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[1] Spatial and temporal variations of aseismic fault creep influence the size and timing of
large earthquakes along partially coupled faults. To solve for a time-dependent model of
creep on the Hayward fault, we invert 18 years of surface deformation data (1992–2010),
obtained by interferometric processing of 52 and 50 SAR images acquired by the
ERS1/2 and Envisat satellites, respectively, and surface creep data obtained at 19 alinement
and 4 creepmeter stations. For multi-temporal analysis of the SAR data we developed a
method for identifying stable pixels using wavelet multi-resolution analysis. We also
implement a variety of wavelet-based filters for reducing the effects of environmental
artifacts. Using a reweighted least squares approach, we inverted the interferometric data to
generate a time series of surface deformation over the San Francisco Bay Area with a
precision of better than a few millimeters. To jointly invert the InSAR displacement time
series and the surface creep data for a time-dependent model of fault creep, we use a robust
inversion approach combined with a Kalman filter. The time-dependent model constrains a
zone of high slip deficit that may represent the locked rupture asperity of past and future
M�7 earthquakes. We identify several additional temporal variations in creep rate along
the Hayward fault, the most important one being a zone of accelerating slip just northwest
of the major locked zone. We estimate that a slip-rate deficit equivalent to Mw 6.3–6.8
has accumulated on the fault, since the last event in 1868.

Citation: Shirzaei, M., and R. Bürgmann (2013), Time-dependent model of creep on the Hayward fault from joint
inversion of 18 years of InSAR and surface creep data, J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50149.

1. Introduction

[2] The Hayward fault, extending for about ~70 km on-
shore of the eastern San Francisco Bay area, accommodates
~25% of the relative motion between the Pacific and Sierra
Nevada—Great Valley plates (Figure 1 and e.g., d’Alessio
et al. [2005]). This fault has shown distinct phases of activity
including large coseismic ruptures (such as a ~Mw6.8
earthquake in 1868), frequent microseismicity, and aseismic
creep [e.g., Lienkaemper et al., 1991; Toppozada and
Borchardt, 1998; Waldhauser and Ellsworth, 2002]. Savage
and Lisowski [1993] relate the rate of stress accumulation to
the surface creep rate using a frictional model and estimated
a strain accumulation rate equivalent to a Mw6.8 event
per century. Considering a bigger fault rupture area,
Lienkaemper and Galehouse [1998] doubled the estimate

of the Hayward fault’s seismic potential. Relying on a
paleoseismic, 1900-yr earthquake chronology of the 12 most
recent earthquakes, Lienkaemper et al. [2010], determined a
161� 65 yr mean recurrence interval and suggest a ~29%
(�6%) chance for a large event by 2040.
[3] Surface creep is observed along the complete 70-km

long onshore extent of the Hayward fault. Given the long-
term slip rate of 9� 2mm/yr, 30–90% of this rate is accom-
modated by aseismic creep at the surface [Lienkaemper
et al., 1991, 1997]. Simpson et al. [2001] attribute the
along-strike variations of surface creep rates to changes in
the depth extent of creep. Using boundary element models
of a stress-free shallow fault driven by slip below the
seismogenic zone, they find that creep reaches to depths of
4–12 km on the Hayward fault. Bürgmann et al. [2000] con-
sider similar models and also conclude that creep extends
deeper along the northern ~20 km and southern ~10 km of
the fault. Viscoelastic finite element models in which the
shallow fault creep is driven by distributed viscous shear be-
low the seismogenic zone suggest that to explain the pattern
of surface creep, only a single, smaller locked patch near the
central section of the Hayward fault is needed [Malservisi
et al., 2003]. Using a local recurrence-time method based
on the size-frequency distribution of micro-earthquakes,
Wyss [2001] mapped the subsurface location of potentially
locked and unlocked patches on the Hayward fault, identify-
ing a central locked asperity near Hayward. Using Global
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Positioning System (GPS) data and two European Remote-
Sensing (ERS) interferograms, Bürgmann et al. [2000] esti-
mate that ~7mm/yr creep extends to near the base of the
seismogenic zone along the northern segment of the
Hayward fault. Joint inversion of GPS, interferometric syn-
thetic aperture radar (InSAR), and seismic data sets using
elastic dislocation theory reveals two locked patches
between depths of 8–12 km located near the southern end
of the Hayward fault and between 10 and 30 km distance
from Pt. Pinole [Schmidt et al., 2005], which is located on
the shore of San Pablo Bay (see Figure 1). Funning et al.
[2005] use a more extensive InSAR data set to invert for a
single locked asperity at depth reaching from Berkeley to
Fremont. Evans et al. [2012] invert for regional fault slip
rates and distributed creep on the Hayward fault relying on
a block model approach. Their geodetic long-term slip rate
estimate is 6.7� 0.8mm/yr, their model creep rates gener-
ally increase with depth and they infer peak slip-deficit rates
of ~4mm/yr in the upper 5 km of the fault near Hayward and
below 5 km depth near Pt. Pinole.
[4] The creeping behavior of the Hayward fault also varies

due to perturbation of the regional stress field induced by
seismic events, such as the 1989 Loma Prieta earthquake
[Lienkaemper et al., 1997]. Following this event, surface
creep on the southern Hayward fault slowed down and
stopped on one segment, for about 6 years. In February of
1996, the quiescence was ended by a rapid creep event of
25–30mm followed by a slow recovery phase and surface
creep rates are only now approaching the pre-Loma Prieta
rate [Lienkaemper et al., 2012]. Using a spring-slider and a

boundary element model of fault creep with a rate- and
state-dependent friction rheology, Kanu and Johnson
[2011] suggest that this creep event extended to a depth of
~4–7.5 km. Lienkaemper et al. [2012] report another slow
slip event at km ~20–35 from Point Pinole following the
2007 Oakland Mw4.2 earthquake. This event continued for
several days and was characterized by a logarithmic decay
of slip over ~100 days [Lienkaemper et al., 2012].
[5] The Hayward fault creep partially releases the accumu-

lating stress aseismically and thus limits the magnitude and
changes the recurrence times of large earthquakes. The size
and distribution of eventual coseismic slip influences the
amplitude and distribution of strong ground motion and the
associated hazard [Aagaard et al., 2010]. Moreover, the spa-
tiotemporal variation of creep rates reflects changes in loading
of the locked fault sections. Therefore, characterizing the spa-
tiotemporal distribution of the Hayward fault creep is of im-
portance for developing a more accurate and time-dependent
earthquake hazard assessment. To this end, we generate a long
time series of the surface deformation using interferometric
synthetic aperture radar (InSAR) images acquired by ERS1,
2, and Envisat satellites measuring the surface deformation
over the Bay Area during the period of 1992–2010. Using a
time-dependent inverse modeling scheme that combines re-
weighted L2-norm minimization and a Kalman filter, we
jointly invert InSAR and surface creep time series to obtain
the spatiotemporal distribution of the Hayward fault creep.
This time-dependent model allows for constraining the source
regions of several creep events and points to the location of
potential future seismic events.

