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Abstract

A new parallel code has been developed to carry out simulational experiments of magnetotelluric investigation in Cartesian
coordinates by solving the electromagnetic induction equation in the time domain. In this paper we show that the code
can achieve good performances of parallel processing in various super-computers. We present several preliminary tests that
demonstrate the performance of this code. Our tests show promising results of the computations in several aspects including the
effect of skin depth, and phase shift and magnitude of the induced field relative to the external electric field. 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Over the past decade seismology has made significant progress in using tomographic techniques for 3D imaging
of the elastic properties of the crust and mantle and the topography of the core-mantle boundary. While seismic
waves provide information on elastic properties, measurements of electrical conductivity can be effectively used
to constrain the spatial variation of temperature as well as to characterize chemical composition and degree of
partial melt within the Earth. The naturally occurring powerful, low-frequency electromagnetic (EM) fields whose
primary sources are located in the magnetosphere and ionosphere have long been considered to be promising for
studies of the Earth’s interior. The magnetotelluric (MT) method was proposed more than 40 years ago [1]. The
basic idea is simple, i.e. the Earth can be regarded as a conducting sphere and should respond to the external EM
field, that will lead us to obtain the distribution of interior conductivity through the signature of the induced EM
field. Thus MT method is thought to be complementary to seismic wave analysis in investigating the structure of
the Earth’s interior.
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While the theoretical modeling of MT method has been developed long time ago, this method has not been
used to study the Earth’s deep interior to its full advantage. Several limitations impeded efforts to build a detailed
3D images of the electrical conductivity distribution of the Earth interior. First, the geographical and temporal
distribution of observational sites are so sparse that available data are limited. Second, it is difficult to distinguish or
isolate the external EM sources, such as the cosmic EM wave interacting with the magnetosphere or the ionosphere.
We believe that large-scale computational experiments are effective to assess the feasibility of the MT method to
image the mantle structure and shed light on what information we can obtain from the limited observational data.

There are several papers that attempted to develop this kind of computer simulations. Parker [2] and Parker and
Whaler [3] developed a mathematical theory and numerical algorithm for inversion of electromagnetic induction
data. Wannamaker [4] adopted an integral equation technique. Mackie and Madden [5] and Mackie et al. [6]
investigated this problem through differential methods. Zhang and Schultz [7], Everett and Schultz [8], and
Martinec [9] carried out computer simulations using a finite element numerical method in the spectral domain,
and Smith [10,11] and Wang and Hohmann [12] used a finite difference method. Recently available computers
become more and more powerful in the CPU speed, size of memory, and number of processors, so that we can
carry out computer simulations with a better resolution and higher speed. To our best knowledge, however, the
simulations presented in published papers so far are carried out in the frequency domain. More importantly none of
such efforts described above has successfully parallelized the computation, and therefore the power of the modern
computer technology has not yet been fully utilized. This paper presents a newly developed parallel code, which
is written in Fortran MPI, to solve the EM induction equation and hence carry out MT investigations through
computer experiments in parallel computers.

2. Formalism

2.1. Basic equations

The Maxwell equations without displacement currents and free charges are

∂B
∂t
=−c∇ ×E, (1)

∇ × B= 4πσ

c
E, (2)

∇ · E= 0, (3)

∇ · B= 0, (4)

whereσ is the electrical conductivity andc is the speed of light. They can be simplified by adopting a vector
potentialA and an electrical potentialφ, with a Coulomb gauge

∇ · A = 0, (5)

and the fields are expressed as

B=∇ ×A, (6)

E= −1

c

∂A
∂t
−∇φ. (7)

The Farady equation (1) and the divergent-free equation (4) are automatically satisfied by Eqs. (6) and (7). If we
further assume that there is no static electric field (e.g., see Ref. [8]), then Ampere’s law Eq. (2) becomes

4πσ

c2

∂A
∂t
−∇2A = 0. (8)
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This is the diffusion equation. In the spectral domain, i.e. the time dependence is written as eiωt , one can write the
solution in 1D easily as:

A= Cez/λ+iπ/4+De−z/λ−iπ/4, (9)

whereλ is the skin depth defined by

λ= c√
2πσω

, (10)

andC, D are constants determined by the boundary conditions. The phaseiπ/4 appears because a factor
√
i

is produced during the manipulation. This complex number will produce a phase difference between the time
derivative (electric field) and the space derivative (magnetic field) of the vector potential. Later we will compare
tests of our numerical computations with this analytical solution.

