
Dino Bellugi
Postdoctoral Scholar
Perron Surface Processes Group
O’Gorman Atmospheric and Hydrological Processes Group
Department of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology
77 Massachusetts Avenue, Building 54–1025
Cambridge, Massachusetts 02139–4307
Phone: (617) 253–2578, Fax: (617) 253–2578
Email: dinob@mit.edu
http://eapsweb.mit.edu/people/dinob

SUPPLEMENTARY MATERIALS

The following pages contain supplementary information and materials related to my application
package for the for the Earth Science Tenure Track Assistant Professor in the Department of
Environmental and Ocean Sciences at the University of San Diego:

• Copy of Official Graduate Transcripts from the University of California, Berkeley

• Sample lecture/lab slides from courses taught at MIT, the University of California, Berkeley,
and at a Summer School on Water Research

• Copy of student teaching evaluations from two courses taught at the University of California,
Berkeley in 2011 and 2009

Dino Bellugi
Postdoctoral Scholar
Perron Surface Processes Group
O’Gorman Atmospheric and Hydrological Processes Group
Department of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology
77 Massachusetts Avenue, Building 54–1025
Cambridge, Massachusetts 02139–4307
Phone: (617) 253–2578, Fax: (617) 253–2578
Email: dinob@mit.edu
http://eapsweb.mit.edu/people/dinob

GRADUATE TRANSCRIPT

Dino Bellugi
Postdoctoral Scholar
Perron Surface Processes Group
O’Gorman Atmospheric and Hydrological Processes Group
Department of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology
77 Massachusetts Avenue, Building 54–1025
Cambridge, Massachusetts 02139–4307
Phone: (617) 253–2578, Fax: (617) 253–2578
Email: dinob@mit.edu
http://eapsweb.mit.edu/people/dinob

SAMPLE LECTURE SLIDES

The following pages contain sample lecture/lab slides from courses taught at the Massachusetts Institute of
Technology, the University of California, Berkeley, and from one of three shourt courses given at a Summer
School on Water Research:

• Guest lecturer, MIT, Fall 2013, EAPS 12.163 “Geomorphology”. Instructor: Prof. Taylor Perron.
Lecture on shallow landslide prediction.

• Instructor, UCB, Spring 2011, EPS209 “Matlab Applications in Earth Science”, co-developed and co-

taught with Prof. Burkhard Militzer. Lecture and lab on image segmentation, lecture and lab on
GIS, Mapping Toolbox, and WMS.

• Lecturer, 2nd International Summer School on Water Research, “Landslide modeling and Early
Warning Systems”, Summer 2013. Lecture on support Vector Machine Classification for Earth
Science applications.

Shallow landslides

Outline:

Slope stability
• Mohr-Coulomb failure
• Simple theory
• Implications for failure

Hydrological model
• Darcy’s law
• Simple model for wetness

Shalstab
• Theory
• Application

If we have time:

- Debris flows potential

- Landslide size
• 3-D stability model
• Search algorithm

[Photo: Bill Dietrich]

Shallow landslides

[Photo: Bill Dietrich]

Shallow landslides

[Photo: John Stock]

Shallow landslides

[Photo: Bill Dietrich]Near Rio de Janeiro, Brasil, January 2011, ~1500 casualties

Shallow landslides

Marin Co., CA 1998

Marin Co., CA 1998

Deep seated landslides

Laguna Beach 2005

La Jolla 2007

Risk Prediction

[Dietrich & Montgomery, 1998; Bellugi, et al., 2011; Stock & Bellugi, 2011]

Landscape
Evolution

[Tucker and Bras, 1998]

Ridge and valley topography
In the Oregon Coast Range

Where?

When?

How big?

How far?

Mass gain or loss?

Laguna Beach, California, 1998

5 Key Questions

What we know: when?

[Guzzetti, et al., 2008]

Location

What we know: how big?

Malamud, et al., 2005]

Where?

When?

How big?

How far?

Mass gain or loss?

Laguna Beach, California, 1998

5 Key Questions

Ridge and valley topography
In the Oregon Coast Range

Unchanneled valley

Shallow landslide

Deep seated landslide
Debris
flow
runout

Landslide
scar

Colluvium
accumulation

Soil
production
from bedrock

A

A

B

B

B’

B’

A’

A’

Example: processes shaping the
Oregon Coast Range

Shallow Landslides

[Dietrich]

Mohr-Coulomb Failure

' tan C   
CohesionFriction angleNormal stress

(effective)
Shear strength

Frictional forceNormal force

Gravitational force

Questions:
- When not applicable?
- How is it parameterized?

Assumptions:
- Brittle materials
- Contact area << total contact surface
- Normal force  contact area

Mohr-Coulomb Failure

Assumptions and limitations:
- Shear is the failure mechanism, occurring at peak strength
- Other mechanisms: strain-induced liquefaction
- Direction of failure doesn’t always agree with observations
- Friction and cohesion act in unison
- Strength-stress relationship often not linear

' tan C   

Mohr-Coulomb for Landslides

 tan)(uC 
Cohesion

(soil and roots)
Friction angle

(angle of repose)
Normal stress

(increases friction)
Downslope
Soil weight

Pore pressure
(reduces friction)

Valid immediately before failure

A simple implementation:
- Ignore cohesion for now
- Pore pressure  normal component of the weight of

the water present in the soil
- Compute the down-slope and slope-normal forces
- Use a typical value for phi (e.g. 30-45 degrees)

Infinite Slope Framework

- Infinite inclined plane with angle 
- Failure plane parallel to the surface
- Failure occurs at soil/bedrock boundary
- Flow parallel to the failure boundary

Key assumptions:

Infinite Slope

 tan)(uC 

Add force decomposition (sin and cos):

- Downslope weight =

- Normal stress =

- Pore pressure =

Where s and w are soil and water bulk density.

We get:

2 2cos sin (cos cos) tans s wgz gz gh        

cos sins gz  
2coss gz 
2coswgh 

Cohesion
(soil and roots)

Friction angle
(angle of repose)

Normal stress
(increases friction)

Downslope
Soil weight

Pore pressure
(reduces friction)

[Dietrich et al., 1994, 1995, 2001, etc.]

tan tan (1 ())s w     

Instability Condition

Implications:

- Soil does not need to be fully saturated for failure!
- Four cases:

• “Unconditionally stable”: failure requires h/z > 1, i.e.:
• “Unconditionally unstable”: slope > than friction angle (h/z < 0)
• “Stable”: h/z < R.H.S.
• “Unstable”: h/z > R.H.S.

2 2cos sin (cos cos) tans s wgz gz gh        

tan1
tan

s

w

h

z

 
 

 
  

 

[Montgomery and Dietrich, 1994]

0 1h

z
 Note:

(when stress=strength)

tan tan (1 ())s w     

Instability Condition

- Four cases:
• “Unconditionally stable”: failure requires h/z > 1, i.e.:
• “Unconditionally unstable”: slope > than friction angle (h/z < 0)
• “Stable”: h/z < R.H.S.
• “Unstable”: h/z > R.H.S. [Montgomery and Dietrich, 1994]

Coos Bay Field Site

- Instrumented:
• Piezometers
• Rain gauges
• Weirs

- Sprinkling
experiments

- LiDAR data
- Mapped landslides

Coos Bay Field Site

- Instrumented:
• Piezometers
• Rain gauges
• Weirs

- Sprinkling
experiments

- LiDAR data
- Mapped landslides

Coos Bay Instrumentation

[Montgomery et al 2009, Ebel et al 2007]

Coos Bay Rain

November 12-20, 1996 [Montgomery et al., 2009]

Coos Bay Before and After

[Photos: Dietrich]

h/z for Slope Instability

How do we
compute h/z?

Unstable

Stable

h/z

Coos Bay field site

tan1
tan

s

w

h

z

 
 

 
  

 

[Dietrich and Montgomery, 1998]

Hydrology: Darcy’s Law

s
Q h

V K
A L


 

L

hh
AQ 21 

z
s

Q
V K

A l l

       
z sins sV K K
l


 



Velocity: If flow is uniform:

Empirically:

Assumptions:
- Laminar flow (non-turbulent, kinetic energy ignored)
- Over areas much larger than pore sizes (~ 10x)
- Constant fluid properties (temperature, density, etc.)

θ: slope angle [L/L]
ks: the hydraulic conductivity [L/T]

Velocity [L/T]:Discharge [L3/T]:

http://biosystems.okstate.edu/Darcy

cos sinsk h b 

Hydrology: Darcy’s Law

bhkqa s  sincos

sinsV k 

cos cos sinsVh k h  

Velocity of fluid:

Flux (per
unit width):

Conservation
of mass:

At steady
state:

Input Output Storage  
qa Output Storage  

0qa Output 
qa Output

sinθ: the head gradient [L/L]
ks: the saturated conductivity [L/T]
hcosθ: the (normal) saturated thickness [L]
q: effective precipitation (p-ev-d) [L/T]
a: horizontal surface area [L2] [Dietrich]

cos sinsk h b 

Steady State Subsurface Flow

bhkqa s  sincosSteady state
subsurface flow:

At saturation (h=z):

Note that:

Let:

Approximation:

cos sinsqa k z b 
()sk f y

cossT k dy 
declines with depth
(often exponentially)

cossT k z 
sinqa T b

q: effective precipitation (p-ev-d) [L/T]
sinθ: the head gradient [L/L]
ks: the saturated conductivity [L/T]
T: the transmissivity [L2/T]
zcosθ: the (normal) soil thickness [L]
hcosθ: the (normal) saturated thickness [L] [Dietrich]

cos sinsk h b 

Steady state
subsurface flow:

At saturation:

Saturation Subsurface Flow

sinqa T b

Effective
precipitation

Topographic
index

Material
properties

sin
a T

b q


q: effective precipitation (p-ev-d) [L/T]
sinθ: the head gradient [L/L]
ks: the saturated conductivity [L/T]
T: the transmissivity [L2/T]
zcosθ: the (normal) soil thickness [L]
hcosθ: the (normal) saturated thickness [L] [Dietrich]

Topographic Index

Effective
precipitation

Topographic
index

Material
properties

sin
a T

b q


[Dietrich and Montgomery, 1998]

Drainage Area

Effective
precipitation

Topographic
index

Material
properties

sin
a T

b q


[Dietrich and Montgomery, 1998]

At saturation:

In general:

Simple model for relative saturation

cos sinsk h b 

Effective
precipitation

Topographic
index

Material
properties

sin
a T

b q


a/b: drainage area per cell width [L]
h/z: relative saturation [L/L]
q: effective precipitation (p-ev-d) [L/T]
sinθ: the head gradient [L/L]
T: the transmissivity [L2/T]

Relative saturation
(“wetness”) sin

h q a

z T b 


[Montgomery and Dietrich, 1994]

sin
a T h

b q z


Relative Saturation

sin
h q a

z T b 


log (q/T)
(1/m)

q/T (1/m) q (m/day)
(for T=65m2/day)

-3.4 0.00040 0.026
-3.1 0.00079 0.05135
-2.8 0.00158 0.1027
-2.5 0.00316 0.2054
-2.2 0.00633 0.41145
-1.9 0.01266 0.818

Steady state precipitation
(generally not reached!)

Slope stability model:

Hydrological model:

Couple the models:

Shalstab:

Shalstab

tan1
tan

s

w

h

z

 
 

 
  

 

sin
h q a

z T b 


tan1
sin tan

s

w

q a

T b

 
  

 
  

 

tan1 sin
tan

s

w

q b

T a

  
 

 
  

 

Instability
condition

Relative
saturation

[Montgomery and Dietrich, 1994]

Shalstab: a compact simple model

Transmissivity

tan1 sin
tan

s

w

q b

T a

  
 

 
  

 

Topographic
slope

Head
gradient

Drainage
area

Friction
angle

Effective
Precipitation
(steady state)

Soil
density

: Increasing these values increases stability

: Increasing these values increases instability

Questions:
- What is the role of slope?
- What can Shalstab tell us?

