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Earthquake Potential Along the
Northern Hayward Fault,

California
Roland Bürgmann,1* D. Schmidt,1 R. M. Nadeau,1 M. d’Alessio,1

E. Fielding,2 D. Manaker,3 T. V. McEvilly,1 M. H. Murray1

The Hayward fault slips in large earthquakes and by aseismic creep observed
along its surface trace. Dislocation models of the surface deformation adjacent
to the Hayward fault measured with the global positioning system and inter-
ferometric synthetic aperture radar favor creep at ;7 millimeters per year to
the bottom of the seismogenic zone along a ;20-kilometer-long northern fault
segment. Microearthquakes with the same waveform repeatedly occur at 4- to
10-kilometer depths and indicate deep creep at 5 to 7 millimeters per year. The
difference between current creep rates and the long-term slip rate of ;10
millimeters per year can be reconciled in a mechanical model of a freely slipping
northern Hayward fault adjacent to the locked 1868 earthquake rupture, which
broke the southern 40 to 50 kilometers of the fault. The potential for a major
independent earthquake of the northern Hayward fault might be less than
previously thought.

On 21 October 1868, the only known historic
major earthquake [magnitude (M ) ' 7] on
the Hayward fault ruptured the southern fault
segment over a distance of 40 to 50 km from

Fremont to Berkeley (Fig. 1A) (1). Investiga-
tions of paleoseismic (2) and historic (3) data
suggest that the most recent earthquake north
of the 1868 rupture occurred between 1640
and 1776. Long-term slip rate estimates of
;10 mm/year suggest that 2.2 to 3.6 m of
seismic slip potential have accumulated since
the most recent event on the northern Hayward
fault (4, 5). Thus, the Hayward–Rodgers Creek
fault zone is commonly assigned the highest
earthquake probability of any fault in the San
Francisco Bay area (6). However, estimates
of elastic strain to be released in future events
are complicated by the occurrence of aseis-
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mic creep (4, 7) along the surface trace of the
Hayward fault whose depth extent is not
known.

The northern Hayward fault exhibits steady
surface creep of 5 to 6 mm/year (Fig. 2B) (4, 7).
Two-dimensional fault modeling indicated
that with a 5 mm/year surface creep rate the
aseismic slip reaches only to ;5-km depth
and does little to reduce the earthquake haz-
ard on the fault (5). Previously available geo-
detic data did not allow for the discrimination
of models of the Hayward fault creeping to
shallow (;5 km) depth or to the bottom of
the seismogenic zone (;12 km) (4, 8).

Geodetic measurements of surface displace-
ments surrounding a fault can be used to deter-
mine subsurface slip rates on dislocations in an
elastic half-space model (9, 10). However, pre-
cisely surveyed sites near the Hayward fault are
spaced more than 10 km apart, and it is there-
fore difficult to determine a reliable slip esti-
mate from existing point measurements alone.
Space-based interferometric synthetic aperture
radar (InSAR) can map ground deformation at
tens-of-meter spatial resolution with subcenti-
meter precision but only measures displace-
ments along the look direction of the radar (11).
Thus, to improve constraints on the rate and
extent of aseismic Hayward fault slip, we inte-
grated surface creep rates established over sev-
eral decades (Fig. 2B), global positioning sys-
tem (GPS) measurements from 1993 to 1999
(Fig. 1A), and InSAR measured range changes
between 1992 and 1997 (Fig. 1). We also con-
sidered subsurface creep rates estimated from
identical repeating microearthquakes on the
fault that occurred from 1984 to 1999 (Fig. 2).

Surface creep rates are constrained by re-
peated surveys of alignment arrays across the
fault (7), offsets of cultural features (4), and
creepmeter measurements (12). GPS station ve-
locities were computed from yearly campaign-
mode measurements, as well as from monthly
solutions of continuously operating receivers of
the BARD (Bay Area regional deformation)
network (13). The GPS data show the distribu-
tion of 35.6 6 2.5 mm/year of right-lateral
shear across the 107-km-wide network span-
ning the San Andreas fault system, with a lo-
calized velocity step near the northern Hayward
fault (Fig. 1). We used SAR data collected by
the European Space Agency’s ERS spacecraft
in 1992 and 1997 (14) to produce two ;5-year
interferograms (15) (Fig. 1). We used filtered,
unwrapped, and subsampled range-change-
rate data (16) to determine the rate and depth
extent of creep on the northern Hayward fault
(Figs. 3 and 4).

