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Abstract 

The Hayward and Calaveras Faults, two strike-slip faults of the San Andreas 

System located in the East San Francisco Bay Area, are commonly considered 

independent structures for seismic hazard assessment. We use InSAR to show that 

surface creep on the Hayward Fault continues 15 km farther south than previously 

known, revealing new potential for rupture and damage south of Fremont. The 

extended trace of the Hayward Fault, also illuminated by shallow repeating micro-

earthquakes, documents a surface connection with the Calaveras Fault. At depths 

greater than 3-5 km, repeating micro-earthquakes located 10 km north of the surface 

connection highlight the 3-D wedge geometry of the junction. Our new model of the 

Hayward and Calaveras Faults argues that they should be treated as a single system 

with potential for earthquake ruptures generating events with magnitudes greater than 

7, posing a higher seismic hazard to the East San Francisco Bay Area than previously 

considered.  

 

Highlights 

 Active faults’ structure can be illuminated using space geodesy and 

seismology 

 Hayward and Calaveras Faults are directly connected on surface and at depth  

 Earthquakes of M>7 could occur on the Hayward-Calaveras Fault system. 

 

Keywords  

Hayward-Calaveras Faults; InSAR; Characteristically Repeating Earthquakes; 

Connection; Creep 

  



©2015 American Geophysical Union. All rights reserved. 

1. Introduction 

Fault geometry and connectivity directly influence seismic hazard, as an 

earthquake‘s magnitude greatly depends on the rupture area. Step-overs and other 

complex fault connections have controlled rupture lengths of many earthquakes and 

are considered to act as barriers to rupture propagation, limiting maximum earthquake 

magnitudes [Wesnousky, 2008; Lozos et al., 2014]. Such a step-over has been 

documented between the Calaveras and Hayward Faults (CF and HF, respectively)
 

[Aydin and Page, 1984], major components of the San Andreas Fault System in the 

East San Francisco Bay Area that accommodate ~15 mm/yr (~30%) of the relative 

motion between the North American and Pacific plates
 

[Field et al., 2015]. 

Interseismic deformation on the CF and HF comprises both stress accumulation on 

locked sections of the faults and steady-state or episodic aseismic slip
 
[Lienkaemper et 

al., 2014]. Because creep rates are lower than long-term slip rates, these two faults are 

capable of producing large earthquakes, as shown by the occurrence of six M=5.5-7 

events since 1850 with rupture lengths up to tens of kilometers [Oppenheimer et al., 

2010]. The HF is the most hazardous fault in the Bay Area given that a full average 

recurrence interval has passed since its last M~7 earthquake in 1868
 
[Field et al., 

2015]. From the limited historical records no rupture encompassed both the HF and 

CF and paleoseismic trenching studies, which estimate recurrence times by 

considering older earthquakes
 
[Lienkaemper et al., 2010; Simpson et al., 1999], are 

not able to assess the extent of events. Accordingly, the potential for large, cascading 

multi-segment ruptures cannot be ruled out, especially if the CF and HF are 

connected.
 

Over the years, many maps have shown surface traces of the HF and CF that 

do not intersect
 
[Simpson et al., 1999; Graymer et al., 2007] (Figure 1). The northern 
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segment of the CF (north CF) trends subparallel to the HF for a distance of ~60 km 

and transitions into the central CF segment near 37°24'N where a change in strike 

from ~N25°W to ~N32°W occurs (Figure 1). Evidence based on relocated micro-

earthquakes, seismic reflection studies, geologic mapping, gravity and magnetic data 

have argued for a connection between the CF and HF at depths greater than 5 km 

below Mission Peak [Andrews et al., 1998; Ponce et al., 2004; Manaker et al., 2005; 

Williams et al., 2005; Graymer et al., 2007; Hardebeck, et al., 2007]. However, this 

deep through-going structure is believed to be associated with a complex network of 

faults at shallower depths, challenging the consideration of the CF-HF junction in 

hazard models and ground motion simulations. The most recent models and 

simulations have recognized the importance of multi-fault ruptures [Aagaard et al., 

2010; Field et al., 2015] but the ambiguous location of the active surface trace of the 

HF south of the city of Fremont remains the most limiting factor in fully 

characterizing the structure of the CF-HF junction.  

