asperity contacts. At 406 

the end of the long relaxation the normal creep rate is very low. In the subsequent reloading the 407 

fault dilates with displacement (Figure 4b and 4c). The measurements are made at large 408 

displacements >100 mm and large shear strains, typically > 1000. Dilatancy and compaction 409 

measured in those experiments have no known displacement dependencies, however, there are 410 

no comprehensive studies of these effects. The examples shown in Figures 4 are from initially 411 

bare surfaces of granite and quartzite at room temperature and 25 MPa normal stress. The 412 

displacement rate of dilation, dδn dδs ≈ 0.1 for granite and is ~0.06 for quartzite. Because there 413 

may be contributions from time dependent compaction during these reloading tests, we can infer 414 
that the steady-state rate ∂δn ∂δs( )t

ss is no smaller than 0.06. These values are similar to those 415 

inferred by theoretical treatments of the kinematics of frictional sliding [Sleep, 2006] that yield 416 

values between 0.04 and 0.11 for quartz and a preferred value in the range 0.04 to 0.05. The 417 

approaches of Sleep [1997; 2006] and Sleep et al. [2000] are similar to (5a) in that during steady-418 

state sliding time-dependent compaction is balanced by shear induced dilatancy. 419 

Using the data in Figure 4 and equation (5a), the macroscopic normal strain rate ˙ εn due to 420 

yielding at asperity contacts is assumed to be ~10% of the shear strain rate ˙ γ . The contact-scale 421 

normal strain rate  is greater than or equal to the macroscopic normal strain rate, and varies 422 

systematically with percent contact area as . Combining with (5a), the contact scale 423 

fault normal strain rate due to yielding is  424 

 ,  425 

or, equivalently  426 
 ,  (5b) 427 

the strain rate with which to determine the yield stress. Much of the variation in the effective 428 

stress coefficient (4a) illustrated in the calculations described later in this paper arise directly 429 

from assumed changes in the shear zone thickness (strain rate). The other primary variations in 430 
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the effective stress (4b) and the effective stress coefficient (4a) are due to the temperature 431 

dependence of the yield stress, which we describe next. 432 

5. Yield strength of asperity contacts.  433 

The yield strengths of crustal minerals typically have a very the strong temperature 434 

dependence which implies a strong depth dependence in the effective pressure relation (4). For 435 

example, at the base of the seismogenic zone where the temperature is several hundreds of 436 

degrees C, the yield stress of quartz  approaches the applied confining stress [Evans and Goetze, 437 

1979; Evans, 1984]. For our purposes to estimate the asperity yield strength at low temperature 438 

(red dashed) we use quartz data from indentation (solid symbols) and triaxial (open) tests 439 

(Figure 5) [Evans, 1984; Heard and Carter, 1968]. These experiments were conducted at strain 440 

rates on the order of 1 x 10-5/s. At the lowest temperatures, the data are represented by a flow 441 

law for low-temperature plasticity (LTP) from Mei et al. [2010] that is described in more detail 442 

in the Appendix. Evans' [1984] experiments were conducted dry. A complication is that while 443 

quartz undergoes some kind of plastic yielding at low temperature [Masuda et al., 2000], the 444 

mechanism is not strictly the dislocation glide assumed in the Mei et al. [2010] flow law at low 445 

temperature. Nonetheless the flow law can fit the data quite well and we use it empirically. To 446 

account for weakening due to the presence of water in the Earth’s crust, in the absence of 447 

experimental data at saturated, low stress conditions, the wet strength (blue dashed) is somewhat 448 

arbitrarily assumed to be half the dry strength in the low temperature regime. At around 800°C 449 

the data depart from the trend of low temperature plasticity. This is the onset of dislocation 450 

creep. The dislocation creep flow law for dry deformation (red dotted line in Figure 5) used is of 451 

the standard form [Hirth et al., 2001]. As with the low temperature plasticity data, it is necessary 452 

to consider the effect of water on the creep flow strength; in this case there are data from wet 453 

creep tests, represented by the flow law (blue dotted) using parameters from Hirth et al. [2001]. 454 

To produce a combined flow law for contact yielding (solid curves) we use a standard 455 
assumption that the combined differential strength is σ Δ

c = 1 σ Δ
LTP +1 σ Δ

DC( )−1
. To extrapolate 456 
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the indentation data to the Earth we use the wet flow laws at the appropriate contact scale strain 457 

rate. Application of these flow laws on the asperity scale implicitly ignores any transitional semi-458 

brittle deformation mechanisms that are observed in large strain experiments [Evans et al., 1990] 459 

6. Estimating αf and the position of the BDT 460 

The objective of this study is to estimate the position of the BDT while accounting for 461 

effective stress using equation (4). As described in the immediately preceding sections, effective 462 

stress depends on material properties, thermal structure, strain rate, and stress regime. The BDT 463 

depends on these same variables directly [Goetze and Evans, 1979; Brace and Kohlstedt, 1980] 464 

and also via the effective stress. Our strategy is to assume a thermal structure, stress regime, pore 465 

pressure, depth variations in shear-zone thickness, and a particular material (quartz). There are 466 

two example calculations in this section. The calculations correspond to the same thermal 467 

structure, stress state and material as the cases shown for the standard effective stress assumption 468 

(αf = 1) in Figure 1; these previous plots serve as the two reference calculations for comparison 469 

with the examples with equation (4). Furthermore, between the two following calculations, only 470 

the pore pressure and thickness distributions differ; all other environmental variables and 471 

material properties are the same. Pore pressure at any depth within the fault zone is assumed to 472 

be constant. The calculations do not consider the percolation threshold and it is assumed that the 473 

pore space is interconnected for all porosities greater than zero. While this is not ideal - some of 474 

the related issues are described in the Discussion section. The calculations are for a vertical 475 

strike-slip faulting environment with a lithostat that is typical for the continental crust. 476 

Overburden is 28 MPa/km and is assumed equal to the average of the greatest and least principal 477 

stresses, σm= (σ1 + σ3)/2. The temperature distribution is from Lachenbruch and Sass [1973] 478 

(Model A) for the San Andreas. Fault normal stress for constant friction and an optimally 479 

oriented fault (Figure 3c) is 480 

 σn = α f p + σ m −α f p( )
sin tan−1 μ( )cos tan−1μ( )