2.2. Normalization

In the code we actually solve

σ
∂A
∂t
−∇2A = 0. (11)

The unit ofσ can be expressed as

[σ0] = c2[T ]
4π[L]2 s−1= 8.0× 105[T ]

[L]2 S/m. (12)

We adopt the time unit[T ] as 1 second, and length unit[L] as 10 km. In this normalization, the normalization
factor is[σ0] = 0.008 S/m. The conductivity in the Earth interior, which ranges fromσ = 10−3 S/m on the surface
to σ = 1 S/m in the upper mantle (about 700 km beneath the surface, see, e.g., Ref. [15]), is equal to a value that
ranges fromσ = 0.125 toσ = 125 in our code.

3. Coding

3.1. Finite difference equation

Adopting Crank–Nicholson scheme and Cartesian coordinates, the finite difference form of the diffusive
differential equation in thex-direction is

σ(i, j, k)
An+1
x (i, j, k)−Anx(i, j, k)

1t

= 1

21x2

[
An+1
x (i + 1, j, k)− 2An+1

x (i, j, k)+An+1
x (i − 1, j, k)

+ Anx(i + 1, j, k)− 2Anx(i, j, k)+Anx(i − 1, j, k)
]

+ 1

21y2

[
An+1
x (i, j + 1, k)− 2An+1

x (i, j, k)+An+1
x (i, j − 1, k)

+ Anx(i, j + 1, k)− 2Anx(i, j, k)+Anx(i, j − 1, k)
]

+ 1

21z2

[
An+1
x (i, j, k+ 1)− 2An+1

x (i, j, k)+An+1
x (i, j, k− 1)

+ Anx(i, j, k+ 1)− 2Anx(i, j, k)+Anx(i, j, k − 1)
]
, (13)
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where the superscript indicates the time step and the subscript denotes the component of the vector. The components
in y- andz-directions can be written in a similar way. This difference equation can be written in a matrix form:

S ·An+1= T ·An +Anb. (14)

In this matrix equation,Ab is the boundary term, andS andT are large sparse matrix indexed byl, wherel is
defined byl = (i − 1)NY ·NZ + (j − 1)NZ+ k. The matrix elements are

S(i, j, k,1)= Sl,l = σ(i, j, k)
1t

+
(

1

1x2
+ 1

1y2
+ 1

1z2

)
, (15)

S(i, j, k,2)= Sl,l−1= Sl,l+1= −1

21z2 , (16)

S(i, j, k,3)= Sl,l−NZ = Sl,l+NZ = −1

21y2 , (17)

S(i, j, k,4)= Sl,l−NZ·NY = Sl,l+NZ·NY = −1

21x2
, (18)

T (i, j, k,1)= Tl,l = σ(i, j, k)
1t

−
(

1

1x2 +
1

1y2 +
1

1z2

)
, (19)

T (i, j, k,2)= Tl,l−1= Tl,l+1= 1

21z2
, (20)

T (i, j, k,3)= Tl,l−NZ = Tl,l+NZ = 1

21y2 , (21)

T (i, j, k,4)= Tl,l−NZ·NY = Tl,l+NZ·NY = 1

21x2 . (22)

3.2. Numerical scheme

The above matrix equation is to be solved by a preconditioned conjugate gradient (CG) scheme. So-called
conjugate gradient method is a quite general means for solving the matrix equations like

A · x= b, (23)

whereA is anN ×N matrix andx andb are vectors. We briefly summarize this method here (see, e.g., Ref. [13]).
One defines a vector functionf (x),

f (x)= 1
2x ·A · x− b · x. (24)

This function is minimized when its gradient

∇f = A · x− b (25)

is equal to zero, which is equivalent to the matrix equation (23) that we wish to solve. The minimization is carried
out by generating a succession of search directionpk and improved minimizersxk. At each stage a quantityαk
is found that minimizesf (xk + αkpk), andxk+1 is set equal to the new pointxk + αkpk . After N iterations one
arrives at the minimizer over the entire vector space[p1,p2, . . .], and that minimizer is the solution to the matrix
equation (23). Barrett et al. [14] provided the pseudocode of this CG algorithm. For convenience of reference, we
adapt it in the Appendix.