2. Methods

2.1. InSAR Time Series

[6] Considering N+ 1 SAR scenes acquired over the same
area at time steps (t0,t1, . . .,tN) with nearly identical viewing
geometry, we generate k interferograms with a perpendicular
orbit baseline of less than a certain value (here 400m). Due
to phase decorrelation processes, not all pixels contain use-
ful information. Therefore, a procedure to identify stable
pixels is implemented as follows.
2.1.1. Elite Pixel Identification
[7] Our method for identifying stable (i.e., less noisy)

pixels involves the statistical assessment of the time series
of the interferometric phase noise. The interferometric phase
noise in the real domain can be expressed as an additive
noise model [Lee et al., 1998];

’z ¼ ’x þ r (1)

where ’x is the true phase and r is the additive zero-mean
noise depending on interferometric phase coherence (r)
and number of looks (n). Considering the interferometric
phase as a point on a unit circle, its representation in the
complex domain is

ej’z ¼ cos ’zð Þ þ j sin ’zð Þ j ¼
ffiffiffiffiffiffiffi
�1

p
(2)

[8] The noise is estimated by using wavelet packet analy-
sis [Goswami and Chan, 1999] of the complex interferomet-
ric phase [Lopez-Martinez and Fabregas, 2002]. The phase

Figure 1. Study area. The trace of the Hayward fault
(black line) as well as the location of the alignment stations
is marked. Trace of other major faults is marked in green.
The black box shows the approximate ground footprint of
the SAR frame used in this study. Shaded relief topography
is from SRTM (Shuttle Radar Topography Mission) DTM
(Digital Train Model). The stations marked with red are
not used in this study due to very poor temporal resolution.
Shorelines are marked in cyan.
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noise is obtained by denoising the complex interferometric
phase and subtracting it from the original phase (for more
detail on the denoising step, see [Lopez-Martinez and
Fabregas, 2002; Shirzaei, 2012]). A Gaussian scattering
model for the distribution of the scatterers is assumed and
a scale-dependent soft thresholding scheme is used
[Goswami and Chan, 1999; Han et al., 2007]. This method
obtains the denoising criterion based on the variance of the
wavelet coefficients and thus does not need any a priori
information.
[9] In the following, the estimated real (_r c) and imaginary

(_r s) series of interferometric phase noise for a pixel at loca-
tion x = (z,�) in k interferograms is _r c1 x; �ð Þ þ j_rs1 x; �ð Þ;�
_r c2 x; �ð Þ þ j_rs2 x; �ð Þ; . . . ; _r ck x; �ð Þ þ j_rsk x; �ð Þgwith the asso-
ciated temporal variance of s2c þ js2s

� �
, where s2c;s ¼

1
k � 1

Xk�1

i

_r c;s
i

.
. Given the relation between the interfero-

metric phase and complex phase observations, ’z ¼
tan�1 Im

Re= Þð where Im and Re are the imaginary and real
parts, respectively, the standard deviation of the interfero-
metric phase is as follows:

s’ x; �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@’z

@Im
ss x; �ð Þ

� �2

þ @’z

@Re
sc x; �ð Þ

� �2
s

(3)

where s’ is the interferometric phase noise and @ denotes a
partial derivative. Assuming the reference variance of s for
the interferometric phase, the following statistic is valid
[Vanicek and Krakiwesky, 1982];

k � 1ð Þs’2

s2
ew2k�1 (4)

where w2 is the chi-square probability density functions. By
specifying a significance level of a, the confidence interval
for s’ can be expressed as

s’
2
<

s2

k � 1ð Þ w
2
k�1;1�a

2=
(5)

[10] Passing this test is the criterion for being an elite
pixel. s can be estimated based on an expected variance
for the Line of Sight range change (LR) as follows:

’z ¼ � 4p
l
LR

s2 ¼ � 4p
l
sl

� �2

(6)

where l is the radar wavelength and sl is the standard devi-
ation of the LR displacement (e.g., 5mm).
[11] Following the stable pixel selection step, we apply

phase unwrapping of the interferometric phase of a network
of sparse elite pixels using a minimum cost flow approach
[Costantini, 1998; Costantini and Rosen, 1999; Shirzaei,
2012]. Before this step and to improve the phase quality,
an adaptive low-pass filter is applied to noisy interferograms
[Goldstein and Werner, 1998]. After phase unwrapping, we
correct every interferogram for the spatially correlated com-
ponent of atmospheric delay using the method proposed by
[Shirzaei and Bürgmann, 2012] and we also remove the pos-
sible error due to the inaccuracy of the orbital parameters
following [Shirzaei and Walter, 2011].

2.1.2. Time Series Generation
[12] The absolute phase values measured in each interfero-

gram and converted to displacements (dfab) between acquisi-
tions a and b can be related to the surface motion as follows:

qdfab ¼ cb � ca ; 1≤q≤k ; 1≤a≤N � 1 ; a < b≤N
(7)

where c= [c1, . . .,cN]
T is the vector of N unknown displace-

ments and df ¼ 1df; . . . ; kdf
� �T

is the vector of k known
unwrapped phase observations associated with a pixel at
coordinates (z,�). Equation (7) can be expressed in matrix
form as

Aĉ ¼ df� e�f (8)

where A is the sparse design matrix with dimension of k�N,
containing �1 and +1 values corresponding to slave and
master images in each interferogram, ef is observation error,
and ĉ is the estimated displacement time series. Due to, for
instance, phase unwrapping errors and the effects of atmo-
spheric delay, observations are contaminated with outliers.
Thus, to solve equation (8), we may apply a robust approach
such as L1-norm minimization [Marshall and Bethel, 1996].
Implementing the L1-norm approximation requires rigorous
mathematical calculations that lead to a linear or quadratic
programming problem using Gauss-Markov models
[Amiri-Simkooei, 2003; Marshall and Bethel, 1996]. A sim-
pler result, similar to applying L1-norm approximation, can
be obtained through robust regression [O’leary, 1990]. This
approach applies iterative weighted least squares (ILS), with
observation reweighting as a function (e.g., bisquare) of the
residuals from the previous step [O’leary, 1990]. The advan-
tage of this approach is that it allows for reducing the weight
of outliers following iterations [Lauknes et al., 2011]. To
start the ILS approach, we consider the least squares solution
of equation (8) as [Mikhail, 1976];

ĉ ¼ ATPA
	 
�1

ATPd�f (9)

where ()T and ()�1 are the transpose and inverse matrix oper-
ators and in case of independent but temporally overlapping
subsets one should replace the simple inverse with the gen-
eral inverse operator [Bjerhammar, 1973; Pepe et al.,
2005]. P is the weighting matrix and is proportional to the
inverse of the square of the phase noise estimated in section
2.1.1. The iterations of the ILS begin following estimating
new weights for observations as follows [Holland and
Welsch, 1977; O’leary, 1990];

Qi ¼ WiP ; i ¼ 1; 2; . . .