μ
. (6a) 481 
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The differential stress is 482 
 σ Δ = 2(σ m −α f p)sin tan−1μ( ) 483 

or  . (6b) 484 

Combining equation (6a) and (4a) for normal stress (σ = σn) results in a compact expression for 485 

the effective pressure coefficient for friction in strike slip, 486 

 
α f =

σ y − 2sin tan−1 μ( )σ m

σ y − 2sin tan−1μ( ) p
σ y > 2sin tan−1μ( )σ m

α f = 0 σ y ≤ 2sin tan−1μ( )σ m

. (7) 487 

The shear zone differential stress is given by the same flow laws used to estimate the contact 488 

asperity yield strength. The position of the BDT is estimated as the intersection of the friction 489 

and flow stress relations, assuming failure at the lower of the differential strength of friction or 490 
flow, σ Δ = min σ Δ

friction +σ Δ
flow( ) . The long term macroscopic shear strain rate , is the plate 491 

rate, for which we use a San Andreas-like value, VL = 0.001 μm/s (corresponding to 31.5 492 

mm/yr), divided by the shear zone thickness w, which we take to be ~1 mm in the brittle regime 493 

[Chester and Chester, 1998] and 1 km below the BDT [Bürgmann and Dresen, 2008]. These 494 

thickness choices are intended to produce illustrative results but unfortunately they are poorly 495 

constrained. These applied strain rates of 1 x10-6 /s and 1 x 10-12 /s result in macroscopic fault-496 

normal strain rates of ˙ ε n= 1 x 10-7/s and 1 x 10-13/s, following the discussion in section 4 497 

above. The strain rates for friction assuming a 1 mm thick shear zone are similar to those in the 498 

laboratory tests. 499 

In the first calculation, pore pressure is hydrostatic (10 MPa/km) throughout the lithosphere. 500 

Figure 6 shows αf   and differential stress (black) from friction (red) and from 501 

ductile flow (green). At the BDT there is a large change in the assumed shear zone thickness 502 

resulting in a large corresponding change in the fault zone strain rates. This produces a large 503 

change in fractional contact area (right panel) and a corresponding change in αf from high values 504 
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associated with localized, dilatant frictional slip (grey) to zero associated with non-dilatant 505 

distributed ductile shear (yellow).  506 

 When compared with the results from the standard assumption about effective stress (Figure 507 

1) there are both strong similarities and significant differences: 1) αf is close to 1 very near the 508 

Earth’s surface and decreases progressively but weakly with depth; 2) αf remains relatively large 509 

immediately above the BDT because the asperity scale deformation is controlled by low 510 

temperature plasticity and the asperities are very strong; 3) because of the small difference 511 

between αf compared with the standard assumption, the brittle ductile transition depth of ~13 km 512 

is only very weakly influenced by effective stress; 4) however, at and below the BDT αf = 0. 513 

This is a consequence of the much lower strain rate due to ductile flow within the assumed 1-km-514 

wide shear zone and a transition to the much weaker dislocation creep regime on the asperity 515 

scale. The large difference between effective stress for localized frictional slip (w=1 mm, grey) 516 

and for ductile distributed shear (w= 1 km, yellow) highlights the shear strain rate effect on 517 

effective stress. Because αf is zero on the deep extent of the fault, it is impossible to reactivate 518 

friction at these depths by raising pore pressure to lithostatic without also invoking a mechanism 519 

that imposes localized slip, the shear strain rate increases and the effective stress coefficient 520 

increases. Such localization might occur by imposing a high slip rate on the deep extent of the 521 

fault, for example, due to propagation of earthquake slip through the BDT during large 522 

earthquakes [e.g., King and Wesnousky, 2007; Rice, Rudnicki and Platt, 2014] or during 523 

propagating afterslip. Simply increasing the slip velocity at constant shear zone width will 524 

produce a deepening of the BDT itself, an increase in αf, and an increase in the limiting depth 525 

where αf = 0 (equations (4) and (7)). Thus, despite the implied barrier to reactivation of friction 526 

at depth, any ‘dynamic’ effective pressure coefficient will be higher than estimated in Figure 6. 527 

 Another way that localization might be encouraged on the deep extent below the BDT would 528 

be an increase in pore fluid pressure in a limited portion of the broader shear zone. Examples of 529 

increased pore pressure localized along a specific horizon might involve migration up the fault 530 
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from depth [Rice, 1992] or from local dehydration as is thought to be common in subduction 531 

zones [Peacock, 2009; Peacock et al., 2011].  532 

6.1 Elevated pore pressure in the deep crust. The second calculation follows Figure 1b, and 533 

examines the implication of the model effective stress relation (4) for generating rheological 534 

contrasts as pore pressure and localization are varied in the deep crust. As described in the 535 

introduction, evidence for elevated pore fluid pressure is widely observed and generally expected 536 

in the deep crust. Elevated pore fluid pressure will tend to significantly increase the effective 537 

pressure coefficient in (4a) by making the denominator smaller. This is the mechanical effect of 538 

increased pore pressure itself on the effective stress coefficient. Adding the region of elevated 539 

pore pressure and assuming localized frictional slip at depths greater than 16 km produces a 540 

second brittle region (Figure 7). In the crust above 16 km all properties are identical to the 541 

calculation shown in Figure 6 where pore pressure is hydrostatic. Below 16 km the pore pressure 542 

is nearly lithostatic and the shear zone is 1 mm thick. In this calculation the lithostat is 28 543 

MPa/km and the pore pressure below 16 km is 27.6 MPa/km. At 16 km depth the pore pressure 544 

is 6.5 MPa less than lithostatic. The increase in pore pressure and decrease in the shear zone 545 

thickness results in an increase in αf from 0 to nearly one and a more than order-of-magnitude 546 

decrease in the differential stress. The increase in αf is due to the large magnitude increase in the 547 

contact scale strain rate from narrowing the shear zone from 1 km width to 1 mm and also due to 548 

the increase in pore pressure in the denominator of equation (4). The decrease in macroscopic 549 

strength corresponds to a transition from ductile to brittle possibly allowing for seismicity in the 550 

otherwise ductile deep crust. The potentially seismic zone persists to around 30 km depth, in 551 

contrast to the standard calculation (Figure 1b) where brittle deformation extends to 35 km. 552 

Between 16 and 30 km the contact scale deformation follows the low temperature plasticity 553 

relation. The narrow 'gap' region between the two brittle regions is a zone of imposed distributed 554 

creep. 555 
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 Figure 7 depicts a situation that is little different from scenarios proposed in prior modeling 556 

studies where elevated pore pressure is often invoked to reactivate friction on a portion of a fault 557 

below the BDT [e.g., Segall and Bradley, 2012]. The primary difference is that the transitions 558 

between brittle and ductile are calculated in the present study. Their locations reflect contact-559 

scale strength based on laboratory data and its dependence on temperature, contact-scale strain 560 

rate, the degree of shear localization, and the pore fluid pressure. There is interplay between the 561 

macroscopic fault strength and the contact scale, for example the effective pressure coefficient is 562 

determined at the contact but influences the location of the macroscopic BDT. And while the 563 

pore pressure and degree of localization are imposed in this calculation, the rheological 564 

properties dictate the ranges of localization and pore pressure necessary to reactivate friction at 565 

depth. We consider this a modest step forward. Greater advances may come from considering 566 

time-dependent rather than steady-state deformation, including time-dependent evolution of 567 

hydraulic properties and fluid pressure in the vicinity of the rheological transitions, the influence 568 

of other minerals/rock types (including those rich in micas or clays) and most importantly 569 

allowing degree of localization to be a dependent variable [e.g., Platt et al., 2014]. 570 