The traditionally mapped CF and HF surface traces are based on spatially 

limited field observations that may be misinterpreted due to the existence of multiple 

active and inactive fault strands and on LiDAR (Light Detection And Ranging), 

which enables mapping with a high spatial resolution but remains uncertain due to the 

scarcity of large offsets and the abundance of landslides
 
[U.S. Geological Survey and 

California Geological Survey, 2015; Mynatt et al., 2008]. InSAR (Interferometric 

Synthetic Aperture Radar) observations of surface creep have been used to identify 

the HF trace in urban areas
 
[Schmidt et al., 2005; Shirzaei and Bürgmann, 2013], but 

the fault trace has not been successfully delineated in vegetated hillsides due to loss of 

coherence (temporal difference in reflection of the radio waves). To overcome this 

limitation we use a large dataset of SAR images and modify the small baseline subset 
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(SBAS) time series method [Berardino et al., 2002] to select only interferograms with 

optimal coherence.  

 

2. Methods 

2.1. InSAR method 

We resolve the 1992-2011 interseismic deformation in the San Francisco Bay 

Area using InSAR time-series analysis of ERS and Envisat data, with > 250 

acquisitions from 4 tracks (2 descending: 70 and 299, and 2 ascending: 206 and 478) 

and 6 frames (2853, 729, 747) provided through the WInSAR archive. We use the 

Modular SAR Processor software from Gamma Remote Sensing to generate Single 

Look Complex data and the ROI_PAC software [Rosen et al., 2004] to produce over 

1200 interferograms. We remove topographic contributions using the 1-arc second 

Shuttle Radar Topography Mission (SRTM) digital elevation model [Farr and 

Kobrick, 2000]. We co-register the wrapped interferograms of each frame to a master 

image, use the statistical-cost network-flow algorithm for phase unwrapping 

(SNAPHU; [Chen and Zebker, 2001]), and reference all interferograms to a pixel 

collocated with the GPS station LUTZ.  

We invert for the phase history at each epoch relative to the first using a least 

square approach (SBAS) applied to fully connected networks of interferograms so 

that the design matrices have full ranks
 
[Berardino et al., 2002]. To maintain 

coherence in vegetated areas, we develop an alternative interferogram selection that 

directly accounts for the level of spatial coherence in each interferogram. Only 

interferograms with a high percentage of pixels (50%) above a sufficient spatial 

correlation (0.5) in our area of interest that comprises vegetated hillsides across the 

CF are included in the time series analysis. This correlation-based selection leads to 
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temporal coherence >0.5 east of the CF compared to values of ~0.3 with standard 

SBAS [Pepe and Lanari, 2006]. We correct topographic residuals in the time-domain
 

[Fattahi and Amelung, 2013] and perform the final pixel selection based on a 

temporal coherence threshold of 0.5 to eliminate pixels affected by phase-unwrapping 

errors. The only ramp removed in our processing is the local oscillator drift correction 

of the Envisat ASAR instrument
 
[Marinkovic and Larsen, 2013]. The remaining 

signal contains noise contributions from atmospheric delay, modest given the large 

number of data used, and orbital errors (<1.5 mm/yr/100 km for the hundreds of SAR 

acquisitions used
 
[Fattahi and Amelung, 2014]). Accordingly, we do not perform 

alignment to an a priori model of deformation based on GPS data, which differs from 

previous works on interseismic deformation where the long-wavelength signal was 

contributed from such a model (e.g., Bürgmann et al. [2006]).  

We combine ascending and descending velocity maps to retrieve horizontal 

and vertical displacement fields
 
[Wright et al., 2004]. Given the nearly north-south 

azimuthal satellite paths and their steep incidence angles, only the east-west 

component of the horizontal displacement field is resolved. We validate this velocity 

field by comparing it with data from BAVU3 GPS
 
[Bürgmann et al., 2014], which 

agree to within 2 mm/yr (Supplementary material Figure 1). 