Q0¼P

Wi
ll ¼ 1=

1þ Ri
lð Þ2

	 

Ri
l ¼ V i�1

l = T�Si�1ð Þ

S2i�1 ¼ V i�1T

Qi�1V i�1

�
df

V i ¼ df� Aĉ i (10)

where T is a tuning factor (here 2.385 after Holland and
Welsch [1977]), df is the degree of freedom (number of
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interferograms� number of images + 1), S2 and Q are the
variance factor and updated observation weighting matrix,
and W is a down-weighting factor. The updated parameters
are obtained as

ĉ i ¼ ATQiA
	 
�1

ATQidf (11)

[13] The statistical properties of this estimation are de-
tailed in Huber [1981]. The procedure of calculating the
new weight and updating parameters is repeated until a
predefined stopping criteria is reached. The stopping criteria
used here is as follows:

ĉi � ĉi�1
��� ��� < d (12)

where d is a small number (e.g., 10� 7). Following m itera-
tions, the full variance-covariance matrix of the displace-
ment time series can also be obtained by Mikhail [1976]:

Σĉ ĉ ¼ Sm
2 ATQmA
	 
�1

(13)

where S2m and Qm are the final variance factor and weight
matrix after the stopping criteria is reached. In case of indepen-
dent but temporally overlapping data sets, such as combining
ERS and Envisat acquisitions, the simple inverse in equa-
tion (11) is replaced by a generalized inverse operator
[Bjerhammar, 1973; Pepe et al., 2005]. Having obtained the
time series of surface motion, we are able to further reduce
temporal high frequency noise, which mostly includes atmo-
spheric delay. To this end, we use a spatial high-pass and tem-
poral low-pass filter [Ferretti et al., 2001; Shirzaei, 2012].

2.2. Time-Dependent Fault Creep Modeling

[14] To relate the time series of surface displacement to
the kinematics of the spatio-temporal distribution of creep
on the Hayward fault, we devise a time-dependent inverse
modeling scheme [Shirzaei and Walter, 2010]. This method
consists of two main operators (1) a robust optimization
algorithm such as L1-norm minimization as a minimum spa-
tial mean error estimator [Marshall and Bethel, 1996], and
(2) a linear Kalman filter (LKF) [Grewal and Andrews,
2001] as a minimum temporal mean square error estimator
to generate time series of the creep for each triangular dislo-
cation of the fault-interface mesh. These two steps are
implemented iteratively [Shirzaei and Walter, 2010]. In this
study, we assume that surface deformation is due to pure
strike slip on triangular dislocation sources [Meade, 2007]
that are buried in an elastic, homogenous half-space medium
with shear modulus and Poisson ratio of 3� 1010 Pa and
0.25, respectively. At each time step t, the mathematical re-
lation between surface deformation observation (tt) and fault
creep (mt) is as follows:

tt þ zt ¼ Bmt ; Pt ¼ S20Σ
�1
tttt

lbt≤mt≤ubt ; t ¼ 1; 2; . . .
(14)

where [tt (x1,y1), tt (x2,y2),, . . ., tt (xn,yn)]
T are the observa-

tions of the surface displacement at surface locations of
{(xi,yi)}i = 1: n (here, surface deformation obtained from
InSAR data (tt1) following the algorithm detailed in
section 2.1 and surface creep data (tt2)). mt = [mt (θ1,b1),
mt (θ2,b2),. . ., mt (θm,bm)]

T is the creep at the patch located
at {(θi,bi)}i = 1 :m along strike and dip of the fault, B is the
design matrix that includes Green’s functions relating fault

dislocation to the surface displacements (and unit vectors
projecting 3-D surface displacement into satellite line of
sight (LOS) observations), zt is the vector of observation
residuals, Σtttt is the variance-covariance matrix of the
observations, S20 is the primary variance factor, and lbt
and ubt are lower and upper bounds for the resolved creep
at each patch at time t [Mikhail, 1976].
[15] To obtain an optimum creep model, equation (14) is

solved subject to an objective function, such as L2-norm min-
imization of the observation residuals. To reduce the effects of
outliers, such as non-tectonic signals including hydrology and
uncompensated contributions from other fault systems, we im-
plement a robust optimization scheme involving a reweighted
L2-norm as described in section 2.1.2 for InSAR time series
generation. To reduce the roughness of the slip distribution
on the fault plane and avoid unrealistic stress heterogeneities,
we minimize the second-order derivative of the fault creep as
an additional constraint (e.g., Segall and Harris [1987]):

gDmt ¼ 0 (15)

where D is the Laplacian operator and g is the smoothing fac-
tor determining the roughness of the optimum creep model
that we discuss in more detail in the next section. Thus, the
final system of equations is rewritten in matrix form as follows:

tt
0

� �
þ zt

0

� �
¼ B

gD

� �
mt

lb≤mt ≤ub ; t ¼ 1; 2; . . . ;N

pt Ptztk kL2 ! min

(16)

[16] Following optimization of the slip model for observa-
tion times {t1,t2, . . .,tN} and determination of a time series of
the creep and the associated variance-covariance for each
patch, we apply the LKF to reduce temporal noise. The
LKF addresses the problem of estimating the parameters of
a linear, stochastic system with measurements that are linear
functions of the parameters. Given the time series of creep
{m1, . . .,mN} for a patch located at (θj,bj) and the associated
variance-covariance matrix of Σmm, according to the original
form of the LKF, the system dynamics and measurement
models, respectively, are formulated as follows [Grewal
and Andrews, 2001]:

mt ¼ Φt�1mt�1 þ ft�1 ; fteN 0;Ftð Þ
Ut ¼ Htmt þ gt ; gteN 0;Gtð Þ ; t ¼ 1; 2; . . . (17)

where q and r are Gaussian-distributed noise and Φ and H are
N�N matrices, Ft=Gt, and Ut is the measured slip at time
t that is obtained by solving the system of equation (16).
A recursive solution for the system of equation (17) can be
generated as follows [Shirzaei and Walter, 2010]:

_mþ
t ¼ _m �

t þ �Y t zt � Ht
_m �

t

� �
Pþ
t ¼ I � �Y tHt½ �P�

t

_m �
t ¼ Φt�1

_m þ
t�1

P�
t ¼ Φt�1P

�
t�1Φ

T
t�1 þ Ft�1

�Y t ¼ P�
t H

T
t HtP

�
t H

T
t þ Gt

� ��1

(18)

In equation (18),_m þ
t and Pþ

t are the final estimates of the slip
and the associated variance-covariance matrix, respectively.
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2.3. Automatic Estimation of the Smoothing Factor

[17] The smoothing factor g is a function of the number of
observations and the associated variance-covariance matrix.
Therefore, it may vary from one time step to another. To
determine the smoothing factor, a trade-off curve is widely
used, which shows the relation between the sum of squares
of the residuals and Laplacian of the slip model [e.g.,
Jónsson et al., 2002]. This approach is implemented manu-
ally (or semi-manually using finite difference methods
[Hearn and Bürgmann, 2005]), requiring lots of interaction
and thus is not applicable to large time series such as the
ones considered here. Other methods include Bayesian in-
version that jointly estimates the slip model and the associ-
ated smoothing factor [e.g., Fukuda and Johnson, 2008]
and the generalized cross-validation (GCV) [e.g., Golub
et al., 1979; Wahba, 1977] that minimizes the weighted
sum of squares of the residuals divided by a quantity
containing the trace of the inverse of the design matrix. The
GCVmethod can be implemented automatically through opti-
mization. However, in many cases, including our study, the
GCV function becomes very flat in the vicinity of the optimum
value and thus estimating the proper smoothing factor is not
possible. To devise an automatic approach for estimating
the optimum smoothing factor, we present the following
procedure, which simply uses the trade-off curve. As seen in
Figure (2), the optimum smoothing factor is obtained at the
location of the maximum curvature or minimum curvature
radius (i.e., the radius of the tangent circle to the curve).
Assuming functions Γ(g) = ‖zt(g)‖ and Π(g) = ‖Dmt(g)‖,
(the parameters are described in section 2.2 and ‖ ‖ is the norm
operator) the curvature (Y) of the curve T(g) = (Π(g),Γ(g)) is
obtained as follows [e.g., Langevin, 2001]:

Y gð Þ ¼
_Π€Γ � €Π _Γ
_Π2 þ _Γ2

	 
3
2=

(19)

[18] Dotted values represent the partial derivative with
respect to g and the curvature radius is defined as the inverse
of Y(g). The optimum smoothing factor can be obtained by

maximizing Y(g) through a nonlinear optimization method
such as Monte Carlo search approaches (more details on
Monte Carlo search approaches are provided in Shirzaei
and Walter [2009]).

2.4. Estimating the Relative Weight of
Various Observations

[19] Often in geophysical optimization problems, we deal
with more than one dataset, each of which includes different
numbers of observations with variable uncertainties. The
formal error (i.e., the standard deviation) of each observation
can be obtained using the nominal error of the measuring
tools [e.g., Mikhail, 1976]. Nonetheless, we often find that
the relative weights obtained from direct consideration of
the data and their formal uncertainties does not result in an
optimal and balanced consideration of constraints from
diverse types of data. The issue of estimating the relative
weights is crucial as it accounts for the inconsistency among
different observations, due to scaling, systematic errors, and
so forth. To address this issue, we adapt a method initially
proposed for combining various space-borne and terrestrial
data sets to model the earth’s gravity field [Koch and
Kusche, 2002]. Given the observation sets t1 (InSAR data)
and t2 (creep data) with covariance matrices of Σt1t1 and
Σt2t2 that are related to the model parameters m (fault slip)
through design matrices B1 and B2, the system of equations
in matrix form is as follows:

t1
t2

� �
þ z1

z2

� �
¼ B1

B2

� �
m ; P ¼ S201Σ

�1
t1t1 0

0 S202Σ
�1
t2t2

� �
(20)

where z contains the observation residuals (without
weighting) and S20 is the secondary variance factor. A least
square estimate of the parameters m (denoted by _m ) can be
obtained from the following normal equations:

BT
1P1B1 þ BT

2P2B2

	 
_m ¼ BT
1P1t1 þ BT

2P2t2
	 


(21)

By introducing the relative weighting factor # ¼ S202
S201

,
equation (21) is rewritten as

BT
1Σ

�1
t1t1B1 þ #BT

2Σ
�1
t2t2B2


 �
_m ¼ BT

1Σ
�1
t1t1t1 þ #BT

2Σ
�1
t2t2t2


 �
(22)

[20] The updated variance factor and relative weighting
factor are expressed as

_S 2
1 ¼ _zT

1P1
_z1

.
df 1

_S 2
2 ¼ _zT

2P2
_z2

.
df 2

_
# ¼ _

S
2
2

,
_
S
2
1

_z1 ¼ B1
_m � t1

_z2 ¼ B2
_m � t2

df1 ¼ n1 � tr BT
1P1B1 BT

1P1B1 þ BT
2P2B2

	 
�1

 �

df2 ¼ n2 � tr BT
2P2B2 BT

1P1B1 þ BY
2P2B2

	 
�1

 �

(23)

where tr is the trace operator and n1 and n2 are length of t1 and
t2, respectively. Starting from # =1, the optimum relative

Figure 2. Schematic view of the method for estimating the
optimum smoothing factor using the curvature of the tangent
circle at any point on a plot of misfit and roughness for a
given smoothing factor. The D is the Laplacian operator, m
is the fault slip, z is the observation residual, g is the smooth-
ing factor, and ‖ ‖ is the norm operator.
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weight can be obtained through iterations. The stopping crite-
rion is |#k�#k� 1|< e, where e is a small number (e.g., 10� 3).

3. Results: InSAR Time Series and Validation

[21] The SAR data set includes 52 and 50 acquisitions of
the ERS1/2 and Envisat satellites, respectively, which were
collected in beam mode I2 along the descending orbit track
70 and span the period from 1992 to 2010. Given this data
set, we generated 401 ERS and 430 Envisat interferograms,
respectively, with perpendicular and temporal baselines
smaller than 400m and 4 years (see Figure A1 for baseline
plots). The pixel size is 80m� 80m equivalent to multi-
looking factor of 4� 20 in range and azimuth, respectively.
The geometrical phase is estimated and subtracted using
satellite precise ephemeris data and a reference Shuttle
Radar Topography Mission digital elevation model of 90m
resolution [Franceschetti and Lanari, 1999]. Following
section 2.1, we generate the InSAR time series of the surface
displacement. Note that the analysis is limited to the areas
where the ERS and Envisat data overlap. Thus, the area of
coverage is slightly smaller than what could be obtained
by analyzing only ERS or Envisat data. The useful data
points are limited to the urban area and where the surface ter-
rain is stable over the 18 years observation (Figure 3a). It is
noteworthy that the number of stable data points decreases
with the length of the observation period, i.e., the longer the
time series is the fewer stable pixels are identified. Despite this
limitation, our proposed method for identifying stable pixels
could identify more than 350,000 elite pixels, which is compa-
rable with earlier works that dealt with a shorter observation
period [e.g., Lanari et al., 2007; Shanker et al., 2011].
[22] Figure 3a shows a map of the LOS velocities of the

obtained InSAR time series. We also identified a few pixels
inside the San Francisco Bay, some of which are associated
with exposed rocks and built structures. Major components

of the resolved signal include displacement due to plate
motions and elastic strain accumulation across the San
Andreas Fault system, as well as non-tectonic land subsi-
dence and rebound. Here, we focus on the discontinuity
along the Hayward fault that is an indicator for shallow fault
creep and comprises shorter wavelength features compared
to the long-term interseismic deformation components [e.g.,
Schmidt et al., 2005].
[23] In the following, the regional trend of the displacement

field due to steady plate-boundary deformation is simulated
and subtracted using a model of 14 deep dislocations whose
slip rates are constrained by GPS data (Table A1; see also
Table DR1 in Bürgmann et al., [2006]). Figures A5 and A6
show the LOS velocity field corrected for regional interseismic
shearing and the interseismic model correction, respectively.
We note that InSAR data with long wavelength orbit and
atmospheric artifacts are not well suited to evaluate long wave-
length signals such as that of the elastic strain field due to deep
slip spread out laterally over several locking depths.
[24] Before using this data set to model the time-

dependent creep on the Hayward fault, we validate the
InSAR time series against the surface creep data. Surface
creep rates are obtained from alignment array measurements
[Lienkaemper et al., 1991; Lienkaemper and Galehouse,
1997b] and creepmeter data [Bilham and Whitehead, 1997]
along the Hayward fault (see Figure 1). These data indicate
creep rates of up to ~9mm/yr along a ~4 km section near
the south end of the creeping HF (km 63–67), while the
creep rate along the rest of the fault ranges from 3–4mm/yr
in Oakland (km 20–27) to 4–6mm/yr elsewhere [Lienkaemper
et al., 2012]. Lienkaemper et al. [2012] document changes in
creep rate associated with the apparent effects of the 1989
Loma Prieta earthquake and several slow-slip transients.
For example, at station HCAM, a step in both surface creep
and InSAR time series is evident, which is associated with
9 February 1996 creep event [Lienkaemper et al., 1997]. The