While in the calculations both elevated pore pressure and localization are required to reactivate 571 

friction below the BDT, this is not the general requirement. It is possible that some fault zone 572 

rheologies and shear zone widths allow reactivation by increasing the pore pressure alone. So 573 

long as the ductile shear zone width is sufficiently narrow that αf for ductile shear is non-zero 574 

(σn < χσy) then increasing the pore pressure to high levels can reactivate friction. This behavior 575 

does not arise in the example (Figure 7) because αf  for ductile shear of a 1 km width quartz 576 

fault is zero for all depths below about 12.5 km.  577 

7. Limitations 578 

Despite the physical basis (Figure 2) and its appearance in the earthquake fault mechanics 579 

literature [Scholz, 1990], effective stress relations for faulting of the type described by equations 580 

(2), (3) and (4), are disputed on theoretical grounds [Hubbert and Rubey, 1959, 1960; Skempton, 581 
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1960; Bishop and Skinner, 1977; Mandl, 1988, 2000]. The supplemental materials describe these 582 

concerns in detail and how they relate to our interpretation that equation (4) is appropriate in the 583 

deep crust. Nevertheless there remain fundamental differences between our analysis and those in 584 

the soil mechanics literature that should be resolved in future theoretical and experimental 585 

studies. 586 

Similarly, while there are a number of experimental studies that are qualitatively consistent 587 

with the decrease in αf at high contact area that arises in our calculations [Handin et al., 1963; 588 

Hirth and Kohlstedt, 1995; Chernak et al., 2009] there are important counter examples. In 589 

particular, are the deformation experiments conducted by Bishop and Skinner [1977] to 590 

understand effective stress that find no correlation between effective pressure and contact area. 591 

These are also described in Supplementary material where we contrast and reconcile them with 592 

our view of effective stress in the deep crust. The Bishop and Skinner experiments provide the 593 

best existing constraints on the physical basis of effective stress, albeit at very low nominal 594 

effective normal stresses. Keeping in mind that the deep crust is thought to be a zone of 595 

vanishing effective stress [Audet et al. 2009; Thomas et al., 2009], experimental procedures 596 

following Bishop and Skinner could be employed in future experimental studies of effective 597 

stress at transition zone conditions to resolve the physical basis of effective stress.  598 

Among the deficiencies of our effective stress model is the assumption of non-wetted grain 599 

boundaries. While this is consistent with the properties of quartz at elevated temperature [Watson 600 

and Brennan, 1987; Beeler and Hickman, 2015], it is not universally expected and there are other 601 

considerations. Soils that include clay minerals may have a significant fraction of grain contacts 602 

that have some form of wetted, adsorbed or bonded water within the grain boundary, conditions 603 

that favor a fully efficient effective pressure coefficient. Similar wetting properties may be 604 

associated with other sheet silicates. Another material property that may influence effective 605 

stress in fault zones at great depth is rheological anisotropy. Sheet silicates are preferentially 606 

weak for shear parallel to the basal plane and therefore may not deform by dislocation creep at 607 
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any temperature [e.g., Escartin et al., 1997; 2008], owing to grain-scale strain compatibility 608 

requirements. So even though they are relatively weak in the shallow crust, microcracking at the 609 

grain scale may persist well into the deep crust, at conditions where quartz and other more 610 

isotropic phases deform by dislocation creep. A consequence is that αf > 0 may persist to greater 611 

depths in these materials. Notably in recent experiments on serpentinite near its breakdown 612 

temperature the effective stress relationship seems to be highly efficient with interconnected 613 

porosity consisting of cleavage plane microcracks [Proctor et al., 2015]. At the same time 614 

because of the anisotropy, narrow shear zones persist in phyllosilicates even at high temperatures 615 

despite ductile or rate strengthening rheological properties [e.g., Escartin et al., 2008]. Thus 616 

localization defined by mineral structure such as associated with sheet silicates, rather than 617 

strictly by rheology, may be required for friction to be activated at depths below the BDT 618 

(Figure 7). 619 

The model (4) assumes that αf can be estimated at porosity approaching zero whereas an 620 

expected experimental limit on αf > 0 is where the porosity remains interconnected. This is 621 

consistent with observations in quartz where this percolation threshold [e.g., Zhu et al., 1995] at 622 

high temperature is approximately 1 volume percent or less [Wark and Watson, 1998], 623 

corresponding to a permeability of ~1 x 10 -14 m2. In contrast, a model sphere array of grains 624 

discussed in the Supplementary provides a counter example with which to estimate the porosity 625 

and area ratio where pore space becomes isolated. The associated area ratio at the threshold is 626 

π/4 and the associated αf = 0.22. Consequently, rather than the smooth variation to αf =0 shown 627 

in Figure 6 at > 30 km, we may expect a more abrupt transition and a somewhat shallower limit 628 

on effective stress than estimated with (4) if the percolation threshold is the appropriate limit on 629 

effective pressure. Differences between the sphere array and the Wark and Watson [1998] 630 

experimental observations are related to textural equilibrium and contributions of solid-liquid 631 

surface energy to determining the pore structure and fluid percolation threshold. An additional 632 

related consideration of pore structure is dependence of the effective pressure coefficient pore 633 
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shape. Low aspect ratio pores (cracks) that are favored at low temperature in the brittle regime 634 

are more compliant and at fixed porosity will produce a higher value of af than stiffer equi-635 

dimensioned pores. In contrast at high temperatures where diffusivity is high and surface energy 636 

can be rapidly minimized, pores will be more equant.  637 

Our effective stress model also does not consider the possibility that pore pressure might 638 

exceed the least principal stress for materials with 'cohesion', resulting in a shear resistance at 639 

zero normal stress. As the model is for steady-state frictional sliding it is consistent with no 640 

cohesion. However, below the BDT, shear zones may well develop cohesion, super-lithostatic 641 

pore pressure, and hydrofacture may be a mechanism for producing localized shear deformation. 642 