The convergence rate of the CG method strongly depends on the form of the matrixA, and it is found that this
method works well for matrices that are well-conditioned, i.e. close to the identity matrix. Thus in order to increase
the rate of convergence, we may apply a preconditionerM such thatM−1 · A ≈ I , and solve the preconditioned
form of equation(

M−1 ·A) · x=M−1 · b. (26)
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A preconditioner should be close to the original matrix but must be much easier to be inverted. So-called
incomplete-lower-upper (ILU) factorization is to adopt a matrixM as the preconditioner such that it can be
factorized as

M = (D +L)D−1(D +U)= (D +L)(I +D−1U), (27)

whereL andU are strictly triangular lower and upper matrices, respectively, andD is a diagonal matrix. We use the
triangular lower and upper parts of the original matrixA to be the matrixU andL. InvertingMx = b is proceeded
by the following two steps:

(D +L)z= b⇒ z=D−1(b−Lz), (28)(
I +D−1U

)
x = z⇒ x = z−D−1(Ux). (29)

4. Parallel performance

The portion that consumes the most CPU time in the CG algorithm is to obtain the inverse of pre-conditioner
(i.e. M−1) in each conjugate gradient iteration. The ILU factorization method is very effective, but difficult to be
parallelized. Fig. 1 illustrates the idea how to achieve parallelization. The upper panel shows that, in order to carry
out ILU factorization, the latter CPU need to wait (idle) before it receives the message from the former one. If there
are many CPUs, the latter CPUs would idle for a long time and hence the performance is poor. One way to reduce
the idle time is to divide the computation regions in each CPU into several blocks such that the latter CPU can start
the calculation sooner when the previous CPU finishes the calculation of one small block. In this case, however,
messages need to be passed between CPUs frequently so that the overall performance does not improve much.

We implement the localized ILU method in order to achieve better parallel performance. The lower panel in Fig. 1
illustrates the idea of localized ILU method. Refs. [16,17] give more details about the mathematical background
and tests on this method. In this method the CPUs do not exchange messages when they carry out ILU factorization,
but use approximate values (by zeroing out the matrix components outside the processor domain) in the boundaries
between CPUs. This will slightly increase the iteration steps because the localized ILU is not as effective as the
exact ILU method in preconditioning. But since every CPU is doing calculation independently, it achieves high
parallel performance that can well compensate the increase in more iteration steps.

The code has been tested in six different computers: Fujitsu VPP300, IBM SP, Hitachi SR2201, NEC SX4, Cray
T94, and Fujitsu VX4. The specifications of these computers can be found in Table 1. We adopted 42× 42× 202
grid points, and runs the code for 50 time steps. The physical system in these tests is that a sinusoidal electric field
in all three directionsEx , Ey andEz with period of 1000 s are applied on the surface of a uniform conducting
layer (σ = 1.25). In each time step we call the CG subroutine three times for solvingAx , Ay andAz. It takes
about 30 iterations in each call in order to converge to a residue 10−6. Fig. 2 shows the performance of these six
machines. In order to see the ratio of parallelization clearly, we re-draw Fig. 2 in a normalized scale in Fig. 3,
where ‘normalized’ means that the speed of a single CPU for each individual computer is assumed to be unity. We
define the ratio of parallelization by

(real time when the code runs in one CPU)

(real time when the code runs in parallel)× (numbers of CPUs)
.

This is equivalent to the value of abscissa divided by the value of ordinate in Fig. 3. A point that is closer to the
line denoted by unity in Fig. 3 means a higher ratio of parallelization. When four CPUs are used (see the inset
of Fig. 3), the ratio of parallelization is 90.34, 88.85, 87.145, 86.42, 80.67, and 72.32% for NEC SX4, Fujitsu
VPP300, Fujitsu VX4, IBM SP, Hitachi SR2201, and Cray T94 machines, respectively. When more CPUs were
used and thus more messages passing between CPUs were involved, we can still achieve parallelization ratio at
67.88% for 15 CPUs in VPP300, 79.51% for 40 CPUs in SR2201, and 41.94% for 40 CPUs in SP machines. When
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Table 1
Specifications of the JAERI computers in which the parallel code is tested