 

2.2. Characteristically Repeating Earthquakes (CREs) method 

To illuminate the 3D geometry of the faults we rely on characteristically 

repeating earthquakes (CREs). CRE sequences are events occurring in essentially 

identical locations, with similar magnitudes, and with high waveform correlation 

coefficients. They are believed to represent small locked asperities that are repeatedly 

loaded to rupture by surrounding fault creep
 
[Nadeau and Johnson, 1998]. The scaling 
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between recurrence time, seismic moment, and CRE slip, first established at Parkfield
 

[Nadeau and Johnson, 1998], is now widely used to obtain fault slip parameters (e.g., 

Chen et al., [2007]). We evaluate CRE locations using the Double-Difference Real-

Time catalog
 
[Waldhauser and Schaff, 2008] and cumulative displacement using the 

empirical relationship between seismic moment and slip
 
[Nadeau and Johnson, 1998; 

Chen et al., 2007] (See Supplementary Material for CRE catalog). The CREs are a 

subset of the Double-Difference catalog events that precisely illuminate the actively 

creeping fault plane. 

CREs on the HF are described in Shirzaei et al. [2013], CREs on the CF were 

identified with the following approach. Catalog location, waveform, and phase pick 

data for events with >M1.2 of the Northern California Seismic System (NCSS) were 

downloaded from the Northern California Earthquake Data Center (NCEDC). 

Waveform cross-correlation analysis in the frequency domain using a ~5 second data 

window starting ~ 0.5 sec before the P-wave phase arrival was performed on pairs of 

events with hypocentral separations ≦10 km. For event pairs with maximum cross-

correlation values >0.6, cross-correlation values are combined with catalog 

information on magnitude, occurrence time, and location in an initial similarity 

characterization file (SCF).  

A CRE requires at least two events that have nearly identical waveforms, 

locations, and similar magnitudes [Nadeau and Johnson, 1998]. To identify such 

events we first isolate a master-pair for the sequence by finding a pair in the SCF that 

satisfies the following criteria: 1) minimum magnitude of both events ≧ M1.75, 2) 

difference in magnitudes ≦  0.15, 3) at least 7 channels with maximum cross-

correlations >0.6, 4) third quartile (Q3) maximum cross-correlations among channels 

≧ 0.95, 5) events separated by at least one year, and 6) routine catalog hypocentral 
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separations ≦20 km. We then carry out precise double-difference relative relocation 

and assign an event-pair as a master-pair if their phase-coherency is above 0.92 on 4 

or more channels and their relative locations are ≦10 m. The master-pair events 

waveforms then serve as templates for identification of additional members of the 

corresponding CRE sequence by forming a similar event group (SEG). An SEG 

is formed by extracting all events listed in the SCF that have Q3 correlation values 

above 0.8 with either of the master-events. The waveforms and phase-picks from 

these events are aligned with the master-event waveform templates to determine 

the spectral coherence in phase and amplitude and empirical analyses based on a 

measure of scaled dissimilarity is used to characterize events in a SEG (e.g., Turner et 

al. [2013]). 

 

3. Results 

3.1. Faults’ creeping traces  

Figure 1a shows the mean horizontal velocity obtained by combining 19 years 

of SAR data with ascending and descending viewing geometries projected into 

Hayward-Calaveras parallel motion (N32°W). Both short- (creep, sharp color change 

across the CF and HF) and long-wavelength (strain accumulation, blue to red color 

gradient) signals are well resolved given the large amount of SAR data used (>1200 

interferograms) and the resulting low contribution of orbital uncertainties. We 

calculate the InSAR velocity gradient to locate the creeping fault traces (Figure 1b). 

The gradient map clearly identifies the surface traces of the HF and CF as well as the 

surface trace of the Silver Creek Fault (SCF) in the Santa Clara Valley. The SCF 

blocks groundwater flow, resulting in dominantly vertical ground deformation 

(Supplementary material Figure 2) and a narrow band of horizontal deformation
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[Chaussard et al., 2014]. The gradient map shows that creep on the HF continues 15 

km farther south than the southernmost alignment array [McFarland et al., 2014] and 

mapped active trace
 
[Lienkaemper, 2008] in the city of Fremont (Figure 1b). This 

southernmost section of the HF bends southeastward and appears to merge with the 

CF near 37°21'26"N (black star on Figure 1). The InSAR-derived location of this 

southern extension of the HF largely agrees with the fault traces identified using high-

resolution LiDAR data
 
[Mynatt et al., 2008] (insets Figure 1b). This creep south of 

Fremont has likely been missed due to its occurrence in vegetated hillsides (brown 

and green colors in optical image, bottom right inset of Figure 1b) that are prone to 

landsliding. 