For example en echelon tensile fracture arrays generated by pore pressure exceeding σ3 plus 643 

cohesion could evolve into a localized dilatant shear zone and reactivate friction at elevated pore 644 

fluid pressure [Sibson, 1996]. 645 

 By neglecting semi-brittle deformation or a transition to rate strengthening friction in the 646 

brittle regime, likely we over-estimate the crustal strength near the BDT [Evans et al., 1990; 647 

Chester, 1995]. Futhermore because the semi-brittle regime involves distributed fracturing it 648 

may play a significant role in maintaining interconnected porosity near the BDT. Semi-brittle 649 

flow may lead to an increase in the effective pressure coefficient through dilatancy, but since 650 

such flow results in distributed deformation its role is difficult to evaluate without more 651 

sophisticated modeling and experiments. Nonetheless, an obvious explanation for the gap 652 

between shallow seismicity and deep NVT/LFEs on the San Andreas and in subduction zones is 653 

that this is a region of semi-brittle flow with the associated dilatancy necessary to prevent 654 

significant elevation of pore pressure above hydrostatic. Accordingly the transition back to low 655 

frequency seismicity would occur when regional, fully ductile flow begins to dominate, 656 

promoting a collapse of the pore structure, a rise in pore fluid pressure and reactivation of 657 

frictional slip at low effective stress. 658 
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Finally, of course the Earth's crust is not mono-mineralic as is assumed in the calculations in 659 

Figures 1, 6, and 7. Instead, rheological variability associated with differences in lithology 660 

likely plays an important part in the observed depth dependent seismicity in the deep crust [Chen 661 

and Molnar, 1983; Bürgmann and Dresen, 2008], especially in plate boundary settings such as 662 

the San Andreas and in Cascadia. For example, on the San Andreas the limiting depth of LFE 663 

occurrence is similar to the depth of the Moho. So while the calculation shown in Figure 7 in 664 

which friction is reactivated on the deep extent of the fault implies a depth distribution of 665 

seismicity that coincides with the natural observations, it does not consider the influence of 666 

mafic fault materials as suggested by surface observations [Moore and Rymer, 2012] and the 667 

tectonic history [Wang et al., 2013; Pikser et al., 2012] on the depth extent of frictional behavior. 668 

8. Conclusions 669 

For a model in which effective stress is determined by fractional contact area and controlled by 670 

contact-scale yielding, effective stress depends on temperature and shear strain rate. The 671 

resulting effective pressure coefficient αf is near 1 when temperature is low or when the contact 672 

strain rate is high, as when shear is localized. When this model is applied to natural stresses and 673 

temperatures, αf decreases with depth in the crust. In cases of low temperature or high strain rate, 674 

high strength mechanisms such as dislocation glide and subcritical crack growth determine the 675 

contact-scale stresses. At the transition to a weaker contact scale deformation mechanism such as 676 

dislocation creep, αf tends rapidly towards zero with increasing temperature. For hydrostatic 677 

pore pressure and a brittle quartz shear zone with thickness of 1 mm in a vertical strike-slip 678 

faulting environment, the model BDT is at 13 km. Throughout the brittle portion of the crust 679 

above the BDT αf is near 1. In the ductile regime immediately below the BDT the shear zone 680 

thickness is assumed to be 1 km and due to the strain rate dependence and the associated lower 681 

ductile contact-scale flow strength, the imposed delocalized slip requires αf=0. For this wide 682 

shear zone, reactivating friction below the BDT requires both imposed localization and elevated 683 

pore pressure. To produce frictional slip at depths between 15 and 30 km, the depth range that 684 
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hosts low frequency earthquakes on the San Andreas, requires pore pressure within 0.5 MPa of 685 

lithostatic if the shear zone is 1 mm thick. For this shear thickness friction can extend no deeper 686 

than 35 km. 687 
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Appendix. Relationships for crystal plasticity 701 

Dislocation creep follows a power law relation 702 

 . (A1) 703 

n is the stress exponent, σΔ is the differential stress, the difference between the greatest and least 704 

principal stresses, Q is an activation energy with units of Joules/ mol °K, and ˙ ε 0 and σ0 are 705 

arbitrary reference values of strain rate and differential stress such that ˙ ε = ˙ ε 0 when σ = σ0. Flow 706 

law parameters used in the various calculations are shown in Figures 1, 5, 6, and 7 are listed in 707 

Table 1. 708 

 709 
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Table 1. 710 

Reference N Q  

(kJ/mol) 

˙ ε 0 σ0
n   

(MPa-n) 

Evans (1984) (dry) 3 430 4.e3 

Hirth et al.  (2001) (wet) 4 135 1e-9 

    

For low temperature plasticity, differential stress depends on the logarithm of the strain rate [e.g., 711 

Evans and Goetze, 1979]. The low temperature plasticity flow law of Mei et al. [2010] is 712 

 , (A2) 713 

where R is the gas constant, T is temperature in °K, σp is the Peierls stress which is the yield 714 

strength at absolute zero and Q is activation energy at zero stress. The flow law parameters used 715 

in the various calculations that are shown in Figures 1, 5, 6 and 7 are listed in Table 2. 716 

 717 

Table 2. 718 

Reference Q (kJ/mol) ˙ ε0/σ0
2 

(1/MPa2s) 

σp 

(MPa) 

Evans (1984) (dry) 320 6.4e-5 15000 

Estimated properties (wet) 320 2.6e-4 7500 
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Table 1. Symbols in order of appearance 983 

symbol Definition 1st appearance 

σ n
e  effective normal stress (1a) 

σn applied normal stress (1a) 

p pore pressure (1a) 

τ  applied shear stress text section 1 

μ  friction coefficient text section 1 

Vp/Vs ratio of p to s wave speed text section 1 

σe effective stress (general) (1b) 

σ applied stress (general) (1b) 

α effective pressure coefficient (general) (1b) 

αf effective pressure coefficient for friction text section 2 

N applied normal force (2a) 

Nc contact scale normal force (2a) 

A Area (2a) 

Ac contact area (2a) 

σ3 least principal stress text section 3 

σ1 greatest principal stress text section 3 

σ1
c  contact scale greatest principal stress text section 3 

σ 3
c  contact scale least principal stress Figure 3b 

σ Δ  differential stress text section 3 

σ y  yield stress text section 3 

σ m
c  contact scale mean stress Figure 3b 

σm mean stress  Figure 3a 

σc contact scale normal stress text section 3 

S applied shear force text section 3 
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Sc contact scale shear force text section 3 