For documentation and software go to:
http://calm.geo.berkeley.edu/~geomorph

[Montgomery and Dietrich, 1994]

Controls on instability: Slope vs. Area

 Below 30 degrees area controls instability
 Slope becomes important above 30 degrees

[Dietrich and Montgomery, 1998]

Relative instability potential

tan1 sin
tan

s

w

q b

T a

  
 

 
  

 

 Drainage area dominates, until the slopes become steep!

a/b
(m)

log(q/T)
(1/m)

[Dietrich and Montgomery, 1998]

Controls on instability: Slope vs. Area

Shalstab: Performance

log(q/T)
(1/m)

[Dietrich and Montgomery, 1998]

Parameters: • s/w = 1.6
•  = 45°

 No soil depth  No cohesion  Over prediction!

Controls on instability: Resolution

[Dietrich et al., 2001]

High resolution vs.
low resolution data:

 Number of captured landslides  Percent of landscape affected

Where?

How big?

How far?

When?

Mass gain or loss?

Laguna Beach, California, 1998

5 Key Questions

Infinite Slope Framework

- Infinite inclined plane with angle 
- Failure plane parallel to the surface
- Failure occurs at soil/bedrock boundary
- Flow parallel to the failure boundary

Key assumptions:

Infinite Slope Framework

- Normal forces from upslope and downslope boundaries
- Sidewall friction
- Cohesion on the lateral boundaries

Neglects:

Landslide Size

[Schmidt, et al., 2001]

Lateral reinforcement matters

FS 
Fsb Fsl  Fp F

a

Fd

• Based on Wedge Method
(Chen, 1981)

•Consider forces on all 5 boundaries
• Include cohesion & friction
 Fsb =basal shear resistance
 Fsl = lateral shear resistance
 Fp = passive wedge resistance
 Fa = active wedge driving force
 Fd = block driving force

3-D Slope stability model

l = block length
w = block width
z = failure plane depth
θ = failure plane slope[Milledge et al., in prep.; Bellugi 2012]

3-D Slope stability model

Spatial Data:
• Elevation
• Soil depth
• Water table height
• Root strength field

Material Properties:
• Friction angle
• Bulk density

Assumptions:
Rigid block
Failure plane location

[Milledge et al., in prep.; Bellugi 2012]

3-D Slope stability model

• Grid application based on Hovland’s method of columns
• i.e. ratio of the sum of driving and resisting forces

• But include new treatment of boundaries
[Hovland 1977]

A discrete landscape model

• Discretize landscape into grid of cells
• Associate each cell with a node in a graph

A discrete landscape model

A discrete landscape model

• Discretize landscape into grid of cells
• Associate each cell with a node in a graph
• Nodes: landscape cells annotated by driving forces
• Edges: resistive forces between neighboring grid cells

Storms

Composite (6 24-hour storms): 1996 storm 10-minute time series:

November 12-20, 1996

Results

Composite (6 24-hour storms): 1996 storm 10-minute time series:

Still much over prediction!

Results

Landslide size: Location (topographic index):

Captures observed distributions!

Homework

Final Project

Think about it soon:
 It will help us fine-tune the class
 We can point you towards useful resources
 You will run out of time

Individual:
 Exception: collaboration (2 people max) for a harder problem
 Proposal (< 1 page) stating objectives and methods by March 9th

 10 minute presentation (plus questions) on April 13th

 Note: a little more expected from a group effort

Current proposals:
 Quantify constituents in concrete from electron microscopy images
 Extract vegetation characteristics from satellite imagery
 Model hillslope hydrology

Review

 Transforming images to binary (thresholding, indexing, filtering)
 Regions from binary images (bwconncomp())
 Measuring regions (regionprops())

Today: Image Segmentation (part 1)

Algae Patches:
 Selecting a Region of Interest (ROI) in an image
 Alternative metric for measuring similarity
 Pixel-based segmentation

Victoria Crater (Mars):
 Images as watersheds
 The Watershed Transform
 Median filtering

San Pablo Reservoir:
 “Texture” Filters
 Morphological operations

Algae Identification and rgb2ind()

 Using rgb2ind() with 4 colors (recolored for more contrast)

 Our task: we only want to label coherent regions that are
similar to a few user-defined algae types and discard the rest.

Algae Identification and rgb2ind()

 Note: rgb2ind() assigns every pixel to one of n colors
 Our task: we only want to label coherent regions that are

similar to a few user-defined algae types and discard the rest.

 How do we define “similar”?
 How do we select a “color representation” for each type?

Selecting a Region of Interest (ROI)

 The function roipoly() allows for manual region selection
 It returns a mask containing 1 inside the region and 0 outside
 How do we describe this region?
 What is representative of this region?

Picking a Representative Color

 Simplest: pick the mean color
 Then similarity implies being

within a certain (Euclidean)
distance in RGB space
 The pixels that are within a

sphere centered at the mean
color are similar
 Is this too simplified?

B

R

G

Picking a Representative Color

 Compute the mean and the
covariance matrix
 Then similarity implies being

within a weighted distance
 The pixels that are within an

ellipsoid centered at the mean
color are similar
 Known as the Mahalanobis

distance
 In Matlab:

functions mahal(), cov()

1135.9 1072.1 380.2
1072.1 1031.7 364.7
380.2 364.7 335.6

 
 
 
 
 



Covariance MatrixMean

B

R

G

Smoothing

 Some of the variance is noise, and we’d like coherent regions
 We can remove it by averaging neighboring pixels:
myFilter = fspecial(‘average’, 10);
smoothImg = imfilter(myImage, myFilter);

Simple Supervised Learning Algorithm

 Read the image

 Smooth the
image

 Pick the
representative
color patches

 Learn mean and
covariance for
each patch

Simple Supervised Learning Algorithm

 Compute the mininum Mahalanobis
distance of all pixels to any mean color

 Assign each pixel to
index of closest color

 Function of two or three parameters:

 Label each pixel that is too distant as
belonging to no class (index = 0)

 Number of colors  Threshold of distance  Filter size (optional)

Result

A reasonable and simple start, but still very crude
How could we improve the procedure?

Regions from “continuous” images

So far:
 Pixel-based

segmentation
methods

Other approaches:
 Global:

“Topography”
“Morphology”

 Local:
Edge
detection
Topology

Cardiac MRI image Gradient image

Topography Edges

Victoria Crater (Mars)

Dunes in Victoria Crater

Goal:
Measure the geometry of
depressions in the dunes

Watersheds

“That area of land, a bounded
hydrologic system, within which all
living things are inextricably linked
by their common water course and
where, as humans settled, simple
logic demanded that they become
part of a community."

Director of the USGS
(1881-1894)

John Wesley Powell

Watershed Transformation to Group
Pixels into Regions

•Interpret grey level as elevation
•Decide which pixels are connected
•Drop water on every pixel and see
which local minimum it drains to
•Identify regions that drain to the
same minimum, identify borders
also

Images and Watershed Transformation

Intensity as elevation:

Watershed Transform

Marker-Controlled Watershed Transform

Dunes in Victoria Crater

% clear and close all
clear all;
close all

% read image
I =
imread('victoria_crater4.png');
imshow(I);
title('original image');

Grayscale

% grayscale image
G = rgb2gray(I);
figure; imshow(G);
title('grayscale');

Watershed

% now the watershed
L = watershed(G);
G2 = G;
G2(L == 0) = 255;
figure; imshow(G2);
title('result');
impixelinfo

What happened?

Smoothed (Mean)

% smooth a little
fSize = 24;
h = ones(fSize,fSize) / fSize^2;
Sm = imfilter(G, h);
figure; imshow(Sm);
title('mean smoothing');

Watershed on Smoothed Image

% now the watershed
L = watershed(Sm);
L0 = (L==0);
G2 = Sm;
G2(L0) = 255;
figure; imshow(G2);
title('result');

Overlay Watershed Boundaries and
Original Color Image

% color image
I1=I(:,:,1); I1(L0)=0; % red
I2=I(:,:,2); I2(L0)=0; % green
I3=I(:,:,3); I3(L0)=0; % blue
II=cat(3, I1, I2, I3); % rgb
figure; imshow(II);
title('color image with
watershed boundaries');

Detail View

Good enough?

Grayscale Image vs. Smoothed (Mean)

A Different Way to Smooth: Median Filter

% smooth a little (median)
fSize = 24;
Sm = medfilt2(G, [fSize fSize]);
figure; imshow(Sm);
title('median smoothing');

• Removes “salt and pepper”
noise

• Preserves edges

Smoothed Image: Mean vs. Median

Watershed and Median Smoothing

% now the watershed
L = watershed(Sm);
L0 = (L==0);
G2 = Sm;
G2(L0) = 255;
figure; imshow(G2);
title('result');

% color image
I1=I(:,:,1); I1(L0)=0; % red
I2=I(:,:,2); I2(L0)=0; % green
I3=I(:,:,3); I3(L0)=0; % blue
II=cat(3, I1, I2, I3); % rgb
figure; imshow(II);
title('color image with
watershed boundaries');

Comments, ideas?

Overlay Watershed Boundaries and
Original Color Image

Guiding the Watershed Transform

• What do the depressions have in
common?

• Can we inform the watershed
transform?

Regional Extended Minima

% get regional minima "deeper"
% than a specified threshold
thresh = 3;
Imin = imextendedmin(Sm,thresh);
figure; imshow(Imin);
title('extended minima');

Note: similar function for maxima:
imextendedmax()

Imposed Extended Minima

% now we have internal markers,
% impose them on original image:
G2 = imimposemin(G, Imin);
figure; imshow(G2);
title('markers');

• Impose regional minima on the
original grayscale image

• The function imimposemin(I, BW)
modifies an intensity image I so that
it only has the regional minima
contained in BW

Marker-Controlled Watershed

% now the watershed
L2 = watershed(G2);
L0 = (L2==0);
G3 = Sm;
G3(L0) = 255;
figure; imshow(G3./255);
title('result');

% color image
I1=I(:,:,1); I1(L0)=0; % red
I2=I(:,:,2); I2(L0)=0; % green
I3=I(:,:,3); I3(L0)=0; % blue
II=cat(3, I1, I2, I3); % rgb
figure; imshow(II);
title('color image with
watershed boundaries');

Better!

Overlay Watershed Boundaries and
Original Color Image

Detail View

Better!

Watershed Function also Outputs Labels

% label and show
map = lines(max(L2(:)));
G4 = label2rgb(L2, map);
figure; imshow(G4);
title('result labels');

Output of Watershed function:

• Matrix the size of the image
• Zero on the boundaries
• Region number inside the regions

Applications of Watershed Transform

 Directly on an image
 On the gradient of the image
 On the Distance Transform

In Matlab: bwdist() Also called: the Euclidean Distance Map (EDM)

From: “The Image Processing Handbook”

San Pablo Reservoir

Identified lake area: 190146 pixels (last lecture)

Review: Entropy Filter

fSize = 9; nHood = true(fSize);
E = entropyfilt(G,nhood);
figure; imshow(E);

New: Range Filter

fSize = 9; nHood = true(fSize);
E = rangefilt(G,nhood);
figure; imshow(E);

New: Standard Deviation Filter

fSize = 9; nHood = true(fSize);
E = stdfilt(G,nhood);
figure; imshow(E);

New: Gradients

[Gx Gy] = gradient(double(G));
Gr = sqrt(Gx.^2 + Gy.^2);
figure; imshow(Gr); Also: diff(), del2()

Morphological operations:
Erosion, Dilation, Opening Closing

Example of Erosion

Note: Matlab likes to operate on foreground objects!