Figure 3. (a) The LOS velocity from 1992–2010 InSAR time series before removing the regional trend.
Red and blue colors indicate movement toward and away from the satellite, respectively. The satellite in-
cidence angle and heading angles are 23� and 188�. (b) Comparison of InSAR time series (red triangles)
versus surface creep measurements (black circles) at eight stations. The locations are shown in Figure 1
and the statistical comparison is provided in Table 1.
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kinematic model of this event is further investigated in
section 4.2. Figure 3b and Table 1 show the results of compar-
ing the InSAR time series against the surface creep observa-
tions. The horizontal creep data are projected onto the
LOS of the satellite (given incidence angle = 23�, heading
angle = 188�, and average fault azimuth of 145�). Despite the
low amplitude of the creep, a very good agreement between
InSAR and creep time series is evident. The standard deviation
of the difference between these data sets along the Hayward
fault is ~1mm for the creep time series and ~0.1mm/yr for
the estimated LOS velocity.

4. Results: Fault Slip Model

[25] To investigate spatial and temporal variations of
creep on the Hayward fault, we employ a time-dependent
modeling scheme and jointly invert the InSAR and surface
creep time series (see section 2.2). As described above, the
InSARdata were previously corrected for regional interseismic
deformation. We also remove the annual component of the
measured InSAR surface displacement that is mostly due to
non-tectonic signals such as discharge/recharge of aquifers
(Figure A2). Figure A2.a suggests modest perturbation by
hydrological processes along the Hayward fault except for an
area near the southernmost extent of the creeping surface trace.
Figure A2.b also presents the phase of the corrected seasonal
component that highlights the areas perturbed synchronously.
We downsample the InSAR data set using the approach
suggested by Schmidt et al. [2005], where a uniform
downsampling scheme is implemented at two different resolu-
tions. The near field (20 km adjacent to the fault) is subsampled
at the resolution of 100m, while the rest of the data set is
reduced to 500m pixel spacing, which provides ~2500 data
points used for the inversion.
[26] The next stage is to estimate the relative weight of the

InSAR and surface creep data (see section 2.4). Due to time
variability of the observation noise, the best approach is to
estimate the relative weight for every time step. However,

to reduce the computation time, we only estimate the relative
weight of the creep velocity versus the InSAR deformation
velocity and assumed the same relation exists for every time
step of the displacement time series. The estimated relative
weight of the creep data is 5.33 times that of InSAR data.

4.1. Time-Dependent Creep Model

[27] Time-dependent creep modeling comprises two steps
of static inversion and temporal filtering that are
implemented in an iterative manner [Shirzaei and Walter,
2010]. As detailed in section 2.2, the static inversion
includes the joint inversion of the InSAR and surface creep
data using an iterative L2-norm optimization approach that
reduces the effects of outliers on the model parameters. The
Hayward fault geometry is the best fitting surface through
the relocated microseismicity along the fault (provided by
R. Simpson, pers. comm., 2008). Therefore, the geometry of
the fault is constant throughout the inversion, which reduces
the problem to a linear optimization. Although we attempt to
remove the regional deformation field and the effect of orbital
errors in each interferogram, to account for the residuals of
these effects and the potential phase offset due to an unstable
reference point, we consider an unknown ramp and an offset
term for every time step, which are estimated jointly with the
distribution of the fault creep. The only constraint we apply
is on the sense of slip, for which we only allow for right-
lateral strike slip. Given the complexity of the fault plane
geometry (Figure 4), we employ a mesh of triangular disloca-
tions [Meade, 2007] to represent the geometry of the Hayward
fault. At every time step in the distributed slip inversion, a
smoothing factor is estimated using the method explained in
section 2.3. Figure (A3) shows the estimated smoothing factor
for every time step. Following static inversion, we obtain
the distributed slip for each time step and the associated
variance-covariance matrix, which is optimized through
reweighted L2-norm minimization. These parameters form
the input to the second stage, which is the temporal filter-
ing using the Kalman filter [Shirzaei and Walter, 2010].

Table 1. The Statistical Comparison of the InSAR Time Series Versus Surface Creep Data Obtained by Alignment Stationsa

No Station
Distance from
Pt. Pinole (km)

InSAR-creep
rate (mm/yr)

Alignment creep
rate (mm/yr)

TS. Std.b

(InSAR-Creep) [mm]
LOS Vel. Diffc

(InSAR-Creep) [mm/yr]

1 HLSA 23 5.2 4.4 0.9 0.2
2 HLNC 25 3.8 3.9 0.4 0.03
3 H39A 27 3.7 4.2 0.9 0.1
4 H73A 30 1.7 3.3 0.8 0.5
5 HENC 32 1.9 2.9 1 0.3
6 HCHB 35 3.9 4.2 0.3 0.05
7 H167 40 5.9 5.1 1.1 0.2
8 HROS 42 4.2 4.3 0.3 0.03
9 HDST 43 6.4 4.6 0.7 0.05
10 HPAL 45 4.4 4.6 0.3 0.03
11 HSEP 47 4.6 5.7 0.4 0.3
12 HWDL 49 5.4 4.5 0.5 0.3
13 HAPP 54 7.1 5.6 0.8 0.5
14 HHAN 61 5.5 5.9 1.2 0.1
15 HRKT 61 5.7 5.4 1 0.1
16 HUNI 62 7.8 6.6 1 0.2
17 HPIN 64 6.7 6.6 1 0.03
18 HCAM 65 4.0 4.4 0.8 0.1
19 HPMD 65 6.0 5.9 0.6 0.03

aThe creep data are projected into the LOS of the satellite (incidence angle = 23�, heading angle = 188�, and Hayward fault strike 145�).
bTS. STD. =LOS displacement time series standard deviation.
cLOS velocity difference is provided to enable a comparison with earlier studies such as Shanker et al. [2011].
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As detailed in section 2.2 and broadly discussed in [Shirzaei
and Walter, 2010], the LKF is used to reduce temporal
noise and update the variance-covariance matrix of the dis-
tributed slip. Since the results of the LKF may not fully
reproduce the observations (i.e., the model is not optimal
in terms of spatial mean square error), we repeat the static
inversion with the initial creep values set to equal those
obtained from the LKF of the previous iteration. Each
iteration of the time-dependent modeling includes a static
inversion followed by temporal Kalman filtering. This pro-
cedure continues until reaching some stopping criteria, in
this case the difference between models obtained from the
LKF and static inversions becoming smaller than e (here,
1mm). Here, after 10 iterations the stopping criterion was
reached.
[28] The final time-dependent creep model of the Hayward