τ c  contact scale shear stress text section 3 

φ friction angle Figure 3c 

σ1
e  effective greatest principal stress text section 3 

σ 3
e  effective least principal stress text section 3 

χ constant specific to the stress component of 

interest 

text section 3 

δn fault normal displacement text section 4 

εn normal strain text section 4 

γ shear strain text section 4 

δs  fault shear displacement text section 4 

˙ ε n normal strain rate text section 4 

V slip velocity text section 4 

 contact scale normal strain rate text section 4 

˙ γ  shear strain rate text section 4 

   

σ Δ
LTP  differential stress from low temperature 

plasticity 

text section 5 

σ Δ
DC  differential stress from dislocation creep text section 5 

σ Δ
friction  differential stress from friction text section 6 

σ Δ
flow  differential stress from flow text section 6 

VL loading velocity, plate motion rate text section 6 

w fault zone width text section 6 

˙ ε 0 reference strain rate (A1) 

σ0 reference differential stress (A1) 

Q activation energy (A1) 
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R gas constant (A1) 

Τ temperature in °K (A1) 

σp Peierls stress (A2) 
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 987 

Figure 1. Crustal strength profiles. Differential strength (black solid) with depth from friction 988 

and creep for quartz after Goetze and Evans [1979] for a strain rate of 1 x 10-12/s with σe= σn – 989 

p. The horizontal axis is plotted on a logarithmic scale to better illustrate the small deep stress 990 

levels. Overburden is 28 MPa/km, μ = 0.6, and the average of the greatest and least principal 991 

stresses is equal to the overburden. The assumed temperature gradient is from Lachenbruch and 992 

Sass [1973]. Friction is shown in dashed green and ductile strength in dashed red; the lower of 993 

the two (black line) corresponds to the failure strength at any given depth. The upper-crustal 994 

ductile strength at depths above ~7 km follows a relation for low temperature plasticity [Mei et 995 

al., 2010] that well represents low temperature data from Evans [1984]. At depths below 7 km 996 

the flow strength follows the dislocation creep flow law as constrained by the laboratory data of 997 

Hirth et al. [2001]. The parameters used in these flow laws are listed in Tables 1 and 2 in the 998 

Appendix. The brittle-ductile transition, the intersection of frictional and flow strengths, is at ~13 999 

km depth. Shown on the top axis is the effective pressure coefficient αf, assumed to be depth and 1000 

temperature independent. a) For hydrostatic pore pressure at all depths (10 MPa/km). b) Same as 1001 

in a) except below 16 km depth where the pore pressure is 27.6 MPa/km.  1002 

1003 
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 1004 

Figure 2. Schematic diagram of the force balance at a representative asperity contact area on a 1005 

frictional sliding surface in the presence of pressurized fluid [after Skempton, 1960]. See text for 1006 

discussion. 1007 

1008 
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 1009 

a)1010 

b)1011 
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c)1012 

d) 1013 

1014 



nmb  49 12/3/15 

 1015 

Figure 3. Mohr diagrams of stress. a) Uniaxial stress. True static stress conditions where there is 1016 

no shear stress resolved on to the fault and no confining stress as in the laboratory experiments of 1017 

Dieterich and Kilgore [1996]. b) Contact stresses for the case shown in a) assuming the contact 1018 

stress is limited by yielding. c) Frictional sliding. A fault optimally oriented for slip. d) Contact 1019 

stresses for the case shown in c) assuming stress is limited by yielding. 1020 
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a) 1021 

b)1022 
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c) 1023 

 1024 

Figure 4. Relation between dilatancy and compaction during frictional sliding from experiments 1025 

of Worthington et al. [1997]. Compaction corresponds to positive changes in fault normal 1026 

displacement Δδn. a) Data showing time dependent compaction during a hold test for bare 1027 

surfaces of granite (black) and quartzite (red). b) Shear dilatancy during reloading following a 1028 

hold test for bare granite at room temperature and 25 MPa normal stress. c) Shear dilatancy 1029 

following two hold tests for bare quartzite at room temperature and 25 MPa normal stress. 1030 
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 1031 

Figure 5. Laboratory data and contact scale flow laws. a) Data from Evans [1984] for dry 1032 

indentation of quartz from room temperature to around 800°C and triaxial deformation to 1033 

~1000°C from Heard and Carter [1968]. Shown for reference in red are flow laws for low 1034 

temperature plasticity from Mei et al. [2010] and dislocation glide of the standard form [Hirth et 1035 

al., 2003] using parameters listed in Tables 1 and 2 in the Appendix, assuming a strain rate of 1 x 1036 

10-5. Also shown are the same flow laws at the same strain rate but for wet conditions (blue).  1037 
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 1038 
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Figure 6. Center panel shows shear strength (black solid) of an optimally oriented strike-slip 1039 

fault (29.5° from σ1) using the geothermal gradient of Lachenbruch and Sass [1973] (~30°/km), 1040 

(σ1 + σ3)/2 of 28 MPa/km, pore pressure of 10 MPa/km, μ = 0.6, wet quartz yield stress for low 1041 

temperature plasticity using Mei et al.'s [2010] flow law, Evans' [1984] indentation data, and 1042 

dislocation creep from Hirth et al. [2001] at strain rate of 1 x 10-12/s. Left panel shows αf 1043 

calculated from (4) (blue solid) using the same pore pressure, mean stress and flow laws at the 1044 

contact scale, resulting from two possible normal strain rates (yellow and grey). Which effective 1045 

pressure coefficient is used depends on which macroscopic shear resistance is lower, the brittle 1046 

or ductile strength. The effective pressure coefficient associated with a 1-mm-thick shear zone 1047 

and a contact normal strain rate of 1 x 10-7/s is shown in grey. This is the active shear zone 1048 

above the BDT. Below the BDT the shear zone is 1 km thick with a contact normal strain rate of 1049 

1 x 10-13/s and an effective pressure coefficient shown in yellow. In the center panel is frictional 1050 

strength shown in green and flow in red. There are almost no differences between the stresses 1051 

shown here and those in the reference calculation in Figure 1a. Right panel is fractional contact 1052 

area. 1053 
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Figure 7. Calculation of the effective pressure coefficient (left panel), differential stress (center 1055 

panel), and fractional contact area (right panel) using equation (4) for the same conditions as 1056 

shown in Figures 1b and 6, above 16 km depth. There are three effective pressure coefficients 1057 

shown. In yellow is the coefficient associated with a 1 km shear zone, and in grey is that for a 1 1058 

mm shear zone. In blue is the coefficient associated with the active thickness of the shear zone, 1059 

which in this calculation varies with depth. There are 3 transitions between localized and 1060 

distributed shear, the shallowest is at around 13 km. Below 16 km the pore pressure gradient is 1061 

elevated to 27.6 MPa/km, within 0.4 MPa /km of lithostatic. This produces a transition back to 1062 

brittle, localized deformation, a dramatic decrease in strength, and an increase in the effective 1063 

pressure coefficient. Localized shear persists to nearly 30 km depth 1064 
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Introduction  16 