 Does B “fit” in the set X?
 Retain all points (i,j) in X such that when B is centered at (i,j),

B is contained in X
 Mathematically:

 In Matlab: imerode(Img,Elt)

Image Erosion

Structuring
Element

 Does B “touch” the set X?
 Add to X all points (i,j) in B such that when B is centered at

(i,j), B is overlapping with X
 Mathematically:

 In Matlab: imdilate(Img,Elt)

Image Dilation

Structuring
Element

Image Opening

 Does B “fit” in the set X?
 Like with erosion, retain all points (i,j) in X such that when B is

centered at (i,j), B is contained in X
 When the previous is true, also keep all of B
 Mathematically:

 In Matlab: imopen(Img,Elt)

Structuring
Element

 Does B “fit” in the background of the set X?
 When the previous is true, all of B belongs to the background
 The complement of the new background define X
 Mathematically:

 In Matlab: imclose(Img,Elt)

Image Closing

Structuring
Element

Structuring Elements

Structuring Elements
'arbitrary' 'pair'
'diamond' 'periodicline'
'disk' 'rectangle'
'line' 'square'
'octagon'

Many shapes:

Next time: Segmentation from Edges

The Covariance Matrix (Review)

 Consider a 6-sided fair die where outcomes all have probability 1/6
 The mean (the expected value) is:

 The variance is the squared deviation from the mean:

 The covariance matrix is a generalization of the variance:

 i.e., the matrix whose (i,j) entry is:

 For the die this is an identical definition to the variance:

 But for the color pixels it is a 3x3 matrix

6 6

1 1

1() () (1 2 3 4 5 6) / 6 3.5
6i i i

i i

E X XP X x p x
 

            

     
6 6

2 2 22

1 1

1() 3.5 2.9
6i i

i i

Var X E X p x i  
 

            

     ()
T

Cov X E X E X X E X     
 

   (,)
T

ij i j i i j jCov x x E x x        

   2.5 1.5 0.5 0.5 1.5 2.5 2.5 1.5 0.5 0.5 1.5 2.5 / 6 2.9T      

In Matlab:
function cov()

Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi

Computer Lab Assignment 3

Image Segmentation 1

This lab has two parts. First we will apply the watershed transform to identify dune regions on
Mars. This is an application of the region-based image segmentation methods that were
discussed in the lecture. In the second part, we will learn how to use the pixel-based image
segmentation and the Mahalanobis distance measure. We will apply this approach to aerial
imagery of Marin County, CA and measure the extent of forestation.

Part 1 – Dunes in Craters on Mars
Here we will apply the watershed transformation to identify dune regions on Mars. Different
filtering techniques will be discussed to obtain good results.

1) Download the file craterdunes2.jpg from bSpace. Then start
writing a new Matlab script that displays it.
 clf ; clear ; close all
 I = imread('craterdunes2.jpg');
 G = rgb2gray(I);
 figure; imshow(G);title('grey scale image'); impixelinfo

Apply the watershed transformation
 L = watershed(G, 8);
 figure, imshow(L); title('watershed');

and superimpose the region boundaries on the original image
 I1=I(:,:,1); I1(L==0)=255;
 I2=I(:,:,2); I2(L==0)=0;
 I3=I(:,:,3); I3(L==0)=0;
 II=I; II(:,:,1)=I1; II(:,:,2)=I2; II(:,:,3)=I3;
 imshow(II); title('color image with watershed boundaries');

You obtain an over-segmented image that we shall now improve upon.

Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi

2) Smooth the image before the watershed transform by applying an averaging filter. Insert the
following lines into your code:
 n=3; h = ones(n,n) / (n*n);
 G = imfilter(G,h);
 figure, imshow(G); title('filtered image (averaged)');

Increase the filter size n until you obtain the best result. You should now have obtained an image
with region of reasonable size but with boundaries shifted towards the setting sun.

3) Rather than applying an averaging, or mean, filter, try a median filter:
 G2 = double(G);
 G3 = medfilt2(G2, [n n]) ./ 255;
 figure; imshow(G3);title('median smoothing');impixelinfo

Are the results any better? Decide for yourself and keep using your preferred filtering technique
with the optimal filter size for part 4.

4) Now we want to apply the marker controlled watershed transform where we first identify the
shadiest regions in the filtered image that are darker then their surrounding by a certain
threshold. Then we use the Matlab command imimposemin to manipulate the original image in
such a way that it only has minima where GMin has been set to zero by the imextendedmin
command.
 % get regional minima "deeper" than a threshold
 min_thresh = 3/255;
 GMin = imextendedmin(G3, min_thresh);
 figure; imshow(GMin);title('extended minima');

 % now we have “markers”, impose them on original image
 G4 = imimposemin(G, GMin);
 figure; imshow(G4);
 title('original grey scale with minima imposed (markers for watershed)');impixelinfo

 L = watershed(G4, 8);

Try this method for different threshold values. You should see how the minima identified by
imextendedmin grow or shrink. Characterize how this affects the resulting dune region.
Determine the best threshold value and save your final code. Well done!!

Part 2 – Telling the Forest from the Trees

For this part, we will use images from the National Agriculture Imagery Program (NAIP).
NAIP acquires aerial imagery during the agricultural growing seasons in the continental U.S.A.
and makes digital ortho-photography available to the public through their web site:
http://www.fsa.usda.gov/FSA/apfoapp?area=home&subject=prog&topic=landing
For California, these and other geo-spatial data are available at http://www.atlas.ca.gov.
These images have a spatial resolution of 1m, meaning that each pixel corresponds to 1 m2.
For use in our lab, these images were converted to PNG format, hopefully preserving this
resolution.

http://www.fsa.usda.gov/FSA/apfoapp?area=home&subject=prog&topic=landing
http://www.atlas.ca.gov/

Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi

1) Download the two images available on bSpace, named naip1.png and naip2.png:

Our goal will be to select a sample forest patch and automatically classify all the forest pixels in
these images.

Sample code will be provided for you to cut and paste into your Matlab session.

As the size of these images is rather large, some operations such as smoothing might be slow.
For this reason, we recommend you save the code samples in separate files so that you don’t
have to repeat unnecessary operations and only execute those that you will be modifying. Also,
you will need most of this code for your next homework assignment.

2) Read one of the two images into Matlab and display it:

% set image name
imName = 'naip1.png';

% read and check image, get size
rgbImg = imread(imName);
[nRows nCols nLyrs] = size(rgbImg);
if (nLyrs ~= 3)
error('Image is not RGB!');
end
nPix = nRows * nCols;

% display original image
figure;
imshow(rgbImg);
title(['RGB image ' imName]);

Note how in the last line the string ‘RGB image’ is concatenated with the variable “imName”.

If you wish you could save this section as readNaip.m

Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi

3) Smooth the image you selected and display it:

% set filter size
filtSize = 25;

% smooth image
fprintf('Smoothing image ...\n');
myFilt = ones(filtSize) ./ filtSize^2;
smoothImg = imfilter(rgbImg, myFilt);

% display smoothed image
figure;
imshow(smoothImg);
title('smoothed RGB image');

Keep in mind that results may be dependent on the filter size chosen here, you may decide to
vary the filter size after you see the results. Again, you may wish to save this code in a file such
as smoothNaip.m

Region selection is performed with the function roipoly(). This function enables the user to click
around a region and create a polygon. To complete the function, right click on the polygon and
select the option “Create Mask”. The process should look something like this:

Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi

4) Select a representative sample forest patch and display it:

% print some instructions with the function fprintf()
fprintf('Use mouse to delineate region for color sample\n');
fprintf('Click to place a vertex\n');
fprintf('Right-click and select Create Mask to close polygon\n');

% open a new figure for the region selection and call roipoly()
figure;
title('Select region');
roiMask = roipoly(rgbImg);

% display the mask
figure;
imshow(roiMask);
title('Mask');

% use the mask to extract the color region
fprintf('Masking region ...\n');
red = immultiply(roiMask, smoothImg(:,:,1));
green = immultiply(roiMask, smoothImg(:,:,2));
blue = immultiply(roiMask, smoothImg(:,:,3));
roiImg = cat(3, red, green, blue);

% display the color region
figure;
imshow(roiImg);
title('Color sample');

You may want to save this code in a separate file (such as selectNaip.m) in order to easily repeat
the selection process roipoly() produces a black and white mask. The color region is extracted
from the smoothed image using this mask: multiplying the image’s individual color planes by
this mask preserves only the pixels which correspond to the value of 1 in the mask. The function
cat() can then concatenate the resulting color planes back together into a new image. The result
should look something like this:

To compute statistics and distances, we need to reshape both the image and the color patch into
vectors. This is done by using the function reshape(), you are encouraged to look it up in the
help. Also note that these vectors are converted from integers to doubles.

Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi

5) Compute mean patch color and standard deviation, and print their values:

% reshape image into vector of size nPix by 3
imgPix = double(reshape(smoothImg, nPix, 3));

% reshape roi region into vector of size nPix by 3
roiPix = double(reshape(roiImg, nPix, 3));

% find the nonzero entries in the mask
roiIdx = find(roiMask);

% keep only the RGB pixels corresponding to the mask
roiPix = roiPix(roiIdx, 1:3);

% get statistics
fprintf('Computing region statistics ...\n');

% mean color (could be used for drawing the forest in a "truer" color)
myMean = mean(roiPix)
% standard deviation (use the max value for R, G, or B)
myStd = max(std(roiPix))

Don’t forget to save your code. Note that printing the mean and std can be done by simply
omitting the semi-colon at the end of the line. Also note the above code only stores the maximum
standard deviation (from red, green, or blue). Finally, notice the use of the function find() which
returns the indices of the nonzero values. These indices are then used to select the masked color
information. Look at the help for this function.

The Mahalanobis distance (see lecture notes) is computed using the function mahal(). This
function computes the distance for each row of a (large) vector to a smaller sample, by
considering the covariance of the smaller sample. The resulting distance needs to then be
reshaped into the size of the image.

6) Compute Mahalanobis distance from all image pixels to region pixels:

% compute distance vector
mahDist = mahal(imgPix, roiPix);

% reshape distance and store in matrix
myDist = reshape(mahDist, nRows, nCols);

% display the distance
figure;
imagesc(myDist);
title('Mahalanobis distance from region color');
colorbar;
impixelinfo

What are the sizes of imgPix, roiPix, and mahDist? What is the size of myDist after the
reshaping?

Enlarge the figure with the Mahalanobis distance and hover over it with your cursor (use the
command impixelinfo if you didn’t include it in the code). What value ranges do you see? Can
you use them to discriminate forest from non-forest?

Segmentation is performed by assigning each pixel to either forest or not forest, based on this
distance. Rather than picking a completely arbitrary value, we will use the region’s standard

Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi

deviation value as a threshold of distance. If the distance is less than one or two standard
deviations (you get to play with these values), then the pixel is classified as forest.

7) Segment the image based on the Mahalanobis distance and display the result:
% define how many standard deviations are allowed
kThresh = 1;
% myDist contains the distances of each pixel to mean color
% if minimum is more than k*std label it 0, else label 1
fprintf('Thresholding pixels with distance from region color ...\n');
mySegm = false(nRows, nCols);
mySegm(myDist <= kThresh * myStd) = true;

% get the red, green and blue parts of the image
Ir = rgbImg(:,:,1);
Ig = rgbImg(:,:,2);
Ib = rgbImg(:,:,3);

% label the segmented pixels in red
Ir(mySegm==1) = 255;
Ib(mySegm==1) = 0;
Ig(mySegm==1) = 0;

% put the red, green, and blue parts back together
I = cat(3,Ir,Ig,Ib);

% display the labeled image
figure; imshow(I);
title('Classified forest on original image');

Look at the line mySegm(myDist <= kThresh * myStd) = true; What does it do? How many
operations is it performing? Can you think of a way to do the same using loops? Replacing loops
in this fashion is called “code vectorization”.