To verify that other geodetic datasets allow for this southern extent of creep on 

the HF we compare the InSAR velocities with 1970-1993 trilateration (EDM) data
 

[Manaker et al., 2003] and post-1993 GPS data from the Bay Area Velocity 

Unification Model Version 3 (BAVU3) [d'Alessio et al., 2005; Bürgmann et al., 2014] 

(Figure 2). Profiles at three locations on the HF and CF show a good agreement 

between InSAR, GPS, and EDM data (Figure 2) despite their different time periods, 

suggesting relatively steady long-term tectonic deformation. The central profile (dark 

blue) shows that EDM data allow for creep on the southern HF at 2-5.5 mm/yr as far 

south as 37°24'35"N. The black profile shows creep accommodated by the CF at rates 

twice as high as creep on the HF, the creeping traces of these two faults having likely 

already merged north of 37°20'40"N. These observations support the InSAR gradient 

map and confirm that the HF and CF surface traces are likely merging near 

37°21'26"N. North of this surface junction, aseismic slip is partitioned between the 

north CF and the HF, while south of it it is accommodated almost entirely by the 

central CF. Major infrastructure currently crossing this southward extension of the 

http://earthquake.usgs.gov/research/external/reports/G13AP00035.pdf
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creeping HF, such as the South Bay Aqueduct, may suffer damage due to creep and 

earthquake surface ruptures.  

3.2. Faults’ 3D geometry 

To constrain the 3D geometry of the linking fault structure between the HF 

and CF we rely on CREs, which represent small locked asperities that are repeatedly 

loaded to rupture by surrounding fault creep. CREs along the CF and HF (Figure 3a) 

can be grouped in three categories based on their estimated 1992-2011 cumulative slip 

and their depths: 1) small cumulative slip and intermediate depths (3-7 km), 

characteristic of the northern HF
 
[Schmidt et al., 2005]; 2) large cumulative slip and 

intermediate to large depths (3-11 km), characteristic of the central CF; and 3) 

shallow events (<3 km depth), occurring only at the connection between the HF and 

CF. The shallow CREs align well with the southernmost section of the creeping HF 

described above, confirming the connection of the two faults’ surface traces at this 

location. On the other hand, intermediate-depth CREs (>3 km) occur along one 

continuous fault plane located ~10 km farther north than the surface connection, 

illuminating the junction at depth between the HF in southern Fremont and the CF 

(Figure 3). This deep junction is in agreement with previous works [Andrews et al., 

1998; Ponce et al., 2004; Manaker et al., 2005; Williams et al., 2005; Graymer et al., 

2007; Hardebeck, et al., 2007] and suggests that the HF is transitioning from its near 

vertical geometry >20 km north of Fremont to splaying off the CF, the deep HF fault 

plane gradually bending towards the CF with a northeast dip below Mission Peak at 

depths of ~3-5 km. We develop a model of the 3D geometry of the Hayward-

Calaveras junction with surface traces based on the InSAR velocity gradient map and 

the geometry at depth (dip) derived from the CRE locations (Figure 3b, see 

Supplementary Material for list of vertices of the 3D mesh). Our new model of the 
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Hayward-Calaveras Fault zone geometry argues for a direct connection via a dipping 

wedge-shaped fault plane to reconcile the occurrence of creep 10 km south of the 

deep Mission Peak connection. Andrews et al. [1998] argue for an additional locked 

reverse fault or a combination of strike-slip and reverse faults constituting the Mission 

fault zone, which would accommodate deformation between the HF and CF. Due to 

the absence of related seismicity and surface deformation, these faults are not 

included in our model. The dip-slip component associated with the stepover geometry 

and the observed uplift between the HF and CF could either involve such a secondary 

shallow reverse fault [Andrews et al., 1998] or could occur as oblique slip on the 

through-going structure of our model. 