The supplements to this paper contain analysis of a previously published model 17 

(Supplement 1. Effective pressure coefficient from Skempton [1960]), analysis and 18 

models of prior experiments (Supplement 2. Prior experiments on effective stress, Bishop 19 

and Skinner [1977]), a rudimentary model for effective stress (Supplement 3. Effective 20 

stress for friction with cohesion) and description of a model of sliding contact 21 

(Supplement 4. Stresses associated with sliding contact).  22 

1. Effective pressure coefficient from Skempton [1960] 23 

Despite the physical basis (Figure 2) and its appearance in the earthquake fault 24 

mechanics literature [Scholz, 1990], effective stress relations for faulting of the type 25 

described by equations (2), (3) and (4), are disputed [Hubbert and Rubey, 1959, 1960; 26 

Skempton, 1960; Bishop and Skinner, 1977; Mandl, 1988, 2000]. Unlike our conclusion 27 

αf  ≤1, that results from assuming the contact stresses are limited by the material yield 28 



 
 

2 
 

[Bowden and Tabor, 1950; Terzahgi, 1936], Skempton [1960] concludes αf = 1 while 29 

making exactly the same assumption of yield-limited stress. The difference lies in the 30 

contribution of pore pressure to the contact-scale stress state. Skempton assumes in 31 

addition that pore pressure on the grain or contact scale acts as a local confining stress 32 

whereas we make no such assumption. A simplified version of Skempton's derivation 33 

follows, using his notation, which differs from that in the present paper. The equivalent 34 

expressions using our notation are provided in parentheses and Table S1 lists the 35 

equivalences.  36 

Under dry conditions in the absence of applied shear force, the contact normal stress σs, 37 

the ratio of the contact normal force Ps to contact area As, is Nk, where N is a factor 38 

depending on the contact geometry and the stress-strain characteristics of the material, 39 

and k is an intrinsic material strength. Under wet conditions the contact normal stress is 40 

larger than under dry conditions by the pore pressure u, namely,  41 
σ s = Nk + u σ n

c = σ y + p( ) .  (S1) 42 

The assumption is that pore pressure acts as a confining stress at the contact scale. The 43 

macroscopic contact normal stress is the contact stress times the area ratio, As/A = a, so 44 

aσ s = a Nk + u( )  Ac
A

σ n
c = Ac

A
σ y + p( )






,  45 

or 46 

a σ s − u( ) = aNk  Ac
A

σ n
c − p( ) = Ac

A
σ y







. (S2) 47 

Normalizing the force balance (Figure 2), expressed in equation (2a), 48 
P = Ps + A − As( )u  N = Nc + A − Ac( ) p( ), 49 

by total area A, fault normal stress is  50 

σ = aσ s + u − au σ n = Ac
A

σ n
c + p − Ac

A
p







 , (S3) 51 

and  52 
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a = σ − u
σ s − u

 Ac
A

= σ n − p
σ n

c − p









. (S4) 53 

Substituting (A6) into (A4) is 54 

a = σ − u
Nk

 Ac
A

= σ n − p
σ y









 . (S5) 55 

 56 

Accordingly, the normal stress at a representative contact is the sum of pore pressure and 57 

a term related to the yield strength (S3) whereas in (2) and (3) the contact normal stress is 58 

independent of pore pressure (because it is only assumed that the contact is at its yield 59 

stress). The result is that in Skempton's analysis the area ratio Ac/A is exactly proportional 60 

to σn - p via the material yield strength (S5) whereas in (2c) the proportionality is to σn - 61 

αf p. Thus, in Skempton's treatment αf is always exactly 1. During distributed 62 

deformation of soils and aggregates at low ambient applied stress, and small contact area, 63 

pore pressure may act to confine the individual particles. However, particle confinement 64 

is less likely to be an appropriate assumption in the deep crust as contact area becomes 65 

large, particularly for slip on a localized fault surface rather than bulk shear. Because we 66 

are interested in effective stress at conditions appropriate for fault slip near the BDT 67 

(high temperature, high confining pressure, lower porosity) where solid-liquid area 68 

should not differ greatly from total area minus contact area, we have used equation (4) in 69 

this study as a trial relationship to calculate effective stress at depth. 70 
 71 

2. Prior experiments on effective stress, Bishop and Skinner [1977]     72 

Bishop and Skinner [1977] conducted triaxial deformation experiments on soils and 73 

aggregates at room temperature and at nominal effective stresses (σ - p) on the order of a 74 

few tenths of an MPa specifically to determine if equation (2b) is the appropriate 75 

effective stress relation for friction. The experiments were at nominal effective stresses 76 

(σ - p) on the order of a few tenths of an MPa. The experiments were inspired by 77 
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rewriting the effective stress relation (2c) using confining stress σ3 rather than normal 78 

stress as the independent variable, 79 

 σ e
3 = σ 3 − p( ) + Ac

A
p , (S6) 80 

Note that as described in section 2.1, the model (4) can be rewritten as in (S6), in this 81 
case substituting σ3 for σ and χ = 0.5 1 sinφ −1( ). The experimental approach was to 82 

vary the pore pressure and confining stress from around 1 MPa up to 27 MPa holding 83 

their difference constant at a low value of 0.36 MPa. If equation (S6) is appropriate, and 84 

the fractional contact area is on the order 0.01, the imposed changes in pore pressure of 85 

26 MPa result in a change in effective stress of 0.26, which is first order relative to the 86 

nominal difference (σ3 - p). If on the other hand effective stress were simply Terzaghi's 87 

equation σ e
3 = σ 3 − p( )  there would be no change in effective stress associated with the 88 

imposed stress changes, and therefore no changes in strength. Bishop and Skinner [1977] 89 

were able to resolve changes in differential stress of 0.5%. In experiments on quartz sand, 90 

crushed marble, and silt, no changes in strength associated with the changes in stress state 91 

were observed. For these materials the predicted changes in differential stress from 92 

equation (4) were near the resolution of the measurements. For example a simulation with 93 

(4) for the conditions of Bishop and Skinner's experiments and an estimated yield stress 94 

of 4.9 GPa for wet room temperature deformation predicts fractional contact area of a 95 

few hundredths of a percent and small changes in differential stresses that are essentially 96 

at the resolution limit of the apparatus (Figure S1a).  97 

The Bishop and Skinner experimental approach is an important method for distinguishing 98 

among effective stress models as implied by their other principal set of experiments on 99 

aggregates of lead shot. The lead experiments use the same test procedure described 100 

immediately above. Because the yield strength of lead is much smaller than for quartz, 101 

contact areas are expected to be a few percent, about 100 times larger than quartz at the 102 

same applied stress. However the lead tests are complicated by showing a very small 103 
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friction coefficient of 0.1 but higher absolute strength than quartz sand. To account for 104 

the difference a 'cohesion' term can be added to the contact model. The modification and 105 

implied contact scale stress state are described in detail in Supplemental section 3 below. 106 