To evaluate possible contributions of verti-
cal fault offsets, we examined an interferogram
taken from the ascending orbit of the ERS
spacecraft, which traverses the region toward
N13.9°W, at an angle of 28° from the descend-
ing-orbit track and only 20° off the Hayward
fault strike. The interferogram of the ascending

images showed no measurable discontinuity
across the northern Hayward fault (Fig. 3). Be-
cause the ascending-orbit data are relatively
insensitive to fault-parallel motion but equally
sensitive to potential vertical fault offsets as the
descending-orbit data, we can rule out substan-
tial contributions of vertical fault slip to the
descending-orbit offsets that could have biased
our results (17). As longer wavelength atmo-
spheric-delay artifacts affect the ascending in-
terferogram, we did not include these data in
our modeling.

We used rectangular dislocations in an
elastic half-space model (18) and assumed
that a model of uniform slip from the surface

to some depth adequately characterizes creep
along the northern 30 km of the Hayward
fault. Regional interseismic strain accumula-
tion across the San Andreas fault system is
represented by strike slip on buried disloca-
tions from 12 to 3000 km below the San
Andreas, Hayward–Rodgers Creek, Calaveras,
and Greenville fault zones. The regional fault
slip rates were primarily determined by the
GPS data (19), whereas the InSAR data con-
strained the slip rate and upper locking depth
of the creeping northern Hayward fault. The
two independent 1992–97 interferograms fa-
vored creep of ;7 mm/year (Fig. 4B) to
depths of .6 km, with misfits decreasing as

Fig. 1. (A) Fault map of San Francisco Bay area with horizontal GPS site velocities relative to station
BRIB (black arrows) and their 95% confidence ellipses (PtP, Point Pinole; GF, Greenville fault; CF,
Calaveras fault; RCF, Rogers Creek fault; HF, Hayward fault; and SAF, San Andreas fault). The map
is drawn in an oblique Mercator projection about the angular velocity pole of Pacific plate to Sierra
Nevada–Great Valley block motion (26). Also shown are predicted velocities (yellow arrows) from
the six-dislocation model used to represent interseismic strain accumulation across the Bay area.
Yellow-filled lines follow the dislocation planes; the end points of the two shallow Hayward fault
segments are shown as black diamonds. The line-of-sight range change rates determined from the
10 June 1992 to 6 September 1997 interferogram are shown along a transect across the northern
Hayward fault [see color bar in (B) for scale]. (B) 23 September 1992 to 2 August 1997
interferogram. (C) Profile of GPS velocities within 10 km of the InSAR transect (error bars are 61s).
The InSAR-derived displacement rates along the transects in (A) and (B) are shown as blue (10 June
1992 to 6 September 1997) and red (23 September 1992 to 2 August 1997) dots. We assume that
the line-of-sight changes are due to Hayward fault–parallel (N35°W) motions. The discrepancy
between the two interferograms at the southwest end of the transect may be due to an
atmospheric disturbance, such as fog, in the 23 September 1992 to 2 August 1997 image pair.
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the modeled dislocation approached the bot-
tom (12 km) of the seismogenic zone (Fig.
4A). Although misfits were not significantly
different for models with 5- to 12-km upper
locking depth in the free inversion (solid

symbols in Fig. 4A), the deeper models re-
quired lower creep rates (7.1 and 7.3 mm/
year, Fig. 4B) that were more consistent with
field-measured rates.

We interpret identical microearthquakes

as small patches that repeatedly break in
stick-slip events and are surrounded by the
otherwise aseismically slipping fault (20, 21).
We identified 37 repeating sequences (com-
prising 83 earthquakes) from the Northern
California Seismic Network (NCSN) earth-
quake catalog along a 50-km-long portion of
the fault (Fig. 2A). Events in each sequence
recurred two to three times and were used to
estimate the distribution of subsurface fault
creep rates (Fig. 2B) (22). Most of the repeat-

Fig. 2. (A) Depth section of microseismicity along the northern 50 km of the Hayward fault.
Along-fault distances are in km from Point Pinole (Fig. 1). Events from within 61.5-km distance of
the fault are projected onto a N35°W-striking plane (1984–99 NCSN catalog locations shown as
open circles). Along a 20-km-long segment of the fault, we show the precisely relocated events of
Waldhauser et al. (27) as solid circles. Open squares indicate the locations of identically repeating
event sequences used to compute subsurface creep rates. (B) Surface creep rates along northern
Hayward fault (solid circles with 61s error bars) (7). Open squares indicate creep rates computed
from the individual repeating-earthquake sequences (with an estimated standard deviation of 6
2.5 mm/year). Average creep rate estimates and their 61s data scatter are shown as filled squares
for the three sequence clusters.