Machine # of PEs Peak CPU speed/PE Memory size/PE Data transferring speed

Cray T94 4 1.8 GFLOPS 1 GB/4 128 GB/s

Fujitsu VPP 300 16 2.2 GFLOPS 512 MB 570 MB/s

Hitachi SR 2201 64 0.3 GFLOPS 256 MB 0.3 GB/s

IBM SP2 48 266 MFLOPS 128 MB 40 MB/s

NEC SX-4 6 2 GFLOPS 512 MB 40 MB/s

Fig. 1. Cartoons showing the algorithm adopted in order to achieve parallelization. The upper panel shows the exact ILU method, which has a
poor parallel performance because of the time spent in message passing and the long idle time spent when the CPUs wait for one another. The
lower panels shows localized ILU method, which achieves good parallel performance.

more than 40 CPUs are used there are not enough number of grids in thez-direction and accordingly each CPU is
given almost the same amount of grid points as in the use of 40 CPUs.

In the previous test we did not adopt large numbers of grids because some of these machines (particularly T94
and SX4) do not have enough memory spaces if the code were run with more grids. A large number of grids in
thez-direction will improve the parallel ratio because the ratio of the overlapped layer between CPUs to the entire
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Fig. 2. Performance of the induction equation solver in six different supercomputers (Fujitsu VPP300, IBM SP, Hitachi SR2201, NEC SX4,
Cray T94, and Fujitsu VX4). The test adopts 42×42×202 grid points and runs 50 time steps. The ordinate is the number of CPUs to carry out
the computation. The abscissa is the measure of the overall speed, which is defined by the total number of grids times the number of time steps
divided by the time (in second) needed to complete the run. The inset zooms out the area where numbers of CPUs are less than 4.

Fig. 3. Parallel performance of the induction equation solver, which is from the same tests as in the previous figure but drawn in the normalized
scale. Here ‘normalized’ means the performance (speed) of a computer is compared with that when a single CPU of the same machine
would have been used. The line denoted by ‘unity’ is for perfect(100%) parallelization. A curve that is closer to this unity line means better
parallelization.
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computation area becomes smaller, and the saturation in Fig. 3 would disappear. This point is justified when we
tried to increase the grid numbers to 161× 161× 513, and run the code in VPP300, SP, and SR2201 machines.
We would like to point out that parallelization increases not only the speed of computation but also the available
memory, and hence it allows us to carry out the computation with such a large number of grid points.

5. Testing of the code

In the following tests, we solve Eq. (11) numerically using the parallel code in Cartesian coordinates and
assuming a periodic boundary condition at four sides (±x,±y). In our code the conductivityσ and the boundary
conditions can be given as any function of space and time. At present, however, we choose only simple cases for
which the analytical solutions are known. We assumeA = 0 at the bottom (z = −zmax) boundary. Atz = 0 we
assume a sinusoidal function of time,Ax(z = 0) = sinωt , andAy = Az = 0. This condition corresponds to an
application of an electric fieldEx =−ω cos(ωt)/c on the surface of the Earth. A one-dimensional distribution of
σ is assumed except in Test 4 in which we examine the 3D dependence ofσ .

5.1. Test 1: Skin depth

In the normalized unit, the skin depthλ in Eq. (10) becomes

λ=
√
T

πσ
. (30)

We assume a uniform conductivity and apply a sinusoidal electric fieldEx with period of 10 000 s at the surface to
check if the EM filed can penetrate up to the theoretically calculated skin depth. Fig. 4 shows the induced magnetic
field By for the cases ofσ = 1.25σ0, 12.5σ0, and 125σ0, which corresponds to realistic values of 0.01, 0.1 and
1 S/m, respectively. The theoretical skin depths for these three cases are 50.5, 16.0 and 5.1 in normalized scaleL

(or 505, 160, and 51 km in the realistic scale), respectively. We can see that the induced magnetic field at a depth
deeper than the skin depth does not keep the sinusoidal dependence on time and the amplitude becomes very small.
Fig. 5 shows more clearly that the amplitude of magnetic fieldBy decays as a function of depth. This figure is a
snapshot att = 7000 s. From this figure the skin depth is determined by the depth at which the field is 1/e of the
value at the surface, i.e. the ordinates of the cross points of theB(z)/B(0) = 1/e line and the three curves. The
skin depths obtained in this simulation agree with theoretical values.