Your result should look something like this:

Compare the original image (the very first figure) with your result. Are you identifying most of
the forested areas? Are you getting too much or too little forest? Which parameters affect this
outcome?

Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi

8) As the region you selected is rather small compared to the entire image, one standard
deviation might not be sufficient to accommodate the variation in the forest colors. In your
homework you will learn how to sample from several regions, but for now we can simply relax
the distance threshold. Increase the standard deviation threshold (kThresh) to another value
(perhaps to 1.5 or 2) and re-run the code from section 7. Again, compare with the original image.
Are you getting too much or too little forest? How does the smoothing affect this result?

In this exercise we restricted classification to separating forest from not-forest. In general, more
land cover classes may be desirable. One way to visualize such results may be with the use of a
normalized histogram.

9) Build a normalized histogram of the forest and non-forest pixel counts:
% count the foreground pixels
myCount = sum(mySegm(:));

% make a normalized distribution
myDistr = [myCount nPix-myCount] ./ nPix;

% display histogram
figure;
bar(myDistr);
axis([0.5 2.5 0 1]);
set(gca, 'XTickLabel', {'Forest', 'Other'});
title('Forest percentage');

Note that because mySegm contained only 0 and 1 values, it was sufficient to sum the mySegm
matrix to count the forest pixels. This will not be true in general, you will have to select the
specific class values and count how many times they occur. You have done a similar operation in
previous exercises using loops. This operation can also be done in a “vectorized fashion”. For
example, consider these two statements: class2 = (mySegm == 2); class2count = sum(class2(:));
What do they do? Also note in the above code how one can set axis labels on a figure by using
the functions set() and gca() (get current axis).

Perhaps the forest was not our only interest, and we wished to also measure how much plowed
land we see in the image. We can select a different patch and run the code again without any
changes. Note that you only have to start from step 4), no need to run from the beginning unless
you wish to use a different smoothing filter.

Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi

10) Sample a patch from the image that looks like it has been plowed or farmed (like in the
example below) and re-run the code starting from step 4.

How does your code perform in identifying the farmed pixels? Did you have to change the
standard deviation threshold or the smoothing filter size? How different are the distance values
from the ones you examined during the forest exercise? Your result should look something like
this (except perhaps better!):

Today: GIS and the Mapping Toolbox

Geographic Information Systems
• Data abstraction and data types
• Datums and projections
• Data sources
• LiDAR data
• Web Map Service

GIS and Mapping Toolbox
• Features
• Data
• Analysis
• Pros and Cons

Course Evaluations
• Fill out forms
• Deliver to McCone

Lab Exercise
• Making a map
• Retrieving Web-based data
• Real-time weather
• Ortho-photos
• Digital Elevation Model

“Blue Marble Earth”, NASA

Geographic Information Systems

A geographic information system, as defined in the Environmental Systems
Research Institute’s (ESRI’s) Dictionary of GIS Terminology, is a collection of
computer hardware, software, and geographic data for capturing, storing,
updating, manipulating, analyzing, and displaying all forms of geographically
referenced information.

Figure: Konecny, "Geoinformation: Remote Sensing,
Photogrammetry and Geographical Information Systems"

Figure: Reddy, "Remote Sensing, and Geographical Information Systems"

Common GIS Systems

Figure: Sherman, “Desktop GIS"

Open-SourceCommercial

State of the art:

Knocking on the door:

The future (?):

GIS Data Abstraction

Figure: Fazal, “GIS Basics"

Figure: NCDDC/NOAA
Layer cake model

GIS Data Types

RasterVector

Common formats:

- ESRI Shapefiles
- CAD files
- Digital Line Graph

Common formats:

- ESRI grid
- USGS dem
- geoTIFF Figures: Fazal, “GIS Basics"

Vector Data

Entities Topology

Figures: Brimicombe, “GIS, environmental modeling and engineering"

Raster Data

Figure: Fazal, “GIS Basics"
Figures: Wikipedia and other internet resources

Vector vs. Raster Example

Figure: Brimicombe, “GIS, environmental modeling and engineering"Figure: Reddy, "Remote Sensing, and Geographical Information Systems"

Vector and Raster Formats

Figure: Fazal, “GIS Basics"

Georeferencing: Datums

Figures: Clarke, “Getting Started with GIS"

Figure: Fazal, “GIS Basics"

Georeferencing: Projections

Figures: Clarke, “Getting Started with GIS"

Georeferencing: Projections

Figures: Clarke, “Getting Started with GIS"

Conformal:
- Preserves angles and shapes
- Distorts areas and distances (~1/1000)
- 60 zones of 6 degrees longitude
- Units of meters

UTM Projection

Figures: WikipediaGeographic projection

Universal Transverse Mercator projection

GIS Operations

Figure: Fazal, “GIS Basics"

Figure: Reddy, "Remote Sensing, and Geographical Information Systems" Figure: Fazal, “GIS Basics"

Conversions
Buffers

Topology

Database Queries
(by location and/or attribute)

GIS Operations

Map Algebra
Thematic Mapping Figure: Galati, “GIS Demistified"

Figure: Reddy, "Remote Sensing, and GIS"

Measurements

Figure: Fazal, “GIS Basics"

GIS Data Sources: GTOPO30

Entire world at 30 arc seconds (~1km) resolution

GIS Data Sources: USGS

GIS Data Sources: NASA

GIS Data Sources: NOAA

GIS Data Sources: NWS

GIS Data Sources: HydroSHEDS

GIS Data Sources: Visible Earth

GIS Data Sources: EarthScope

GIS Data Sources: geodata.gov

GIS Data Sources: BARD

GIS Data Sources: Google

GIS Data Sources: Microsoft

GIS Data Sources: Canada

LiDAR Data

LiDAR Data Sources: NCALM

LiDAR Data Sources: USGS

Various states and local governments (via USGS portal)

LiDAR Data Sources: OpenTopography

LiDAR Data Sources: Antartica

LiDAR Data Sources: Bathimetry

McKean et al., 2009

Multiple
overlaid

mapsOne GetMap
request:

Borders
Elevation Cloud Cover

Cities

Web Map Service (WMS)

Slide: Steven Ramage, Open Geospatial Consortium (OGC)

A Web Map Service (WMS) produces
maps of spatially referenced data
dynamically from geographic information.

A map is not the data itself.

WMS-produced maps are generally
rendered in a pictorial format such as
PNG, GIF or JPEG

Other formats: vector-based graphical
elements in Scalable Vector Graphics
(SVG) or Web Computer Graphics Metafile
(WebCGM).

Mapping Toolbox: Features

Figure: the Mathworks

Mapping Toolbox: Data

Figure: the Mathworks

Mapping Toolbox: Analysis

Figure: the Mathworks

ESRI ArcGIS

ESRI ArcGIS

ESRI ArcView: SHALSTAB






 sin)

tan
tan1(

a
b

T
q

w

s 
Relative potential for shallow landsliding
Montgomery and Dietrich,1994

Dietrich, Bellugi, de Asua, 2001 Also available in Matlab

Which GIS to use?

EPS 209 Course Evaluations

Fill out two forms:
• Instructor (Burkhard Militzer)
• GSI (Dino Bellugi)

Need a volunteer:
• Collect the forms
• Deliver them to McCone Hall

 Gretchen vonDuering (371)
 Margie Winn (398)
 Main office (307)

Lab Exercise in 15 minutes:
• Making a map
• Retrieving Web-based data
• Real-time weather
• Ortho-photos
• Digital Elevation Model

Spring 201

Ma
This lab
retrieve a
cross cou
Then we
functions

Using a colle

Th

Part 1 –

Here we
functiona

(1) Let’s
your edit
figure;
usamap('

(2) Now
states. Th
Type the

states =

(3) The v
will get a

 Bo

11, EPS 209 “M

aps an
has three pa
a satellite im
untry flight.

e will retriev
s, look them

This spect
ection of satellite-b

sea ice, and clo
These images are fr

– My firs

e make a ve
alities of the

 start by ma
tor and execu

'conus');

let’s load a
his file is ca
 following c

= shaperea

variable ‘stat
a description

 Geometr

undingBo

Matlab Applica

Com

nd We
arts. In the f
mage and we

In the third
ve aerial im
up in the hel

tacular “blue mar
based observation
ouds into a seamle
reely available to e

st Matlab

ery simple m
Mapping To

aking a blank
ute them:

a shapefile (
alled 'usast
commands in

ad('usastat

tes’ is an arr
n of the data

ry: 'Poly

ox: [2x2

ations in Earth

mputer L

eb Ma
first part, we
eather data f
d part we lo
magery and
lp for examp

ble” image is the m
ns, scientists and vi
ess, true-color mos
educators, scientis

map

map of the
oolbox.

k map of th

(a common
tatehi.shp'
n your editor

tehi.shp',

ray of structu
structure:

ygon'

double]

 Sciences”, Ins

ab Assig

p Serv
e learn to ma
from a WMS

oad a digital
drape it on

ples of their

most detailed true
isualizers stitched
saic of every squar
sts, museums, and

United Sta

e Continenta

file format
' and it com
r window an

 'UseGeoCo

ures. Type s

structors: Burk

gnment

rvice (
ake a simple
S and we add
l elevation m
n the DEM
usage.

e-color image of th
d together months o
re kilometer (.386
the public from NA

ates to fami

al US. Type

for vector d
mes packaged
nd execute th

oords', tr

states(1) into

khard Militzer

 7

(WMS
e map. In the
dd it to the m
model (DEM

M. As you le

he entire Earth to d
of observations of

6 square mile) of ou
NASA web site and

iliarize ours

e the followi

data) with th
d with the M

hem:

rue);

o the comma

and Dino Bell

) Data
e second par

map, to simul
M) and displ
earn new M

date.
f the land surface, o
ur planet.
WMS servers.

elves with

ing comman

he borders o
Mapping Tol

and window.

lugi

a

rt, we
late a
lay it.

Matlab

oceans,

some

nds in

of the
llbox:

. You

Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi

 Lon: [1x521 double]

 Lat: [1x521 double]

 Name: 'Alabama'

 LabelLat: 32.2827

 LabelLon: -86.9206

Notice the variables present in this structure. In particular, note the two arrays ‘Lon’ and ‘Lat’, as
there are what are used by Matlab to draw the shape of the state.

(3) Now let’s load a shapefile (a common file format for vector data) with the location and
names of major world cities. This file is called 'worldcities.shp'and it also comes packaged
with the Mapping Tollbox: Type the following commands in your editor window and execute
them:

cities = shaperead('worldcities.shp', 'UseGeoCoords', true);

Again, type cities(1) in the command window. Note that since the geometry is now a point, Lat
and Lon now have only a single value.