fault for 1992–2010 is shown in Figures 5a and 5b and in the
animation in the electronic supplement. The darker colors
indicate more right-lateral creep. Figure A4 also demon-
strates the model resolution in terms of standard deviation
of the resolved creep. The resolution test suggests that along
the shallow segments of the Hayward (except the northern-
most portion), creep features of 0.5mm or even smaller
can be resolved. In contrast, at the base of the fault, the creep
resolution drops to 2mm and worse, which likely is an
overestimation of the true resolution due to the smoothing
operator. In Figure 5a, the linear velocity obtained from
our time-dependent creep modeling and the location of the
creepmeters and alignment arrays and their associated obser-
vations of actual surface creep are shown for comparison
with the creep rate model. There is very good agreement be-
tween the model and surface creep observations. Figure 5b
also shows examples of creep time series at several points
on the Hayward fault interface, which demonstrates
nonlinear behavior at various places. Our results show that
the upper 3–4 km of the Hayward from 45 to 70 km distance
creep faster than the northern section (km 0–30). In the
north, the faster creep occurs at depth of 5–10 km. A large
locked patch that creeps at <1mm/yr is constrained at km
25–45, in agreement with earlier works [Funning et al.,
2005; Malservisi et al., 2003; Schmidt et al., 2005; Simpson
et al., 2001] but not with the model result of Evans et al.
[2012]. The area of modeled subsurface creep correlates
well with the distribution of repeating micro-earthquakes

(magenta circles in Figure 5a), which are inferred to be driven
to fail frequently by the surrounding fault creep [e.g., Nadeau
and Mcevilly, 2004; Schmidt et al., 2005]. Repeating earth-
quakes are nearly absent in the inferred low-slip zones. The
major locked zone is most likely the location of future large
events and ruptured in the 1868~Mw6.8 southern Hayward
earthquake. We also infer several smaller, low-slip zones
including one south of Berkeley (km 15–20) and another
near km 55–65. These low-slip patches may contain small,
locked asperities that may rupture during smaller events or,
in the worst case scenario, rupture together with the big
locked patch to generate a bigger earthquake.
[29] Figure 5c shows the time series of the spatial root

mean square (RMS) of the mismatch between observed
and modeled surface deformation. The maximum RMS for
the InSAR and surface creep data is less than 5mm and
1mm, respectively. The spatial distribution of the residuals
(observed—modeled linear LOS and surface creep velocity)
for the creep rate model is shown in Figures 5d and A8.
Both measures of misfit show a good agreement between
model and data. Figure A7 also presents the modeled LOS
velocity field.

4.2. Kinematic Source Model of Creep Events

[30] On 17 October 1989, the Mw 6.9 Loma Prieta earth-
quake reduced surface creep rates along the southern
Hayward fault caused by a reduction of right-lateral shear
stress in the event [Lienkaemper et al., 1997]. Following this
earthquake, the southernmost segment of the Hayward fault
stopped creeping for about 6 years and the quiescence was
ended by a rapid creep event of 25–30mm displacement
and slow recovery. Creep is only now reaching the pre-
Loma Prieta event rate [Lienkaemper et al., 2012]. Using a
spring-slider model with a rate- and state- dependent friction
law, Schmidt and Bürgmann [2008] investigated the general
pattern of the ~6 years quiescence and the creep event
following the Loma Prieta earthquake. Kanu and Johnson
[2011] used similar spring-slider models combined with a
boundary element model and suggest that the creep event
extended to a depth of ~4–7.5 km. However, a kinematic
model of this creep event constrained by deformation data
remains to be resolved.
[31] The advantage of our time-dependent model is the

ability of constraining the long-term as well as transient

Figure 4. Hayward fault geometry and the 3-D mesh of the surface topography. The purple dots present micro seismicity
for the period 1992–2010 (courtesy http://www.ldeo.columbia.edu/~felixw) and the green dots are repeating earthquakes
(provided by T. Taria, pers. comm., 2008).
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components of creep on the Hayward fault. Thus, despite an
interruption of the ERS SAR acquisitions from 1993 to
1995, the kinematic model of the February 1996 creep event
is embedded in our time-dependent model. To obtain this
model, we subtract the model associated with the time step
before the event from that after the event (i.e., the creep dur-
ing the period 10 November 1995–29 March 1996). The
result of this calculation is shown in Figure 6a. The source
of the creep event is constrained as an area of high slip
extending 8 km along the southern part of the Hayward fault

and to 7 km depth, consistent with the depth extent proposed
by Kanu and Johnson [2011] based on constraints provided
by the frictional response of the fault. The field observations
of surface creep obtained from alignment array and
creepmeter stations during this time are shown on top of
the creep model and demonstrate a good agreement between
the data and model.
[32] Lienkaemper et al. [2012] suggest that following an

Mw 4.2 earthquake on 20 July 2007, in Oakland near
km 26.4 and at a depth of 4.1 km, a modest (~10–20mm)

Figure 5. (a) Average right-lateral creep rate along the Hayward fault. The black dots are microseismic-
ity along the fault (courtesy http://www.ldeo.columbia.edu/~felixw). The magenta circles show the
location of repeating events. Average 1992–2010 rates from surface measurements are shown by symbols
on top with same color scale. Squares represent 19 alignment stations and circles are four creepmeters.
(b) 3-D perspective of the Hayward fault creep rate and examples of creep time series associated with
various patches along the fault. (c) Time series of the root mean square error (RMS) for the InSAR and
creep data (observed-modeled). (d) The close up view of the spatial distribution of the residuals between
the Hayward fault creep rate model and the LOS linear velocity of the surface deformation
(observed-predicted average LOS velocity).
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creep event initiated at km ~20 to ~34. To investigate the
source of this event, we subtract the source model obtained
for time step 23 December 2006 from that of 25 August
2007 (Figure 6b). Despite apparent uncertainty of the surface
creep observations for this period (note the fluctuation of the
surface creep data along the fault) and a relatively large gap
in the InSAR time series, a substantial creep increment of up
to 10mm is revealed at km 22–37 and ~5km deep. However,
due to data uncertainty caused in part by the relatively long
gap in the InSAR time series and the modest amplitude of
the inferred creep, the source model for the July 2007 creep
is not as well constrained as that of February 1996.
[33] To identify any other accelerated slow slip transients

that are not evident in the surface creep data, we calculate
the acceleration of the creep for every patch on the fault
interface for the period 1992–2010 using a cubic polynomial
fit (see also Figure 5b for examples of fault patch creep time
series). Figure 7a shows the distribution of the creep acceler-
ation. The area of the February 1996 aseismic slip transient
shows a significant negative acceleration as the large-
amplitude creep event occurred early in the time series. To
the north, near km 20–30, there is an area of a large positive
acceleration. Plotting time series of the average creep of this
area (Figure 7b) shows that in February 1996 and after
~6 years of no creep, a period of elevated creep started. This
could be an indicator of another slow-slip transient that ini-
tiated close in time to that on the southern segment. Since
this accelerated creep is right next to the major locked
segment of the Hayward fault, understanding the effect of
time-dependent creep on the loading of the locked rupture
asperity is of importance.