5.2. Test 2: Two layers

In this test we assumed that a sinusoidal electric field with a period of 1000 s is applied on the surface, and
that there are two layers of different conductivities. The first layer, which corresponds to crust, has conductivity
σ = 0.125σ0 (10−3 S/m), and is 50 km (z from 0 to 5) thick. The value of conductivity is based on Schultz et al.
[15]. The bottom layer extends to the lower boundary at 800 km and assumed to be with uniform conductivity
of σ = 0.125σ0 (so in fact there is only one layer),σ = 1.25σ0, σ = 12.5σ0, andσ = 125σ0, respectively. Fig. 6
shows the results of these tests. The electric field is plotted in solid line and the value ofEx is rescaled 10 times
larger for plotting so that it can be shown in the same figure as theBy . From this figure we can see that the induced
magnetic fieldBy lags the electric field in phase fromπ/4 (one layer) toπ/2 (large conductivity in the bottom
layer). This agrees with the theory, too.

5.3. Test 3: Four layers

In this test we assume that there are four layers of different conductivity in the vertical direction. The boundaries
of these four layers were chosen at the discontinuity depths of seismicP wave speed (see, e.g., Tajima et al. [18]),
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Fig. 4. Induced magnetic field for different values of conductivity, in (a)σ = 1.25σ0 (0.01 S/m), (b)σ = 12.5σ0 (0.1 S/m), and (c)σ = 125σ0
(1 S/m). A sinusoidal electric fieldEx of period 10 000 s is imposed on the top surface (z=0), and the figures shows theBy at z = −1L
(−10 km),z=−15L (−150 km),z=−45L (−450 km), andz=−75L (−750 km), respectively.
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Fig. 5. The normalized magnetic field as a function of the depth (z) from the surface. The values were taken att = 7000 s in the previous figure,
when the magnetic field is at its maximum. Thez values at the cross points of theB(z)/B(0)= 1/e line and the three curves correspond to the
skin depth, which agree with the theoretical calculation.

Fig. 6. The induced magnetic field in the case when there are two layers of different conductivities. A sinusoidal electric field with a period of
1000 s is applied on the surface, which is plotted in black solid line and is 10 times larger than its actual value. The first layer has conductivity
σ = 0.125σ0 (10−3 S/m), and is 50 km thick. The bottom layer has conductivity ofσ = 0.125σ0 (so in fact there is only one layer),σ = 1.25σ0,
σ = 12.5σ0, andσ = 125σ0, respectively. Note the differences in their amplitudes and the phase shifts with respect to the electric field.
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Fig. 7. The induced magnetic field in the case when there are four layers of different conductivities. A sinusoidal electric field with period of
10 000 s is applied on the surface, which is plotted in black solid line and is 10 times larger than its actual value. Three cases are different in the
values and depths of the conductivity in the third layer. See the text for details of these three cases.

which are at about 50, 410, and 660 km. We assumeA= 0 at 800 km. We apply a sinusoidal electric field with a
period of 10 000 s on the surface and test three cases:

(a) σ = 0.125 fromz = 0 to 5,σ = 1.25 from z = 6 to 40,σ = 12.5 from z = 41 to 66, andσ = 125 from
z= 66 to 80;

(b) the same as in (a) except that in the third layer (fromz= 41 to 66) the conductivityσ = 125;
(c) the third layer is located at a shallower position, that is,σ = 0.125 fromz= 0 to 5,σ = 1.25 fromz= 6 to

20,σ = 12.5 fromz= 21 to 66, andσ = 125 fromz= 66 to 80.
Fig. 7 shows the results of these three cases, in which one can tell the difference of the third layer conductivity by
identifying the ratio of the surface magnetic field to the electric field and the phase shift.