(4) Now let’s display the map: type the following commands in your editor window and execute
them:

geoshow(states);

(5) Now let’s add the names of the states to the map. Note that the structure in the shapefile also
contained fields called ‘LabelLat’ and ‘LabelLon’. We will use these coordinates to place our
labels. Type the following commands in your editor window and execute them:

textm([states.LabelLat], [states.LabelLon], {states.Name},
'HorizontalAlignment', 'center', 'FontSize', 6);

(6) Now let’s plot the cities to the map. Type the following commands in your editor window
and execute them:

plotm([cities.Lat], [cities.Lon], '.r');

(7) Now let’s add the names of the cities to the map. Note that the cities structure did not contain
label coordinates. We will thus use the city coordinates but place our labels right above the city.
Type the following commands in your editor window and execute them:

textm([cities.Lat], [cities.Lon], {cities.Name}, 'HorizontalAlignment',
'center', 'VerticalAlignment', 'bottom', 'FontSize', 5);

(8) Finally, add a title to the map:

Spring 201

title('M

You mad

Save you

Part 2 –

In this pa

(1) Let’s
boundari

figure;
usamap('
states =
cities =

(2) As w
longitude

mstruct

The com
mstruct.
‘maplatli
latlim an

latlim =
lonlim =

(3) Now
into this
NASA, s

nasa = w

11, EPS 209 “M

My first m

de your first

ur code as yo

– Flying

art we will u

s start again
ies and the m

'conus');
= shaperea
= shaperea

we will be r
e limits are. W

= gcm;

mmand ‘gcm
Type ‘mstru
imit’ and ‘m
d lonlim var

= mstruct.
= mstruct.

we will retr
map. The f

so we will se

wmsfind('N

Matlab Applica

map: the co

Matlab geog

ou will be ad

across the

pdate the pre

n by making
major cities:

ad('usastat
ad('worldci

retrieving da
We can do t

’ means “ge
uct’ in the co

maplonlimit’.
riables:

.maplatlimi

.maplonlimi

rieve the par
first step is
earch for serv

NASA', 'Sea

ations in Earth

ontinental

graphic map

dding to it in

e USA

evious map

g a blank m

tehi.shp',
ities.shp'

ata for this m
this by retrie

et current m
ommand win
. These are t

it;
it;

rt of the “Blu
finding the
vers that hav

archField'

 Sciences”, Ins

l USA');

! It should lo

the next par

with images

map of the

 'UseGeoCo
, 'UseGeoC

map, we wi
ving the map

map”, and its
ndow to see
the bounding

ue Marble E
correct WM

ve the word N

, 'serveru

structors: Burk

ook somethi

rt.

s and real-tim

Continental

oords', tr
Coords', t

ill need to d
p structure o

 output is a
its contents.
g box of you

Earth” image
MS server. W
NASA in th

url');

khard Militzer

ing like this:

me informati

l US and re

rue);
true);

define what
of the curren

assigned to t
. In particula
ur map. Ass

e (seen in the
We know th

heir URL:

and Dino Bell

ion.

eading the s

t the latitude
nt blank map

the map stru
ar, note the f
sign them to

e lecture) tha
he image is

lugi

states

e and
p:

ucture
fields
 your

at fits
from

Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi

In the variable editor, explore the WMS layer array ‘nasa’, and note the diverse nature of its
contents. Now we can refine the search to look for the words ‘blue marble’:

nasa = nasa.refine('blue marble');

The command ‘refine’ is an object function of the layer structure. Again, in the variable editor
explore the WMS layer array ‘nasa’, and note the much reduced nature of its contents.

(4) Now we are ready to retrieve the image using the bounding box of our map:

[BM, R] = wmsread(nasa(1), 'ImageFormat', 'image/png', 'Latlim', latlim,
'Lonlim', lonlim, 'CellSize', 0.1);

In the variable editor, look at the variables BM and R. The former is the RGB image, and the
latter is a geo-referencing matrix used for drawing the image onto the map.

(5) Now we are ready to display the image and the state boundaries on our map:

figure(gcf);
geoshow(BM, R);
hold on
geoshow(states, 'FaceColor', 'none', 'EdgeColor', 'w');
geoshow(cities, 'Color', 'r', 'Marker', '.');

Note how BM and R are passed to ‘geoshow’. Also note that to overlay the multiple layers one
has to use “hold on” just like with regular Matlab figures.

(6) Let’s pretend that we are about to fly between two of these cities. Let’s trace our route by
inputting the start and end points directly on the map:

figure(gcf);
disp('Input start and end points')
[lat lon] = inputm(2);
start = [lat(1) lon(1)];
dest = [lat(2) lon(2)];

The function ‘inputm’ takes the number of desired points as a parameter. Click on the start and
end city.

(7) The next step is to construct a great circle (the shortest distance on the surface of a sphere)
between the two cities and to display it on the map. This is done with the navigation functions
‘gcwaypts’ and ‘track’, and the usual ‘geoshow’:

[lat_gc,lon_gc] = gcwaypts(start(1),start(2),dest(1),dest(2));
[lattrk_gc lontrk_gc] = track('gc', lat_gc, lon_gc, 'degrees');
figure(gcf);
geoshow(lattrk_gc, lontrk_gc, 'DisplayType', 'line', 'Color', 'r');

(8) One can measure the length of this path using the navigation function ‘legs’ which returns the
bearing and the distance along the way:

[course_gc dist_gc] = legs(lat_gc, lon_gc, 'gc');

Spring 201

disp(['G

(9) We n
look up t
the WMS

nexrad =

In the va
refine the

nexrad =

(10) Retr

[W, R2]
'Lonlim'
'Backgro
figure(g
geoshow(

Note how
blue mar
this imag
precipitat

windex =
windex =
WBM = BM
WBM(wind
figure(g
geoshow(

Your ma

How is t
avoids th
at a sequ
these dat

11, EPS 209 “M

Great circ

now have ou
the radar dat
S servers:

= wmsfind(

ariable editor
e search to lo

= nexrad.r

rieve the wea

= wmsread
', lonlim,
oundColor'
gcf);
(W, R2);

w various pa
rble image a
ge, we eras
tion to the b

= any(W >
= cat(3, w
M;
dex) = uin
gcf);
(WBM, R2);

p should now

the weather
he bad weath
uence of ima
a on the WM

Matlab Applica

cle path le

ur course, bu
ta, much lik

('nexrad',

r, explore th
ook for the w

refine('cur

ather data an

d(nexrad(1)
 'ImageHei
, [0 0 0])

arameters of
and with a tr
e the blue m
lue marble i

0, 3);
windex, win

nt8(W(winde

;

w look some

along the r
her, you’d pr
ages prior to
MS server as

ations in Earth

ength: ' n

ut it would b
ke we did for

'SearchFi

he WMS lay
words ‘curre

rrent');

nd display it

), 'ImageF
ight', siz
);

f ‘wmsread’
ransparent ba
marble imag
mage:

ndex, wind

ex).*255);

ething like th

route? If you
robably wan

o the current
 well.

 Sciences”, Ins

num2str(sum

be nice to ch
r the blue m

ield', 'ser

yer array ‘ne
ent’:

on the map:

Format', 'i
ze(BM,1), '

 were used
ackground c
ge. We can

dex);

his:

u were tryin
nt to look no
t one to see

structors: Burk

m(dist_gc)

heck the wea
marble image

rverurl');

xrad, and no

:

image/png'
'ImageWidt

to get an im
color. Note h
 fix this by

ng to plot a
t just at the
where the s

khard Militzer

)]);

ather along
e. Search for

ote its conte

, 'Latlim'
th', size(B

mage of the
however, tha
y adding the

a route that
current rada
torm is goin

and Dino Bell

the way. W
r ‘nexrad’ am

ents. Now w

', latlim,
BM,2),

same size a
at when we
e pixels sho

is less direc
ar image, but
ng. Nexrad o

lugi

e can
mong

e can

as the
show

owing

ct but
t also
offers

Spring 201

Part 3
Francis

Among t
Regional
http://bar
minute D
units of (

Matlab h
download

(1) Let’s
the desire
but feel f

demFilen
demExt =
dataServ

(2) Now
directory

URL = [d
urlwrite
gunzip([
(3) Use th

[Lat, Lo

Note that
structure
Then get

latlim =
lonlim =

(4) Displ

11, EPS 209 “M

 – Retri
sco Bay A

the data rep
l Databas
rd.wr.usgs.go

Digital Eleva
(hopefully) m

has functions
d and display

start by pick
ed quadrang
free to chang

name = 'sf
= '.gz';
verURL = '

we can use
y, and the fun

dataServer
e(URL, [de
[demFilena
he mapping

on, Elv, H

t this functio
with the DE
 the boundin

= [min(Lat
= [min(Lon

lay the eleva

Matlab Applica

ieving el
Area

positories w
se (BARD
ov/getDEMS

ation Models
meters.

s to read dat
y a DEM of

king a DEM
gle to obtain
ge it to one o

f_north.dem

http://bar

the Matlab
nction ‘gunz

rURL demFil
emFilename
ame demExt]
toolbox fun

Header] = u

on returns ma
EM info. Typ
ng box of the

t(:)) max(L
n(:)) max(L

ation data usi

ations in Earth

levation d

we saw in th
D). Open
SMap.html.
s (DEM). Th

ta directly fr
f your choice

M to explore.
its name. In

of your choic

m';

rd.wr.usgs

function ‘ur
zip’ to uncom

lename dem
demExt]);
]);
ction ‘usgs2

usgs24kdem

atrices for la
pe ‘Header’
e DEM from

Lat(:))];
Lon(:))];

ing ‘usamap

 Sciences”, Ins

data and

he lecture t
a brow

Here you w
he tiles in thi

rom web sit
e.

 On the BAR

n the exampl
ce:

s.gov/bard/

rlwrite’ to w
mpress it:

mExt];

24kdem’ to im

m(demFilena

atitude, long
in the comm

m the Lat and

’ and ‘geosh

structors: Burk

d aerial i

there was th
wser and

will see an in
is dataset ha

tes such as t

RD web pag
le listed belo

/elevation

write the file

mport the el

ame);

itude and ele
mand window
d Lon matric

how’:

khard Militzer

imagery

he San Fran
d go to
ndex map wit
ave 10 meter

this one, we

ge hover wit
ow I use the

n/';

from the UR

levation data

evation, as w
w to explore
ces:

and Dino Bell

for the

ncisco Bay
o this U
th the USGS

r grid spacing

will use the

th the cursor
‘sf_north’ D

RL to the cu

a:

well as a hea
e its contents

lugi

San

Area
URL:
S 7.5-
g and

em to

r over
DEM,

urrent

ader
s.

Spring 201

figure;
usamap(l
geoshow(
title(de

Note that
topograp

demcmap(

Want a 3

view(3);

Perhaps w
with the

daspectm

Your ma

(5) Lets m

[aspect,
figure;
usamap(l
geoshow(
colorbar
title([d

Does you

11, EPS 209 “M

latlim, lo
(Lat, Lon,
emFilename

t Matlab use
hic colorma

(Elv);

-D view? It’

;

we would lik
‘daspectm’ f

m('m',1.5)

p should now

make and di

, slope, g

latlim, lo
(Lat, Lon,
r
demFilenam

ur map look

Matlab Applica

onlim);
 Elv, 'Dis
e, 'Interpr

ed the standa
p by using th

’s simple wit

ke to exagge
function:

w look some

splay a slope

gradN, grad

onlim);
 slope, 'D

me ' Slope

like this?

ations in Earth

splayType'
reter', 'n

ard color map
he function

th the ‘view

erate the vert

ething like th

e map, using

dE] = grad

DisplayTyp

(degrees)

 Sciences”, Ins

,'surface'
none');

p (jet) to disp
‘demcmap’:

’ function:

tical axis for

his:

g Matlab’s ‘g

dientm(Lat,

pe', 'textu

'], 'Inter

structors: Burk

');

play the elev

r a more 3-D

gradientm’ f

, Lon, Elv

uremap');

rpreter',

khard Militzer

vation. Gene

D effect. Thi

function:

v);

'none');

and Dino Bell

erate a more

is can be don

lugi

ne

Spring 201

(6) Now
much lik

ortho =
latlim,

Note the
array ‘ort
we can re

ortho =

In the var
using WM

ortho =

(7) Now
an alterna

% create
server =
request

% modify
request.
request.
request.
request.
request.