5. Discussion

[34] We document time-dependent creep along the
Hayward fault and provide the spatiotemporal history of
the aseismic slip (see Figure 5). Although there is no other
study to confirm temporal aspects of the modeled subsurface
creep rate variations, the obtained kinematic model of the
creep rate (Figures 5a and 5b) and creep events (Figure 6) is
consistent with earlier studies [e.g., Bürgmann et al., 2000;
Gans et al., 2003; Kanu and Johnson, 2011; Lienkaemper
et al., 2012; Malservisi et al., 2003; Schmidt et al., 2005;
Simpson et al., 2001; Wyss, 2001].
[35] Aseismically slipping faults, such as the central San

Andreas, the Calaveras and the Hayward faults tend to be
well illuminated by highly localized seismicity, including re-
peating events on the fault plane [e.g., Nadeau and Mcevilly,
1999; Schaff et al., 2002; Waldhauser and Ellsworth, 2002].
We infer a large patch of low model creep (<1mm/yr)
(km 25–45) as a locked zone, which is devoid of repeating
earthquakes (see Figure 5). However, as seen in the fault
plane view (Figure 8), a large number of micro-earthquakes
occur in this area, which may appear to contradict the
model results suggesting this area is locked. Consideration
of the 3-D distribution of the seismicity reveals that the area
of the locked patches correlates with broadly distributed
seismicity adjacent to the fault, whereas seismicity along
the fast creeping segments is closely aligned with the fault
trace (Figure 8; see alsoGans et al., [2003]). The average dis-
tance of the microseismicity from the fault can be considered
as an indirect indicator marking creeping and locked seg-
ments of the fault, where along the creeping segments the
seismicity is highly localized near the fault interface.
[36] Given a long-term slip rate of ~9mm/yr [e.g.,

Lienkaemper et al., 1991], we estimate the slip deficit accu-
mulating along the Hayward fault (Figure 9a). Figure 9a
shows that a maximum deficit of 1.5m accumulated along
km 25–45 consistent with the slip inferred for the 1868 event
[Yu and Segall, 1996]. When computing this seismic poten-
tial and stress build up since the 1868 earthquake, we

Figure 6. (a) Source model of the February 1996 creep
event (slip from 10 November 1995 to 29 March 1996).
(b) Source model of the July 2007 creep event (slip from
23 December 2006 to 25 August 2007). The 20 July 2007
Mw= 4.2 event is shown by a black star. The field measure-
ments of surface creep spanning the respective time periods
are shown above the model. Black dots show background
seismicity and magenta circles are repeating events that
occurred during the two time intervals.

Figure 7. (a) Distribution of the creep acceleration along
the Hayward fault. The area of the high positive acceleration
is marked with a white circle. (b) Time series of creep for the
average of the patches inside the circled area in Figure 7a.
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assume that the pattern and average rate of slip deficit accu-
mulation have been stable, since soon after the earthquake.
While repeat measurements of offset cultural features
crossing the fault suggest that time-averaged creep rates
have remained constant for much of the twentieth century
[e.g., Lienkaemper and Galehouse, 1997a; Schmidt and
Bürgmann, 2008], substantial slip rate variations may well
have occurred during the last 140 years. The potential size of
the next major seismic event varies from Mw ~6.3 to
Mw ~6.8, depending on if only the major central locked patch
ruptures or the rupture propagates through the entire 70 km of
the Hayward fault including the areas of low slip deficit. A
Mw ~7.0 would be expected if the Hayward Fault were fully
locked. An even worse scenario would include rupture propa-
gating southward through the Mission Hills section to the
Calaveras fault and northward across San Pablo Bay and along
the adjoining Rodgers Creek fault. Transient creep events near
the major central locked patch such as the one shown in
Figure 7, may temporarily increase the probability of a large
earthquake on the Hayward fault as has been suggested for
Cascadia [Mazzotti and Adams, 2004].
[37] To investigate the effect of Hayward fault creep on

the locked portions of the fault in terms of stress transfer,
we calculate the Coulomb failure stress change induced by
fault creep [King et al., 1994]. The Coulomb stress change
is defined as ΔCFS =Ns + fcSs, where Ss is the shear stress
change on the fault (positive in the inferred direction of slip),
Ns is the normal stress (positive for unclamping), and fc is the
effective friction coefficient (here assumed equal to 0.4).
We examine the degree to which creep on the Hayward fault
enhances loading on the locked asperities along the fault.
Figure 9b shows the rate of Coulomb stress change imparted
from the creep rate distribution estimated on the Hayward
fault. There are two major areas that receive significant
positive stress change, including the inferred locked patch
(km 25–45) with a mean stress change rate of 0.003MPa/yr.
The other area that experiences significant positive stress
changes is at km 10–20, south of Berkeley. Except for these
two areas, the creep reduces the accumulated stress on most
of the Hayward fault. The cumulative Coulomb failure stress
change from creep since the 1868 earthquake on the central
and northern locked zones amounts to ~0.5MPa. This stress

is in addition to the background stressing rate due to tec-
tonic plate motions which depending on the distribution of
lower crustal deformation is estimated at 0.01–0.015MPa/yr
[Parsons, 2002].
[38] The creeping behavior of the Hayward fault varies

with time and along the fault. This variable behavior may
be determined by variations in the stiffness of the surround-
ing rocks, the frictional properties of the fault interface, and
stress interaction with neighboring fault systems or other
time-dependent loads [Lienkaemper et al., 1997; Logan,
1978; Marone et al., 1990; Marone and Scholz, 1988;
Schmidt and Bürgmann, 2008]. The aseismic slip signifi-
cantly loads the locked zones and thus increases the seismic
hazard. Therefore, the spatiotemporal variability of the creep
leads to a time-variable seismic hazard that suggests further

Figure 8. The distribution of microseismicity within 2 km from fault surface (black dots; courtesy http://
www.ldeo.columbia.edu/~felixw) and repeating earthquakes (purple circles; T. Taira pers. comm.
[2011]). Contours show the average creep rate on the Hayward. The top row shows the average distance
of the microseismicity from the fault.

Figure 9. (a) Slip deficit since the last major seismic event
in 1868 by assuming a long-term slip rate of ~9mm/yr [e.g.,
Lienkaemper et al., 1991]. (b) Average rate of Coulomb
failure stress change along the Hayward fault imparted by
aseismic creep from 1992 to 2010.
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research on developing time-dependent hazard models to
provide an updated estimate of earthquake probability by
taking into account all time-dependent and independent fac-
tors. Slow slip transients on the creeping portions of the fault
and associated increases in seismicity rates reflect short-term
increases in earthquake hazard that may be relevant for oper-
ational earthquake forecasting efforts [e.g., Jordan et al.,
2011; Mazzotti and Adams, 2004].