4. Conclusions  

Using space geodetic data we show that the surface creep of the HF continues 

15 km farther south than the previously known active trace, revealing new potential 

for rupture and damage. This strand of the HF, located in vegetated hillsides, bends 

towards the east and merges with the creeping trace of the CF south of the city of 

Fremont, arguing for a direct surface connection between the two faults. Using 

repeating micro-earthquakes we confirm the location of the HF and CF surface 

junction and show that their direct connection at depth is located ~10 km farther 

north. A model of the 3D geometry of the faults’ structure relying on the InSAR 

velocity gradient map for surface traces and on CREs for the geometry at depth 

reveals the 3-D wedge geometry of the connection. Our study illustrates how a 

combination of space geodesy and seismology can illuminate the structure of active 

faults. 

Our results indicate that the HF and CF should be treated as a single, 

continuous structure with potential for earthquake ruptures propagating across. The 
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increased length of a potential rupture involving the Hayward and central Calaveras 

Faults (up to ~160 km long) could generate earthquakes much larger than M7, 

especially given that creeping patches may participate in a rupture in the presence of 

dynamic weakening
 
[Noda and Lapusta, 2013]. Our new geometry of the Hayward-

Calaveras Fault zone should be used as a basis for earthquake process modeling and 

ground motion simulations
 
to reevaluate seismic hazard in the Bay Area.  
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Figure 1: a) Mean HF-parallel ground velocity from 19 years of InSAR data in the 

San Francisco Bay Area. Blue colors correspond to northwest motion and red colors 

to southeast motion with respect to the GPS station LUTZ (cross). The sharp 

transitions in colors across the Hayward and Calaveras Faults document the 

interseismic surface creep. Full and dashed black lines indicate mapped fault traces
 

[U.S. Geological Survey and California Geological Survey, 2015] (Hayward and 

central Calaveras Fault traces being based on LiDAR data
 
[Mynatt et al., 2008]), 

white diamonds are alignment-array locations, the black star shows the approximate 

location of the junction between the HF and CF surface traces near 37°21'26"N, and 

grey diamonds are main cities. The black rectangle shows the location of Figure 2. b) 

Gradient map derived from the InSAR mean ground velocity. High gradient (red) 

correspond to the surface traces of creeping faults (HF and CF) and a fault (Silver 

Creek Fault) blocking groundwater flow in the Santa Clara Valley aquifer 

[Chaussard et al., 2014]. The dashed rectangle (zoom in the bottom left) highlights 

the southernmost extension of creep on the HF and the bottom right inset shows the 

corresponding Landsat optical image with USGS fault traces (black) and fault traces 

from the gradient map (white).  
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Figure 2: Left: InSAR mean velocity overlaying optical imagery (same color-scale as 

Figure 1), velocities from GPS (blue arrows) and EDM (red arrows, baselines of 

small aperture trilateration networks shown by white lines) near the south HF. The 

dashed-colored lines indicate the locations of three profiles shown on the right 

comparing these datasets. Right: profiles at locations with GPS (blue triangles) and 

EDM (red triangles) data projected to compare with InSAR HF-parallel horizontal 

velocities. Vertical bars show the data uncertainties, when no bars are visible the 

uncertainties are <1mm/yr. The dark blue profile confirms that EDM and GPS data 

allow for continuation of creep at ~5.5 mm/yr on the HF 15 km south of the previously 

documented termination of active surface creep
 
[Lienkaemper, 2008]. The black 

profile shows significantly higher creep rates accommodated by the CF suggesting 

that the two faults have merged north of this location. 
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Figure 3: a) CREs color-coded by depth and with radius proportional to their 1992-

2011 cumulative slip overlaying the mean InSAR ground velocity. Shallow CREs 

(blue) confirm the southward continuation of the HF surface creep and the surface 

junction with the CF. Continuous CREs between the CF and HF illuminate the 

junction at depth, 10 km north of the surface junction. The black box (bottom left 

inset) enlarges the region of the junction. b) Model of the refined geometry of the HF 

(grey) and CF (black). The surface traces of the faults are based on the InSAR 

gradient map (Figure 1b) and the geometry at depth is based on the CREs (circles). 

The light grey mesh highlights the newly established connection between the two 

faults.  

 