% Reques
Map = se
Ref = re

(8) Let’s

figure;

11, EPS 209 “M

let’s search
ke we did for

wmsfind('
'Lonlim',

 use of the
tho’, and no
efine the sea

ortho.ref

riable editor
MSUPDATE

wmsupdate

we are read
ative method

e a WMS re
= WebMapSe
= WMSMapR

y map requ
.Latlim =
.Lonlim =
.ImageForm
.ImageHeig
.ImageWidt

st the map
erver.getM
equest.Ras

display the

Matlab Applica

h for an aeri
r the radar da

usgs*calif
 lonlim);

wildcard ‘*
te its conten

arch to look f

fine('0.3m*

r one can see
E>'. One can

e(ortho(1))

dy to retrieve
d to create th

equest stru
erver(ortho
Request(ort

uest for th
latlim;
lonlim;
mat = 'imag
ght = size(
th = size(E

p
Map(request
sterRef;

DEM again,

ations in Earth

al image to
ata. Search f

fornia', '

*’ in the sea
nts. We know
for the word

*color', '

e that some o
n update the

);

e the image.
he request:

ucture
o.ServerUR
tho, serve

he desired

ge/png';
(Elv,1);
Elv,2);

t.RequestU

, but with th

 Sciences”, Ins

drape over
for ‘usgs’ and

SearchFiel

arch. In the
w we want th
ds ‘0.3m’ and

SearchFiel

of the fields
information

. As you ha

RL);
er);

d limits, f

URL);

e elevation d

structors: Burk

our DEM. W
d ‘california

ld', 'serv

variable edi
he high-resol
d ‘color’:

ld', 'Laye

of the indivi
n with the fun

ave already d

format and

draped on it:

khard Militzer

We can get
a’ among the

verurl', 'L

itor, explore
lution (0.3m

erTitle');

idual layers
nction ‘wms

done it twic

d size

:

and Dino Bell

one from W
e WMS serve

Latlim',

e the WMS
m) color imag

say '<Updat
supdate’:

e, offered he

lugi

WMS,
ers:

layer
ge, so

te

ere is

Spring 201

usamap(l
geoshow(
title([d

Exaggera

daspectm
view(3)

Isn’t WM

See you n

11, EPS 209 “M

latlim, lo
(Lat, Lon,
demFilenam

ate and switc

m('m',1.5)

MS groovy? Y

next week fo

Matlab Applica

onlim);
 Elv, 'Dis
me ' + ' or

ch to 3-D vie

Your map sh

or final proje

ations in Earth

splayType'
rtho.Layer

ew:

hould look s

ect presentat

 Sciences”, Ins

, 'surface
rName], 'In

omething lik

tions!

structors: Burk

e', 'CData
nterpreter

ke this:

khard Militzer

a', Map);
r', 'none')

and Dino Bell

);

lugi

Support Vector Machine Classification

2nd International Summer School
on Water Research

Landslide modeling and Early Warning Systems
8 July 2013

Dino Bellugi
Massachusetts Institute of Technology

Support Vector Machine Classification

SVM-based Classification
• Classification
• Object representation
• Training and validation
• Linearly separable data
• Linearly non-separable data
• Non-linearly separable data
• The SVM formulation
• The Kernel trick

Rock Classification
• Rock image database
• Rock characteristics
• Creating a rock descriptor
• SVM Software
• SVM Cookbook
• Training an SVM
• A test
• Results

Some slides adapted from:

Dino Bellugi - EPS 209:

“Matlab Applications in Earth Science”

Michael Jordan - CS 294:

“Practical Machine Learning”

University of California, Berkeley

Landslide Identification
• Deep seated landslides

Landslide Prediction
• Landslide database
• Landslide characteristics
• Creating the descriptor
• Training the SVM
• A preliminary test

Discussion
• Storm classification
• A real application (Luigi!)

Classification

• In classification problems, each entity in some domain can be
placed in one of a discrete set of categories: yes/no,
friend/foe, good/bad/indifferent, etc.

• Given a training set of labeled entities, develop a rule for
assigning labels to entities in a test set

• For example:
• Observe whether a given medication affects various patients positively

or negatively over several years (the training set).
• Given this data, extract a rule allowing us to predict whether or not any

new patient will respond positively or negatively to the medication.

• Many variations on this theme:
• binary classification
• multi-category classification
• non-exclusive categories

Example: face detection

Example: object recognition

Example: object recognition

Try to find: blimp, clutter, grasshopper, picnic-table, refrigerator, watermelon

Example: object recognition

blimp clutter

watermelon refrigerator

picnic-table

grasshopper

Example: object recognition

Object Representation

• Each object to be classified is represented as a pair (x, y):
• x is a description of the object (see examples of data types in the

following slides)
• y is a label (assumed binary for now: 1 or -1)

• Success or failure of a machine learning classifier often
depends on choosing good descriptions of objects
• the choice of description can also be viewed as a learning problem
• but good human intuitions are often needed here

• Vectorial data:
• physical attributes
• textual attributes
• context
• history

feature
vector

(x)

Example: Spam Filter

• Input: email
• Output: spam/ham
• Setup:

• Get a large collection of
example emails, each
labeled “spam” or “ham”

• Note: someone has to hand
label all this data

• Want to learn to predict
labels of new, future emails

• Features: The attributes used to
make the ham / spam decision

• Words: FREE!
• Text Patterns: $dd, CAPS
• Non-text: SenderInContacts
• …

Dear Sir.

First, I must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner, but
when I plugged it in, hit the power nothing
happened.

Example: Digit Recognition

• Input: images / pixel grids
• Output: a digit 0-9
• Setup:

• Get a large collection of example images, each
labeled with a digit

• Note: someone has to hand label all this data
• Want to learn to predict labels of new, future

digit images

• Features: The attributes used to make the digit
decision

• Pixels: (6,8)=ON
• Shape Patterns: NumComponents,

AspectRatio, NumLoops
• …

• Current state-of-the-art: Human-level
performance

0

1

2

1

??

Training and Validation

• Data: labeled instances, e.g. emails marked spam/ham
• Training set
• Validation set
• Test set

• Training
• Estimate parameters on training set
• Tune hyperparameters on validation set
• Report results on test set
• Anything short of this yields over-optimistic claims

• Evaluation
• Many different metrics
• Ideally, the criteria used to train the classifier should be closely

related to those used to evaluate the classifier

• Statistical issues
• Want a classifier which does well on test data
• Overfitting: fitting the training data very closely, but not

generalizing well
• Error bars: want realistic (conservative) estimates of accuracy

Training
Data

Validation
Data

Test
Data

Some State of the Art Classifiers

• Support vector machines (SVMs)

• Decision trees

• Random forests

• Kernelized logistic regression

• Kernelized discriminant analysis

• Kernelized perceptron

• Bayesian classifiers

• Boosting and other ensemble methods

Some Resources

• Google ‘Berkeley practical machine learning’ for
more information

• Trevor Hastie’s “The elements of statistical
learning: data mining, inference, and prediction.”
Springer. 2001

• Nello Cristianini’s web page:
http://www.support-vector.net/

Intuitive Picture of the Problem

Class1
Class2

Linearly Separable Data

Class1
Class2Linear Decision boundary

Which Hyper-plane to Use?

x1

x2

Maximizing the Margin

x1

x2

Margin
Width

Margin
Width

Select the
separating
hyperplane that
maximizes the
margin

Support Vectors

x1

x2

Margin
Width

Support Vectors

Setting up the Optimization Problem

x1

x2

0=+⋅ bxw


w


class -1

class 1

Linear decision boundary:

The Optimization Problem

x1

x2

w


The maximum margin can be
characterized as a solution to
an optimization problem:

class -1

class 1

Linear Hard-Margin SVM Formulation

• Simple manipulation yields an equivalent problem: find w,b
that solves

• Problem is convex, so there is a unique global minimum
value (when feasible).

• There is also a unique minimizer, i.e. w and b value that
provides the minimum.

• Quadratic Programming
• very efficient computationally with procedures that take

advantage of the special structure

21min
2

. . () 1, i i i

w

s t y w x b x⋅ + ≥ ∀

Linear Non-Separable Case

x1

x2

0=+⋅ bxw


w


iξ

Allow some
instances to fall
within the margin,
but penalize them.

Introduce slack
variables iξ

Formulating the Optimization Problem

Objective function
penalizes for
misclassified instances
and those within the
margin

C trades-off margin width
and misclassifications

x1

x2

w


iξ

Linear Soft-Margin SVM’s

• Equivalent problem:

• Algorithm tries to push ξi to zero while maximizing
margin

• As C→0, we get the hard-margin solution

• Notice: algorithm does not minimize the number of
misclassifications (NP-complete problem) but the sum of
distances from the margin hyperplanes

• Other formulations can use ξi
2 instead

() 1 ,
0

i i i i

i

y w x b xξ
ξ

⋅ + ≥ − ∀
≥

21min
2 i

i

w C ξ+ 

Robustness of Hard vs. Soft Margin
SVM’s

iξ

x1

x2

0=+⋅ bxw


ξi

x1

x20=+⋅ bxw


Soft Margin SVM Hard Margin SVM

Non-Linearly Separable Data

Non Linear Classifier Class1
Class2

Advantages of Non-Linear Surfaces

x1

x2

Linear Classifiers in High-Dimensional
Spaces

x1

x2 Constructed
Feature 1

Find function Φ(x) to map to
a different space

Constructed
Feature 2

Example

X=[x z] Φ(X)=[x2 z2 xz]

wTΦ(x)+b=0

f(x) = sign(w1x2+w2z2+w3xz + b)

Mapping Data to High-Dimensional
Spaces

• Find function Φ(x) to map to a different space, then SVM
formulation becomes:

• Data appear as Φ(x), weights w are now weights in the new
space

• Explicit mapping expensive if Φ(x) is very high dimensional

• Solving the problem without explicitly mapping the data is
desirable

21min
2 i

i

w C ξ+  0
 ,1))((..

≥
∀−≥+Φ⋅

i

iii xbxwyts

ξ
ξ

The Kernel Trick

• Φ(xi) ⋅ Φ(xj): means map data into new space, then take the inner
product of the new vectors

• We can instead simply find a function such that: K(xi ⋅ xj) = Φ(xi) ⋅
Φ(xj), i.e., the image of the inner product of the data is the inner
product of the images of the data

• Then, we do not need to explicitly map the data into the high-
dimensional space to solve the optimization problem

Kernels

• Some common kernels

• Linear kernel: k(x,z) = xTz

 equivalent to linear algorithm

• Polynomial kernel: k(x,z) = (1+xTz)d

 polynomial decision rules

• RBF kernel: k(x,z) = exp(-||x-z||2/2σ)

 highly nonlinear decisions

A hyperplane
in some space

CVPR 2005

- Implements HOG on a quad-tree
- Canny edges, Sobel gradients
- No smoothing
- Gradients transferred to edges
- Binned for orientation
- Weighted by their strength

- PHOG descriptor:
Concatenation of HOG
descriptors for each level
of pyramid (BFS)

CIVR 2007

- Matlab code available from the
Robotics Research Group
(Visual Geometry),
University of Oxford:

www.robots.ox.ac.uk/~vgg

Rock Classification

Rock Classification: Igneous

Rock Classification: Sedimentary

Rock Classification: Metamorphic

Rock Classification: my Exams

Igneous? Sedimentary? Metamorphic?

D’oh!