Fig. 3. Profiles of InSAR range change rates (black squares) from two descending- and one
ascending-orbit image pairs. The ascending-orbit interferogram (top) does not reveal a discrete
offset at the Hayward fault. In our model inversions, we used the descending-orbit InSAR data from
within 612 km of the fault with 293 and 342 data points from the 10 June 1992 to 6 September
1997 (bottom) and 23 September 1992 to 2 August 1997 (middle) interferograms, respectively.
Also shown are predicted range change rates (open circles) from the two best-fitting models, which
suggest creep rates of 7.1 and 7.3 mm/year to 12-km depth.

Fig. 4. (A) Misfit versus depth of creeping mod-
el Hayward fault. Misfit is the normalized
weighted residual sum of squares, WRSS/(N 2
P) 5 [(dobs 2 dmod)T 3 cov21 3 (dobs 2
dmod)]/(N 2 P), where dobs and dmod are the
observed and modeled data, cov is the data
covariance matrix, N is the number of data, and
P is the number of free model parameters (six
fault slip rates and an offset and two orbital tilt
parameters for the InSAR data). The full GPS
data covariance matrix is included, whereas
InSAR data are modeled as uncorrelated with
0.6 mm/year standard deviations. Circles are
GPS misfits, squares are misfits of 10 June 1992
to 6 September 1997 interferogram, and trian-
gles are for 23 September 1992 to 2 August
1997 interferogram. Open symbols are for
models in which the secular deep slip rates are
fixed to the best-fit rates from the GPS data
and northern Hayward fault creep is held to 6
mm/year. Solid symbols indicate models in
which all slip rates are solved for in-joint inver-
sions of GPS and InSAR data. (B) Best-fitting
creep rates on the northern Hayward fault de-
termined from joint inversion of GPS and InSAR
data as a function of upper locking depth.
Squares and triangles denote interferograms as
in (A).
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ing events occur in three major clusters,
whose average slip rates are 6.7 6 1.1 mm/
year (1 standard deviation) at 5.7-km depth
(from 10 sequences), 6.2 6 1.5 mm/year at
9.8-km depth (from 15 sequences), and 5.4 6
1.2 mm/year at 3.9-km depth (from nine se-
quences) (Fig. 2B). The slip estimates from
repeating earthquakes suggest subsurface
creep at rates and depths consistent with
those inferred from the surface deformation.

The primary argument for locking below
5-km depth along the entire Hayward fault is
based on the observation of surface creep rates
less than the long-term fault slip rates (5). To
evaluate if the observed distribution of surface
creep rates is consistent with a Hayward fault
that is freely slipping north of the 1868 earth-
quake rupture, we used a boundary element
model (23, 24). This analysis expands previous
studies (5) to address the three-dimensional ge-
ometry of the problem (25). Buried dislocations
below 12-km depth along the San Andreas,
Hayward, and Calaveras faults load the Hay-
ward fault (Fig. 5). Creeping portions of the
fault are modeled as shear-stress free patches
allowing the determination of the resultant fault
slip distribution. If the entire Hayward fault
were freely creeping from the surface to 6-km
depth, the surface creep rate along the fault
would follow a smooth distribution with slip of
up to 5 mm/year (dashed line in Fig. 5A). A
model in which elastic strain accumulates about
a locked segment along the southern Hayward
fault (that might represent the ;40-km-long
portion of the fault that broke in the 1868
rupture) and no locking occurs along a 20-km-

long segment of the northern Hayward fault
predicts the surface creep rates (bold line in Fig.
5A). Independent of the geodetic inversions and
seismic data, the distribution of surface creep
rates is consistent with a freely creeping north-
ern fault segment. The portions of the fault that
creep at rates less than the long-term slip rate
are expected to catch up during and in the
aftermath of 1868-type southern Hayward fault
earthquakes and earthquakes on the Rodgers
Creek fault to the north. This suggests that the
northern segment of the Hayward fault should
not be considered as an independent source
region of large earthquakes.
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Remobilization in the Cratonic
Lithosphere Recorded in
Polycrystalline Diamond

D. E. Jacob,1* K. S. Viljoen,2 N. Grassineau,3 E. Jagoutz4

Polycrystalline diamonds (framesites) from the Venetia kimberlite in South
Africa contain silicate minerals whose isotopic and trace element characteristics
document remobilization of older carbon and silicate components to form the
framesites shortly before kimberlite eruption. Chemical variations within the
garnets correlate with carbon isotopes in the diamonds, indicating contempo-
raneous formation. Trace element, radiogenic, and stable isotope variations can
be explained by the interaction of eclogites with a carbonatitic melt, derived
by remobilization of material that had been stored for a considerable time in
the lithosphere. These results indicate more recent formation of diamonds from
older materials within the cratonic lithosphere.