6. Conclusion

[39] We present a spatiotemporal model of creep on the
Hayward fault. To this end, we explored an 18-year long
time series of InSAR deformation and surface creep data.
Our time-dependent creep model reveals a persistent accu-
mulation of slip deficit (more than 90% of the geologic slip
rate) along buried ~25-km long and ~7-km wide section of
the fault. Our model also identifies several other smaller
locked patches. Our results suggest that the creep rate is
faster at shallow depths along the southern Hayward fault
compared with the northern fault section, which has higher
rates at depth. This variation may reflect changes in the
regional stress field and/or material heterogeneities along
the Hayward fault.
[40] We find that in addition to the background stressing

rate, the fault creep is loading the major locked asperity of
the Hayward fault at a mean rate of ~0.003MPa/yr. This indi-
cates the direct impact of fault creep on the adjacent locked
segments and the size and recurrence interval of large seismic
events. Given that the Hayward fault accumulates a slip deficit
of 30–90% of its long-term slip budget along the 70-km long
section of the fault zone we considered, we estimate the accu-
mulated seismic moment since the last big event in 1868 to be
capable of producing an Mw ~6.3–6.8, today.
[41] As a byproduct of our time-dependent creep model,

we constrained kinematic models of the February 1996 and
July 2007 shallow creep events. Moreover, we identified a
deeper accelerated creep transient that occurred to the NW
of the major locked patch, starting early in 1996. As this pri-
mary locked zone is the potential nucleation site for a future
large event, understanding its relation to the fast creeping
segments is of importance. Slow slip transients on the creep-
ing portions of the fault and associated increases in seismic-
ity rates reflect short-term increase in stressing rates and thus
earthquake hazard.

Notation

N Number of images minus 1
’z Observed interferometric phase in real domain
’x True interferometric phase in real domain
r Additive zero-mean noise in real domain
r Interferometric phase coherence
n Multilooking factor

_r c, _r s Real and imaginary part of interferometric
phase noise in complex domain

k Number of interferograms
(z,�) Pixel location in range and azimuth direction

s2c , s
2
s

Real and imaginary part of interferometric
phase variance in complex domain

Im, Re Real and imaginary part of interferometric
phase in complex domain

s’ Standard deviation of interferometric phase in
real domain

s Reference standard deviation of interferometric
phase in real domain

@ Partial derivative
(x,y) Pixel location in geographic coordinate system
w2 Chi-square probability density functions
LR Line-of-sight range change in a single

interferogram
l Radar wavelength
sl Reference standard deviation of observed the

LOS range change in a single interferogram
df Unwrapped phase of an interferogram

converted to displacement
ĉ Estimated LOS displacement time series
c True LOS displacement time series
A Design matrix relating unwrapped phase change

to unknown LOS displacement
e�f Unwrapped phase error
P Weighting matrix of observations
T Tuning factor in re-weighted least squares
Qi Updated weighting matrix of unwrapped phase

at iteration i
Wi Down-weighting factor of observation outliers

at iteration i
S Variance factor used in reweighted least square
Σ Variance-covariance matrix
tt Surface deformation observation at time t
zt Observation residual at time t
B Design matrix at time t relating surface

deformation to fault creep (B1: InSAR, B2:
Creep)

mt Fault slip
lbt, ubt Lower and upper bound of fault creep at time t

S20 Primary variance factor
(θ,b) Fault patch location along strike and dip

# Relative weighting factor
g Smoothing factor
D Laplacian operator
H Observation matrix used in Kalman filter

Ft, Gt Process and measurement noise used in Kalman
filter

Φ State transition matrix used in Kalman filter
Ut Measured slip at time t used in Kalman filter t

_m �
t , _m þ

t A priori and posteriori fault slip at time t
P�
t , P

þ
t A priori and posteriori weighting matrix at time t
Y Curvature

ΔCFS Coulomb failure stress change
Ss Shear stress
fc Effective friction coefficient
Ns Normal stress
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 19 

Figure S1: Baseline plot for the ERS (a) and Envisat data (b). Numbers indicate the date of 20 

the SAR acquisitions. 21 

22 



 3 

 23 

Figure S2: Parameters of the annual component removed from the InSAR time series of 24 

every stable pixel. a) Amplitude, b) Phase, i.e. the time of year of the peak amplitude. 25 

26 



 4 

 27 

 28 

Figure S3: Time series of smoothing factor obtained following the automatic method detailed 29 

in section (2-3). 30 

31 



 5 

 32 

 33 

Figure S4: The results of model resolution test, provided in terms of the standard deviation of 34 

the resolved fault creep using only the surface creep data (a) only the InSAR data (b) and the 35 

combination of InSAR and surface creep data (c).  36 

37 



 6 

 38 

Figure S5: LOS velocity corrected for regional trend determined from GPS-constrained 39 

regional dislocation model. Positive LOS velocities (red) indicate movement toward the 40 

satellite; i.e., approximately eastward and uplift.  41 

 42 

43 



 7 

 44 

Figure S6: Regional trend used for correcting LOS velocity calculated from dislocation 45 

model detailed in Table S1. Red indicates movement toward the satellite.  46 

47 
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 48 

 49 

Figure S7: The modeled surface displacement velocity obtained in line-of-sight of the 50 

Envisat satellite. Red indicates movement toward the satellite.  51 

52 
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 53 

Figure S8: The spatial distribution of the residuals between the Hayward fault creep rate 54 

model and the LOS linear velocity of the surface deformation (observed – predicted average 55 

LOS velocity). Red indicates movement toward the satellite.  56 

 57 

58 



 10 

Table S1: Dislocation model parameters cited from Bürgmann, et al. [2006] used to compute 59 

regional background deformation shown in Figure S6. Strike-slip rates on vertical model 60 

faults are inverted from horizontal GPS velocity field. Four shallow dislocations used by 61 

Bürgmann et al. [2006] to model the Hayward fault creep are not used.  62 

 63 

Fault segment Top Bottom SE end NW end Slip STD (+/-) 

(km) (km) (°N) (°E) (°N) (°E) (mm/yr) (mm/yr) 

N San Gregorio 12 3000 36.501 -122 37.905 -122.673 3.5 0.9 

Greenville 12 3000 37.4 -121.445 37.85 -121.82 3.8 1.6 

Conc.-Green Valley 12 3000 37.85 -121.955 70.72 -199.345 20.6 0.9 

Mission-Hayward 12 3000 37.356 -121.725 37.754 -122.152 10.3 2.1 

N Calaveras 12 3000 37.356 -121.725 37.801 -122 5.9 2.3 

Hayw.-Rodgers Creek 12 3000 37.754 -122.152 64.506 -172.041 4.9 1.2 

S Calaveras Deep 12 3000 36.678 -121.285 37.356 -121.725 22.8 1.3 

S Calaveras Creep 0 6 36.678 -121.285 37.356 -121.725 11 0.8 

N SAF 12 3000 37.905 -122.673 41.05 -125.68 21.5 1.5 

SAF Peninsula 12 3000 37.23 -122.09 37.905 -122.673 19.5 1 

SAF Loma Prieta 12 3000 36.678 -121.285 37.23 -122.09 19.5 1 

SAF Transition Creep 0 8 36.678 -121.285 36.86 -121.55 21.5 0.8 

S SAF 0 3000 30.44 -115.15 36.678 -121.285 30.7 0.9 

  64 

 65 

66 
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