The modified model predicts first order changes in differential stress for the confining 107 

stress excursions between 1 and 27 MPa imposed in the experiments (Figure S1b). In 108 

contrast, no resolvable changes in strength were observed in the experiments. These are 109 

the only experiments to explicitly address the physical basis of effective stress.  110 

Nevertheless, there are critical differences between the faulting model (4) and the 111 

experiments of Bishop and Skinner [1977]. Unfortunately because (4) is for localized 112 

fault slip it performs poorly in simulations of distributed deformation within aggregates at 113 

the low normal stresses accessible in soil mechanics tests. The model deficiency arises 114 

when the solid-liquid surface area, the area of solid that is in contact with the fluid 115 

throughout the fault zone, is large (i.e. much larger than (1-Ac/A)) [see Hirth and 116 

Kohlstedt, 1995; Karato, 2012]. Large solid-liquid area also means large relative to the 117 

area of any planar fault surface within the sample, as is the likely condition at low stress. 118 

Moreover, for cohesionless aggregates such as soils, if the deformation is distributed, 119 

then solid-liquid area within the shear zone may always be large even at high contact 120 

area.  121 

To assess contributions from solid-liquid area to effective stress, consider contact area, 122 

solid-liquid area and sample external area in a geometrically simple example, a cubic-123 

packed array of identical spheres of initial radius r0 as it is deformed isotropically. The 124 

array is equi-dimensioned with initial length L0. The number of spheres in the array is N= 125 

(L0/(2r0))3. At zero strain assume point contacts (zero contact area) between the spheres. 126 

As the array is deformed assume constant solid volume and that while each sphere is 127 

truncated by six grain contacts, each of those contacts is identical with contact area that 128 

increases while the radius r of each grain increases uniformly. The solid liquid area 129 

associated with each grain is 130 
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 Asl
g = 4πr2 −12πrδ , (S7) 131 

where δ is the height of the missing portion of the sphere due to being truncated by a 132 

contact (truncation). Each truncation has an associated missing area 2πrδ and there are 133 

six of them. The total solid-liquid area is the product of N and Asl
g . The external area of 134 

the array is 12L0(r - δ)2/r0. The assumption of constant solid volume can be applied on 135 

the scale of the unit cell that contains a single sphere, resulting in the requirement 136 
 r3δ −

9
2

δr + 3
2

δ3 − r0
3 = 0. (S8) 137 

The area of a grain contact is determined by the amount of deformation. Using δ as a 138 

measure of the deformation, the contact radius is  139 

 rc = 2δr −δ2 . (S9) 140 

The area ratio associated with localized slip within such an array is the ratio of a single 141 

contact to the area of a face of the unit cell about a single grain: Ac/A= πrc
2/(4r2). 142 

The porosity remains connected until the contacts intersect. This percolation threshold 143 

occurs when the contact radius is equal to r - δ.  The associated area ratio is Ac/A= π /4. 144 

We calculate the solid-liquid and contact area within the array as δ is varied from zero to 145 

the value associated with the percolation threshold, δpt. That threshold is reached when 146 

 δpt = r 1− cos π
4







.

 
(S10) 147 

Assuming a grain radius r0=0.5 mm, as in Bishop and Skinner's [1977] lead shot 148 

experiments, and length L0=25.4 mm, the undeformed external area of the sample is 3.9 149 

x 103 mm2. The solid-liquid area of the undeformed sample (zero contact area) is the 150 

number of grains times the surface area of a single grain, resulting in 5.1 x 104 mm2, 151 

greatly exceeding the external area. This disparity between the aggregate's external 152 

surface area and its internal solid-liquid area is maintained as the array is deformed from 153 

zero strain all the way to the strain necessary to reach the percolation threshold (S10) 154 

(Figure S2). Thus the area over which fluid pressure is transmitted to the grains of the 155 

aggregate exceeds the area over which the external stresses are applied, regardless of the 156 
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porosity, over the entire range of conditions where effective stress operates. Therefore, 157 

fluid pressure is likely to be fully efficient in reducing effective stress, as in equation 158 

(1a), during distributed deformation of soils and aggregates. In particular at contact areas 159 

of a few percent, as in the Bishop and Skinner [1977] lead shot experiments, the solid-160 

liquid area is more than 10 times larger than external sample area (Figure S2). 161 

There are some other significant differences between our model and the Bishop and 162 

Skinner [1997] experiments. In the experiments the lead shot has significantly higher 163 

shear strength than quartz sand. While this can be accounted for by adding cohesion to 164 

the model (see Supplemental section 3 below), it is unexpected and the physical basis is 165 

unclear. This material should have no shear strength at zero confining stress. Among the 166 

possible explanations is that a portion of shear strength of lead shot is due to plasticity 167 

rather than frictional sliding or true cohesion. Because lead undergoes dislocation creep 168 

at room temperature and the differential stress of plastically deforming materials is 169 

insensitive to changes in pore pressure, this is an important consideration.  Unfortunately 170 

resolving these outstanding issues requires additional experiments and is beyond the 171 

scope of the present study. In the meantime, accounting for solid-liquid area appears to 172 

explain the Bishop and Skinner [1977] experiments. 173 
 174 

3. Effective stress for friction with cohesion 175 

The shear strength of lead shot in the experiments of Bishop and Skinner [1977] has a 176 

small pressure dependence, consistent with a friction coefficient of 0.1. But at the fixed 177 

value of σ3 - p of 0.363 MPa the absolute strength is large at 1.1 MPa. These 178 

observations require a frictional strength relation with significant 'cohesion', c,  179 

 τ = c + μσ n
e  . (S11a) 180 

The macroscopic stress state is shown in Figure S3a. The fault normal stress is 181 

 σ n = c +σ3 tanθ − μα p
tanθ − μ

 (S11b) 182 
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where the angle θ = 45+φ 2 is defined in the Mohr construction. The contact-scale force 183 

balance (Figure 2) requires that τ = τ c Ac A, and σ n
e = σ c Ac A , just as for the 184 

cohesionless implementation, further requiring the macroscopic and contact scale 185 

frictional resistances are ′μ = μ + c σ n
e . The contact-scale stresses and stress orientation 186 

are fixed by the material yield strength and by assuming no contact scale cohesion 187 