Rock Database

Igneous Rocks

Sedimentary Rocks

Metamorphic Rocks

Training Set: Igneous Rocks
(85 samples)

Training Set: Metamorphic Rocks
(56 samples)

Training Set: Sedimentary Rocks
(70 samples)

Rock Descriptor

Igneous

Sedimentary

Metamorphic

Andesite Diorite Granite Obsidian

Travertine Sandstone Shale Conglomerate

Gneiss Slate Marble Schist

Feature
Vector

Color Spaces

% convert image to R, G, B, HSV and to Gray
G = double(rgb2gray(I))./255;
HSV = rgb2hsv(I);
H = HSV(:,:,1);
R = I(:,:,1);
Gr = I(:,:,2);
B = I(:,:,3);

Multiple Scales (Spatial Pyramid)

function [distrG bSeps]= …
makeHistograms(G, nBins, imScale, noZero, doCat, opts)

% makes normalized histograms
% with nBins bins at scale imScale
% if doCat is false:
% returns a matrix nBins by nBlocks
% if doCat is true:
% returns a vector of length nBins x nBlocks
% if noZero is true:
% only nonzero elements are considered

Scale: 2

Scale: 3

Scale: 1

Rock Color

% number of pyramid levels and histogram bins
nLevs = 3;
nBins = 16;

% initialize distributions
GDis = []; HDis = [];
RDis = []; GrDis = []; BDis = [];
sGDis = []; sHDis = [];
sRDis = []; sGrDis = []; sBDis = [];

% make histogram at all levels and concatenate
for n = 1:nLevs

GDis = [GDis; makeHistograms(G, nBins, n, 0, 1, opts)];
HDis = [HDis; makeHistograms(H, nBins, n, 0, 1, opts)];
RDis = [RDis; makeHistograms(R, nBins, n, 0, 1, opts)];
GrDis = [GrDis; makeHistograms(Gr, nBins, n, 0, 1, opts)];
BDis = [BDis; makeHistograms(B, nBins, n, 0, 1, op opts)];
sGDis = [sGDis; makeHistograms(sG, nBins, n, 0, 1, opts)];
sHDis = [sHDis; makeHistograms(sH, nBins, n, 0, 1, opts)];
sRDis = [sRDis; makeHistograms(sR, nBins, n, 0, 1, opts)];
sBDis = [sBDis; makeHistograms(sB, nBins, n, 0, 1, opts)];

end

Parameters

A lot more histograms than what is shown:
at 3 scales there are 25 histograms per image

Grain Contours: Oriented Edges

function [OE E A Gx Gy]= getOrEdges(G, options)
% creates a matrix of oriented edges:
% each canny edge pixel contains the angle of the gradient direction

A lot more histograms !

Rock Texture: Local Standard Deviation

% apply std filter
fSize = 21;
dG = stdfilt(G, ones(fSize));
dH = stdfilt(H, ones(fSize));
sdG = stdfilt(sG, ones(fSize));
sdH = stdfilt(sH, ones(fSize));

% initialize distributions
dGDis = [];
dHDis = [];
sdGDis = [];
sdHDis = [];

% make histogram at all scales
for n = 1:nLevs

dGDis = [dGDis; makeHistograms(dG, nBins, n, false, true, options)];
dHDis = [dGDis; makeHistograms(dH, nBins, n, false, true, options)];
sdGDis = [sdGDis; makeHistograms(sdG, nBins, n, false, true, options)];
sdHDis = [sdHDis; makeHistograms(sdH, nBins, n, false, true, options)];

end

Parameter

A lot more histograms than what is shown:
at 3 scales there are 25 histograms per image

Rock Texture: Local Entropy

% apply entropy filter
fSize = 21;
eG = entropyfilt(G, ones(fSize));
eH = entropyfilt(H, ones(fSize));
seG = entropyfilt(sG, ones(fSize));
seH = entropyfilt(sH, ones(fSize));

% initialize distributions
eGDis = [];
eHDis = [];
seGDis = [];
seHDis = [];

% make histogram at all scales
for n = 1:nLevs

eGDis = [eGDis; makeHistograms(eG, nBins, n, false, true, options)];
eHDis = [eGDis; makeHistograms(eH, nBins, n, false, true, options)];
seGDis = [seGDis; makeHistograms(seG, nBins, n, false, true, options)];
seHDis = [seHDis; makeHistograms(seH, nBins, n, false, true, options)];

end

Parameter

A lot more histograms than what is shown:
at 3 scales there are 25 histograms per image

Rock Texture: Local Range

% apply range filter
fSize = 21;
rG = rangefilt(G, ones(fSize));
rH = rangefilt(H, ones(fSize));
srG = rangefilt(sG, ones(fSize));
srH = rangefilt(sH, ones(fSize));

% initialize distributions
rGDis = [];
rHDis = [];
srGDis = [];
srHDis = [];

% make histogram at all scales
for n = 1:nLevs

rGDis = [rGDis; makeHistograms(rG, nBins, n, false, true, options)];
rHDis = [rGDis; makeHistograms(rH, nBins, n, false, true, options)];
srGDis = [srGDis; makeHistograms(srG, nBins, n, false, true, options)];
srHDis = [srHDis; makeHistograms(srH, nBins, n, false, true, options)];

end

Parameter

A lot more histograms than what is shown:
at 3 scales there are 25 histograms per image

Co-Occurrence Matrix

Gray Level Co-Occurrence Matrix (GLCM)

• GLCM functions characterize texture
• Calculate how often pairs of pixels with

specific values and in a specified spatial
relationship occur in an image

• Function of angle and distance
• Various properties can be extracted
• In Matlab: graycomatrix() and graycoprops()

Co-Occurrence Matrix

% read image and convert to grayscale
circuitBoard = rgb2gray(imread('board.tif'));
imshow(circuitBoard);

% create horizontal offsets
offsets0 = [zeros(40,1) (1:40)'];

% get GLCM and stats
glcms = graycomatrix(circuitBoard,'Offset',offsets0);
stats = graycoprops(glcms,'Contrast Correlation');

% plot correlation
figure, plot([stats.Correlation]);
title('Texture Correlation as a function of offset');
xlabel('Horizontal Offset');
ylabel('Correlation');

Global Values
% compute normalized entropy at all levels
EG = []; EH = []; sEG = []; sEH = [];
for n = 1:nLevs

EG = [EG; getNEntrs(G, n, opts)];
EH = [EH; getNEntrs(H, n, opts)];
sEG = [sEG; getNEntrs(sG, n, opts)];
sEH = [sEH; getNEntrs(sH, n, opts)];

end
% compute standard deviation at all levels
DG = []; DH = []; sDG = []; sDH = [];
for n = 1:nLevs

DG = [DG; getStddevs(G, n, opts)];
DH = [DH; getStddevs(H, n, opts)];
sDG = [sDG; getStddevs(sG, n, opts)];
sDH = [sDH; getStddevs(sH, n, opts)];

end
% compute variance at all levels
VG = []; VH = []; sVG = []; sVH = [];
for n = 1:nLevs

VG = [VG; getVariances(G, n, opts)];
VH = [VH; getVariances(H, n, opts)];
sVG = [sVG; getVariances(sG, n, opts)];
sVH = [sVH; getVariances(sH, n, opts)];

end
% compute mean at all levels
AG = []; AH = []; sAG = []; sAH = [];
for n = 1:nLevs

AG = [AG; getMeans(G, n, options)];
AH = [AH; getMeans(H, n, options)];
sAG = [sAG; getMeans(sG, n, options)];
sAH = [sAH; getMeans(sH, n, options)];

end
% compute median at all levels
MG = []; MH = []; sMG = []; sMH = [];
for n = 1:nLevs

MG = [MG; getMedians(G, n, options)];
MH = [MH; getMedians(H, n, options)];
sMG = [sMG; getMedians(sG, n, options)];
sMH = [sMH; getMedians(sH, n, options)];

end

A lot more values than what is shown:
at 3 scales there are 25 values per field

The Descriptor
(22,052 Dimensions)

% concatenate descriptor
descriptor = [...

GDis; HDis; sGDis; sHDis; ... % intensity, hue histogram
RDis; GrDis; BDis; sRDis; sGrDis; sBDis; ... % RGB histogram
rGDis; rHDis; srGDis; srHDis; ... % local range histogram
eGDis; eHDis; seGDis; seHDis; ... % local entropy histogram
dGDis; dHDis; sdGDis; sdHDis; ... % local std histogram

statsG.Correlation'; sstatsG.Correlation'; ... % intensity correlation
statsH.Correlation'; sstatsH.Correlation'; ... % hue correlation

statsG.Contrast'; sstatsG.Contrast'; ... % intensity contrast
statsH.Contrast'; sstatsH.Contrast'; ... % hue contrast

statsG.Energy'; sstatsG.Energy'; ... % intensity energy
statsH.Energy'; sstatsH.Energy'; ... % hue energy

statsG.Homogeneity'; sstatsG.Homogeneity'; ... % intensity homogeneity
statsH.Homogeneity'; sstatsH.Homogeneity'; ... % hue homogeneity

EG; EH; sEG; sEH; ... % global entropy
VG; VH; sVG; sVH; ... % global variance
DG; DH; sDG; sDH; ... % global std
AG; AH; sAG; sAH; ... % global mean
MG; MH; sMG; sMH; ... % global median

];

SVM Software

LIBSVM: a Library for Support Vector Machines
Chih-Chung Chang and Chih-Jen Lin

Department of Computer Science
National Taiwan University, Taipei 106, Taiwan

http://www.csie.ntu.edu.tw/~cjlin
(Version 3.0 released: September 13, 2010)

Abstract
LIBSVM is a library for support vector machines (SVM). Its goal is to help users to easily use SVM as a tool. In this document, we present all its
implementation details. For the use of LIBSVM, the README file included in the package and the LIBSVM FAQ provide the information.

Different SVM formulations
Efficient multi-class classification
Cross validation for model selection
Probability estimates
Various kernels (including precomputed kernel matrix)
Weighted SVM for unbalanced data
Both C++ and Java sources
GUI demonstrating SVM classification and regression
Python, R, MATLAB, Perl, Ruby, Weka, Common LISP, CLISP, Haskell, and LabVIEW, interfaces.
C# .NET code and CUDA extension is available.
It's also included in some data mining environments: RapidMiner and PCP.
Automatic model selection which can generate contour of cross validation accuracy.

SVM Cookbook

A Practical Guide to Support Vector Classication
Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin

Department of Computer Science
National Taiwan University, Taipei 106, Taiwan

http://www.csie.ntu.edu.tw/~cjlin
(Initial version: 2003 Last updated: April 15, 2010)

Abstract
The support vector machine (SVM) is a popular classification technique. However, beginners who are not familiar with SVM often get unsatisfactory
results since they miss some easy but significant steps. In this guide, we propose a simple procedure which usually gives reasonable results.

We propose that beginners try the following procedure first:

• Transform data to the format of an SVM package
• Conduct simple scaling on the data
• Consider the RBF kernel K(x; y) = e-γx-y2

• Use grid search and cross-validation to find the best parameters C and γ
• Use the best parameters C and to train the whole training set
• Test

% svm type (RBF)
svm_type = ' -t 2 ';

% svm command (cross-validation and parameters)
svm_cmd = ['-v ', num2str(num_folds), ...