Cratons—the nuclei of continents—preserve
relicts of Earth’s oldest geologic record. The
occurrence of diamonds in samples from
Earth’s mantle is restricted to cratonic areas (1),
and radiogenic isotope studies of their inclu-
sions revealed similarly old ages [3.4 to 3.6
billion years ago (Ga)] for diamond genesis in
the cratonic lithosphere (2, 3). Recently, how-
ever, geochemical evidence indicates the for-
mation of diamond earlier than 1 Ga (4), and
seismic tomography has indicated that cratonic
roots have variable depths (5), suggesting that
cratonic lithosphere is more dynamic.

Aggregates of polycrystalline diamond
(framesites) (6) from kimberlites often contain
interstitial silicates and/or sulfides of lherzolitic
or eclogitic paragenesis. Both these paragen-
eses are known from xenoliths in kimberlites
and inclusions in diamonds (7). The small grain
size of the diamonds is consistent with rapid
crystallization, and the intimate intergrowth of
silicates and diamond indicates contemporane-
ous crystallization. Framesites occur in several
kimberlite pipes in southern Africa (e.g., Vene-
tia, Premier, Jwaneng, and Orapa) and can

make up several percent of the total diamond
concentration in a mine.

We focused on framesites containing sil-
icates of eclogitic affinity from the Venetia
kimberlite pipe situated in the Limpopo cen-
tral belt in northeastern South Africa (8). All
samples chosen for this study contain 10 to
25 weight % (wt %) ('0.9 to 1.4 g) eclogitic
garnet, but none contain clinopyroxene. One
sample (V948) contains about 1% sulfide.
Eclogitic garnets from framesites have more
restricted Ca contents that are generally lower
than those of garnets from eclogitic xenoliths
and eclogitic inclusions in diamond (9).
However, elevated Cr2O3 contents, which
would be expected for websteritic garnets, are
not present. Mg numbers (10) of eclogitic
garnets in framesites (Table 1) are mostly
higher at lower TiO2 concentrations than
those of diamond inclusions and eclogite
xenoliths. Additionally, a trend of increasing
Mg number with increasing TiO2 content is
apparent, which is not reported for eclogite
xenoliths and inclusions in diamond, nor is it
readily explained by common rock-forming
processes such as fractional crystallization.
We chose samples representative of this trend
and large enough to be able to carry out a
complete study of major and trace elements,
Rb-Sr, Nd-Sm isotopes, and oxygen isotopes
on mineral separates, as well as of carbon
isotopes on the diamonds.

On an isochron plot of 147Sm/144Nd ver-
sus 143Nd/144Nd, the garnets fall on a straight

line that, if interpreted as an isochron, yields
an apparent age of 125 million years ago
(Ma). The Venetia kimberlite itself, however,
is 533 Ma (8), indicating that this line results
from a mixing relation. In fact, the initial Nd
isotopic ratios (measured 143Nd/144Nd ratios
recalculated to the age of the kimberlite) also
correlate with most other chemical parame-
ters of the framesites, such as Mg numbers,
d18O values, and ratios of trace elements in
the garnets, further supporting mixing. Fur-
thermore, stable isotope measurements dis-
play correlations between chemical parame-
ters of the garnets (e.g., Mg number and
d18O) and the carbon isotopic composition of
the diamond crystals (Fig. 1). Systematic re-
lations between host diamonds and their in-
clusions are virtually unknown for macro-
crystalline diamonds (11) but are reported for
framesites from Orapa (Botswana) (12) (Fig.
1), implying that mixing could be a general
process in framesite genesis worldwide.

In contrast to garnets from most eclogite
xenoliths, all framesite garnets have εNd(i)

values between 215.9 and 221.7 (Fig. 2).
The correlation between 87Sr/86Sr and 143Nd/
144Nd ratios, the mixing line, points to an
end-member with even more unradiogenic Sr
and Nd isotopic values. The unradiogenic Nd
isotopes require an old, long-term light rare
earth element (LREE)–enriched component,
reminiscent of that identified in harzburgitic
subcalcic garnets included in diamond (13).
However, Sm/Nd ratios of the framesitic gar-
nets are too high to account for the unradio-
genic 143Nd/144Nd ratios and show that the
isotopic signature must be inherited.

All four garnets show similar trace element
patterns with high heavy rare earth element
(HREE) and low LREE contents that are typical
for garnets (Fig. 3A). However, trace element
zonation detected by in situ trace element mea-
surements in one of the samples (V948) shows
that framesite formation may have occurred
shortly before kimberlite eruption. Figure 3B
shows zones detected by time-resolved laser
ablation inductively coupled plasma mass
spectrometry (ICP-MS) (LAM) analysis in
sample V948 that are enriched in many
incompatible elements and LREE. In these
zones, which cannot be attributed to cores
or rims, Sr contents are enriched by up to a
factor of 19 and are accompanied by an
enrichment in LREE, similar to features of
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