(Figure S3b). A simulation of steady-state friction for the Bishop and Skinner [1977] 188 

lead shot experiments with μ = 0.1, c = 0.45 MPa and σy = 93 MPa indicates changes in 189 

differential stress of ~0.1 MPa (Figure S3b) that were not observed in the experiments. 190 

4. Stresses associated with sliding contact 191 

Here we present a 2D example of the stresses associated with a sliding contact to contrast 192 

with the simple average stress analysis in the main body of this paper. The contact 193 

solution is from Johnson [1987], section 7.1, (p 202-209), a) cylinder sliding 194 

perpendicular to its axis along a flat surface, Johnson's equations (7.8). Here this is 195 

considered to be a possible solution for the stress distribution about a 'steady-state' 196 

representative contact on a frictional surface during sliding. The geometry is shown in 197 

Figure S4. The solution descends from Hertz's original analysis from uniaxial loading of 198 

spheres normal to their contact, equivalently uniaxial loading of a sphere on a flat. The 199 

Hertzian contact normal stress distribution applies here as well: 200 

 σ n = p0 1− x
a








2
,  (S12a) 201 

where a is the 1/2 length of the contact and p0 is the normal stress at the contact center 202 

(the maximum normal stress). The contact center is at x=0 and the contact extends from -203 

a to +a. The shear stress τ at the contact results from assuming a contact scale friction 204 

coefficient μ, requiring that τ=μσn, and 205 

 τ = μp0 1− x
a








2
.  (S12b) 206 
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This assumption of micro-scale friction is consistent with the assumptions in the text of 207 

this paper that result in there being a constant micro-scale friction coefficient. However, 208 

while in this Johnson [1987] solution the shear and normal stresses are symmetric about 209 

the contact, stress in the plane of the contact is not 210 

 σ s = p0 1− x
a








2
+ 2μ x

a














.  (S12c) 211 

An example of these stresses (S12a) - (S12c) is shown in Figure S5 for a case where the 212 

average normal and shear stresses are 3.2 and 1.9 GPa, respectively. The average contact 213 

normal stress is related to the maximum contact normal stress as in Hertz's original 214 

solution 215 

 σ n = p0
a

1− x
a








2

−a

a

 dx = 0.785p0 . (S12d) 216 

The differential stress at the contact is 217 

 σ Δ = 2
σ s −σ n( )

2









2

+τ 2 . (S12e) 218 

When evaluated the differential stress turns out to be constant within the contact (as 219 

shown in Figure S5), σ Δ = 2μp0 , equivalently, expressed as a constant fraction of the 220 

average normal stress, σ Δ = 2μσ n
0.785

. 221 

This is an interesting result for comparison with the average stress model in the text of 222 

this paper where the contact differential stress is calculated from an assumed friction 223 

coefficient and yield stress resulting in average contact shear and normal stresses. In this 224 

Johnson model the shear and normal stresses are spatially varying at the contacts and the 225 

stress state is asymmetric about the contact due to the requirement of ongoing slip. 226 

Nonetheless, the differential stress at the contact that leads to yielding there is neither 227 

asymmetric nor spatially varying.  228 
4.1 Comparison with the average stress model at yield 229 
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In the average representation of contact stresses in the text of this paper, two constants 230 

are assumed, a macroscopic friction coefficient that due to the force balance dictates an 231 

equivalent microscopic friction, μ, and a yield stress σy. According to the assumptions, 232 

these values completely specify the stress state at the contact as shown in Figure 3d. The 233 

contact shear and normal stresses are related by the friction coefficient σ c = τ c μ  and 234 

the contact normal stress is 235 

 σ c =
σ y

2μ
cos tan−1 μ( ) . (S13) 236 

Equating the contact normal stress (S12e) with the average contact normal stress in the 237 

Johnson [1987] model above (S13e), σ Δ = 2μσ n
0.785

, the differential stress in the Johnson 238 

model is  239 

 σ Δ =
σ y cos tan−1 μ( )

0.785
. (S14) 240 

For μ = 0.6 as assumed for the average contact stress model in the text of this paper, 241 
σ Δ =1.0929σ y . Thus, for conditions of yielding in the average contact stress model, the 242 

predicted differential stress at the contact of the Johnson model differs by only 9%. 243 

Nonetheless, this is example is of the limited application to the deep crust as it is entirely 244 

elastic. The relation between contact scale stress state and the macroscopic shear 245 

resistance during sliding remains largely unexplored, particularly at elevated temperature. 246 

Some additional considerations for elastic friction models are found in Boitnott et al. 247 

[1992] and references therein. 248 
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 249 
 250 
Figure S1. Simulation of Bishop and Skinner's [1977] soil mechanics experiments. a) 251 
Simulation for quartz sand that assumes the yield stress is 4.9 GPa and the friction 252 
coefficient is 0.65. The lower plot shows the imposed variation in confining stress. The 253 
pore pressure changes in tandem with confining stress so that their difference is constant. 254 
The dotted and dashed lines on the upper plot are, respectively, the mean differential 255 
stress and the limits of resolution on differential stress in the experiments (+/- 0.5%). b) 256 
Simulation for lead shot that assumes the yield stress is 93 MPa, the friction coefficient is 257 
0.1 and cohesion is 0.45 MPa. 258 
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.   259 

 260 
Figure S2. Solid-liquid area and external sample area for a 2.54 x 2.54 cm cubic-packed 261 
array of 1 mm diameter identical spheres as the array is deformed isotropically. The 262 
horizontal axis is a measure of strain where the deformation necessary to reach the 263 
percolation threshold δpt is the reference length. 264 
 265 
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 266 
 267 

 268 
Figure S3. Mohr diagrams of stress. a) A fault with cohesion optimally oriented for slip. 269 
b) Contact stresses for the case shown in a) assuming stress is limited by yielding. 270 
 271 
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 272 
Figure S4. Geometry of the Johnson [1987] sliding contact solution described in 273 
Supplement section 4. The contact is between an infinite length cylinder sliding normal to 274 
its axis on a flat surface. The slip direction is x, the fault normal direction is z and the 275 
contact half-length is a. (Figure is modified after Johnson [1987], Figure 7.1) 276 
 277 

 278 
Figure S5. Contact stresses for the Johnson [1987] sliding contact solution described in 279 
Supplement section 4. 280 
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Skempton's 

notation 

definition this paper's 

notation 

P normal force N 

Ps normal force at contact Nc 

u pore pressure p 

As contact area Ac 

A total area A 

a=As/A area ratio Ac/A 

σs contact normal force σ n
c  

Nk yield strength σy 

Table S1..   284 
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