5.4. Test 4: 3D distribution of conductivity

In the above tests we examined conductivity only a function ofz. Our present code has, in fact, capabilities to
compute the 3D structure. In this test we assume that there are two layers: the first layer is 50 km thick (z is from
0 to 5) and has a conductivityσ = 0.125. The second layer extends to 800 km and has the space dependency as:

σ(x, y)= 1.25
[
1+ 0.2 sin(2πx/Lx)sin(2πy/Ly)

]
, (31)

whereLx = Ly = 100 (1000 km). On the surface we apply anEx which oscillates with a period of 1000 s. If the
conductivity were uniform in thex andy directions, as in the previous cases, the induce magnetic field would have
only they component which comes from the term∂Ax/∂z. In this test, however, we have an additional non-zero
component,Bz, and it is proportional to cos(kyy) which comes from∂Ax/∂y. Fig. 8 shows the magnitude of the
induced magnetic field in the vertical direction (Bz) and itsx, y dependencies.
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Fig. 8. The induced magnetic field in the vertical direction (Bz), in the case when a sinusoidalEx of period 1000 s is applied on the
surface, the upper layer has a conductivityσ = 0.125σ0 and depth 50 km, and the conductivity in the second layer is a function ofx and
y: σ(x, y)= 1.25σ0[1+ 0.2sin(2πx/Lx)sin(2πy/Ly)]. The snap shot is plotted att = 350 s.

5.5. Test 5: Electric pulse

Because our code solves the induction equation in the time domain instead of in the spectral domain, we do not
need to restrict ourselves in the sinusoidal time dependence. Therefore, the external field can be assumed to be any
function of time. In this test we assume that the vector potential on the top boundary (surface of the Earth) is

Ax(z= 0)=A0 exp

[(
t − t0
1

)2]
, (32)

where 10, 300, and 10 are adopted forA0, t0 and1 respectively. This test is equivalent to applying a pulse-like
electric field

Ex =−2A0

12
(t − t0)exp

[(
t − t0
1

)2]
(33)
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Fig. 9. The induced magnetic field in the case when an electric pulse (shown in solid line) is applied on the surface of a uniform conducting
layer whose depth is 800 km. Four curves are for the conductivity equals to 0.125σ0, 1.25σ0, 12.5σ0, and 125σ0, respectively.

Fig. 10. The induced magnetic field in the case when an electric pulse (shown in solid line) is applied on the surface of two layer structure. The
top layer is 50 km thick and has a conductivityσ = 0.125σ0 (10−3 S/m). The bottom layer is 750 km thick, and the conductivity equals to
0.125σ0, 1.25σ0, 12.5σ0, and 125σ0, respectively.
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on the surface of the Earth. Fig. 9 shows the induced magnetic field in the case when the electric pulse
(shown in solid) is applied on top of the layer of uniform conductivity. The value of the conductivity are
0.125σ0,1.25σ0,12.5σ0, and 125σ0, respectively. Fig. 10 shows results for the case when the electric pulse is
applied to the same structures of conductivity as are described in Test 2 (see Fig. 6). In addition to the features that
we have seen in Tests 1–4 (such as the phase shift and stronger induced field for larger conductivity), in this case
we see (in Figs. 9 and 10) that after the pulse is applied the induced field decays faster if the conductivity is smaller.
This agrees with the theory since the dissipation of the induced current is larger and faster for higher resistivity
(lower conductivity).

6. Conclusion

We demonstrated a good performance of our parallel code on various supercomputers. We tested the code in
several physical conditions for which analytical solutions are known, and therefore our computational results can
be cross examined. The results show good agreements with the analytical solutions. Thus, it seems promising to
further develop this code to simulate more realistic electromagnetic interactions with the Earth’s deep interior.
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Appendix: Pseudocode of CG algorithm

The pseudocode is adapted from Barrett et al. [14].

Computer(0) = b−Ax(0) for an initial guessx(0)

for i = 1,2, . . .
solveMz(i−1) = r(i−1)

ρi−1= r(i−1)z(i−1)

if i = 1
p(1) = z(0)

else
βi−1= ρi−1/ρi−2

p(i) = z(i−1) + βi−1p
(i−1)

endif
q(i) =Ap(i)
αi = ρi−1/p

(i)q(i)

x(i) = x(i−1) + αip(i)
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r(i) = r(i−1) − αiq(i)
check convergence(|x(i) − x(i−1)|/|x(i−1)|< ε); continue if necessary
end
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