' -c ',num2str(C_param), ...
' -g ', num2str(G_param)];

% get cross-validation value
result = svmtrain(trainLabels, trainDescriptors, [svm_cmd svm_type]);

SVM Type and Cross Validation

Ex.: 4-fold cross validation

Defined in training arguments:
• Kernel type
• Cross validation subsets
• Cost and Gamma parameters

Example:

Parameter Search: Coarse

Finding Cost and Gamma parameters:
• Search a large grid space using coarse steps
• Use cross validation to find region with good results

% initialize variables
cv = zeros(ceil(numGIters), ceil(numCIters));
xvec = min_csearch:coarse_step:max_csearch;
yvec = min_gsearch:coarse_step:max_gsearch;
[xcv,ycv] = meshgrid(xvec, yvec);

% loop over cost parameter
for indlog2c = 1:numel(xvec)

log2c = xvec(indlog2c);

% loop over gamma parameter
for indlog2g = 1:numel(yvec)

log2g = yvec(indlog2g);

% store all cross-validation results
svm_cmd = ['-v ', num2str(sub_num), ' -c ', ...

num2str(2^log2c), ' -g ', num2str(2^log2g)];
cv(indlog2g, indlog2c) = ...

svmtrain(trainLabels, trainDescriptors, [svm_cmd svm_type svm_opts]);

% update best result
if (cv(indlog2g, indlog2c) > bestcv)

bestcv = cv(indlog2g, indlog2c); bestc = 2^log2c; bestg = 2^log2g;
end

end
end

Parameter Search: Fine

Finding Cost and Gamma parameters:
• Repeat procedure on smaller space with fine steps
• Use cross validation to find region the best result

% initialize variables
cv = zeros(ceil(numGIters), ceil(numCIters));
xvec = min_csearch:fine_step:max_csearch;
yvec = min_gsearch:fine_step:max_gsearch;
[xcv,ycv] = meshgrid(xvec, yvec);

% loop over cost parameter
for indlog2c = 1:numel(xvec)

log2c = xvec(indlog2c);

% loop over gamma parameter
for indlog2g = 1:numel(yvec)

log2g = yvec(indlog2g);

% store all cross-validation results
svm_cmd = ['-v ', num2str(sub_num), ' -c ', ...

num2str(2^log2c), ' -g ', num2str(2^log2g)];
cv(indlog2g, indlog2c) = ...

svmtrain(trainLabels, trainDescriptors, [svm_cmd svm_type svm_opts]);

% update best result
if (cv(indlog2g, indlog2c) > bestcv)

bestcv = cv(indlog2g, indlog2c); bestc = 2^log2c; bestg = 2^log2g;
end

end
end

Training the SVM

% use best parameters
svm_params = [' -c ', num2str(bestc), ' -g ', num2str(bestg) ' '];

% train
svm_model = svmtrain(trainLabels, trainDescriptors, [svm_type svm_params]);

% test
[labels, accuracy, value] = ...

svmpredict(trainLabels, trainDescriptors, svm_model, svm_opts);

Training:
• Use the best discovered parameters
• Train on the entire training data (no cross-validation)

Check:
• Use the trained model on the training data
• Ideally you should get 100% accuracy

Classifying with the SVM

% test on separate labeled data
[labels, accuracy, value] = ...

svmpredict(testLabels, testDescriptors, svm_model, svm_opts);

Validating:
• Use the trained model on the separate testing data with labels

(same as on previous slide but on data that was not part of the training)
• Decide if your accuracy is good enough

% generate random labels (2-class in this example)
randLabels = double(round(rand(numInstances, 1)));

% predict on new data
[labels, accuracy, value] = ...

svmpredict(randLabels, neDescriptors, svm_model, svm_opts);

Predicting:
• Use the trained model on new data with unknown labels

iRock: Results

How well did it do?

Note: the selection of the training and testing images was entirely random
(and no rocks were harmed in the process)

Man vs. Machine: the Turing Test

Turing, A.M. (1950). Mind, 59, 433-460.
COMPUTING MACHINERY AND INTELLIGENCE
By A. M. Turing

I propose to consider the question, "Can machines think?"
This should begin with definitions of the meaning of the terms "machine" and "think." The definitions might be
framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous, If the
meaning of the words "machine" and "think" are to be found by examining how they are commonly used it is
difficult to escape the conclusion that the meaning and the answer to the question, "Can machines think?" is
to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a
definition I shall replace the question by another, which is closely related to it and is expressed in relatively
unambiguous words.

The new form of the problem can be described in terms of a game which we call the 'imitation game." It is
played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The
interrogator stays in a room apart front the other two. The object of the game for the interrogator is to
determine which of the other two is the man and which is the woman. He knows them by labels X and Y, and
at the end of the game he says either "X is A and Y is B" or "X is B and Y is A." The interrogator is allowed to
put questions to A and B thus:

C: Will X please tell me the length of his or her hair?

Now suppose X is actually A, then A must answer. It is A's object in the game to try and cause C to make the
wrong identification. His answer might therefore be:

"My hair is shingled, and the longest strands are about nine inches long."

In order that tones of voice may not help the interrogator the answers should be written, or better still,
typewritten. The ideal arrangement is to have a tele-printer communicating between the two rooms.
Alternatively the question and answers can be repeated by an intermediary. The object of the game for the
third player (B) is to help the interrogator. The best strategy for her is probably to give truthful answers. She
can add such things as "I am the woman, don't listen to him!" to her answers, but it will avail nothing as the
man can make similar remarks.

We now ask the question, "What will happen when a machine takes the part of A in this game?" Will the
interrogator decide wrongly as often when the game is played like this as he does when the game is played
between a man and a woman? These questions replace our original, "Can machines think?"

Alan Mathison Turing, 1912-1954

Man vs. Machine: Deep Blue

Garry Kimovich Kasparov
World Chess Champion 1985-2000

Man vs. Machine: Watson

Man vs. Machine: ISSWR Students &
iRock

Thank you,
iRock!

ISSWR Students iRock

Igneous

Sedimentary

Metamorphic

• Take one picture card and three colored voting cards
• Study the picture card while we get ready
• A random sequence of 26 images will be shown
• Vote quickly by raising one of the colored cards
• One volunteer to call the vote
• Another volunteer to tally the counts on the board Ready?

Man vs. Machine: ISSWR Students &
iRock

ISSWR vs. iRock: Image 1

ISSWR vs. iRock: Image 1

Truth: Limestone – Sedimentary
iRock: Sedimentary

ISSWR vs. iRock: Image 2

ISSWR vs. iRock: Image 2

Truth: Schist – Metamorphic
iRock: Metamorphic

ISSWR vs. iRock: Image 3

ISSWR vs. iRock: Image 3

Truth: Shale – Sedimentary
iRock: Sedimentary

ISSWR vs. iRock: Image 4

ISSWR vs. iRock: Image 4

Truth: Diorite – Igneous
iRock: Igneous

ISSWR vs. iRock: Image 5

ISSWR vs. iRock: Image 5

Truth: Andesite – Igneous
iRock: Igneous

ISSWR vs. iRock: Image 6

ISSWR vs. iRock: Image 6

Truth: Conglomerate – Sedimentary
iRock: Sedimentary

ISSWR vs. iRock: Image 7

ISSWR vs. iRock: Image 7

Truth: Gypsum – Sedimentary
iRock: Sedimentary

ISSWR vs. iRock: Image 8

ISSWR vs. iRock: Image 8

Truth: Marble – Metamorphic
iRock: Metamorphic

ISSWR vs. iRock: Image 9

ISSWR vs. iRock: Image 9

Truth: Shale – Sedimentary
iRock: Sedimentary

ISSWR vs. iRock: Image 10

ISSWR vs. iRock: Image 10

Truth: Granodiorite – Igneous
iRock: Igneous

ISSWR vs. iRock: Image 11

ISSWR vs. iRock: Image 11

Truth: Anhydrite – Sedimentary
iRock: Sedimentary

ISSWR vs. iRock: Image 12

ISSWR vs. iRock: Image 12

Truth: Granite – Igneous
iRock: Igneous

ISSWR vs. iRock: Image 13

ISSWR vs. iRock: Image 13

Truth: Marble – Metamorphic
iRock: Metamorphic

ISSWR vs. iRock: Image 14

ISSWR vs. iRock: Image 14

Truth: Rhyolite – Igneous
iRock: Metamorphic

ISSWR vs. iRock: Image 15

ISSWR vs. iRock: Image 15

Truth: Skarn – Metamorphic
iRock: Metamorphic

ISSWR vs. iRock: Image 16

ISSWR vs. iRock: Image 16

Truth: Limestone – Sedimentary
iRock: Sedimentary

ISSWR vs. iRock: Image 17

ISSWR vs. iRock: Image 17

Truth: Schist – Metamorphic
iRock: Metamorphic

ISSWR vs. iRock: Image 18

ISSWR vs. iRock: Image 18

Truth: Syenite – Igneous
iRock: Igneous

ISSWR vs. iRock: Image 19

ISSWR vs. iRock: Image 19

Truth: Sandstone – Sedimentary
iRock: Sedimentary

ISSWR vs. iRock: Image 20

ISSWR vs. iRock: Image 20

Truth: Schist – Metamorphic
iRock: Metamorphic

ISSWR vs. iRock: Image 21

ISSWR vs. iRock: Image 21

Truth: Conglomerate – Sedimentary
iRock: Sedimentary

ISSWR vs. iRock: Image 22

ISSWR vs. iRock: Image 22

Truth: Diabase – Igneous
iRock: Igneous

ISSWR vs. iRock: Image 23

ISSWR vs. iRock: Image 21

Truth: Limestone – Sedimentary
iRock: Sedimentary

ISSWR vs. iRock: Image 24

ISSWR vs. iRock: Image 24

Truth: Siltstone – Sedimentary
iRock: Sedimentary

ISSWR vs. iRock: Image 25

ISSWR vs. iRock: Image 25

Truth: Schist – Metamorphic
iRock: Metamorphic

ISSWR vs. iRock: Image 26

ISSWR vs. iRock: Image 26

Truth: Volcanic Sandstone – Igneous
iRock: Igneous

Man vs. Machine: ISSWR Students &
iRock

Woohoo!!

… out of 26 correct 24 out of 26 correct

iRock: Recap

Truth: Igneous
iRock: Igneous (87.5%), Sedimentary (12.5%), Metamorphic (0%)

iRock: Recap

Truth: Sedimentary
iRock: Sedimentary (91%), Igneous (0%), Metamorphic (9%)

iRock: Recap

Truth: Metamorphic
iRock: Metamorphic (100%), Igneous (0%), Sedimentary (0%)

iRock: Another Test
(after re-training)

Truth: Igneous
iRock: Igneous (87.5%), Metamorphic (12.5%), Sedimentary (0%)

iRock: Another Test
(after re-training)

Truth: Sedimentary
iRock: Sedimentary (80%), Igneous (0%), Metamorphic (20%)

iRock: Another Test
(after re-training)

Truth: Metamorphic
iRock: Metamorphic (42.9%), Igneous (57.1%), Sedimentary (0%)

Not so lucky this time!

iRock: Discussion

How many features?
Which features?

Can we take better advantage of prior knowledge?

What happened and why?

How much training?
How much testing?

How could we apply this technique to landslide prediction?
How could we apply this technique to landslide identification?

Landslide (deep) identification

LiDAR 1m data

LiDAR 1m data

Yay NCALM!

Filter vegetation

Bare earth

Landslides

Landslides
(3-D, vertical
exaggeration)

- Rougher texture
- Edges around scarp

- Differently dissected
- Differently sloping

Signature:

USGS 10m data

- Smoother texture
- Less defined edges
- Flatter slopes
- More uniform
slope direction

Signature:

Can we learn the signature independently of the type of data?

Test patches

Non-landslide (patch 2)

Landslide (patch 1) GradientsP-HOG

Not landslide (patch 4)

Landslide (patch 3)
GradientsP-HOG

Lib-SVM
(thanks Subhransu!)

- Matlab implementation:
- LibSVM
- Training, test, and

classify routines
- Linear, Radial Basis,

or Sigmoid Kernels

- Learning:
- 6 training patches

(red – landslide,
green – non landslide)

Lib-SVM
(thanks Subhransu!)

- Matlab implementation:
- LibSVM
- Training, test, and

classify routines
- Linear, Radial Basis,

or Sigmoid Kernels

- Learning:
- 6 training patches

(red – landslide,
green – non landslide)

-Testing:
- 10 new patches

(orange – landslide,
yellow – non landslide)

Lib-SVM Results

- Much to my surprise:
Nine out of ten correct!
(correct – green,
incorrect - red)

Lib-SVM Results

- Much to my surprise:
Nine out of ten correct!
(correct – green,
incorrect - red)

- False positive:
Not sure who was right …

Lib-SVM Results

- Much to my surprise:
Nine out of ten correct!
(correct – green,
incorrect - red)

-10m data:
Same result

Landslide (shallow) prediction

- Instrumented:
• Piezometers
• Rain gauges
• Weirs

- Sprinkling
experiments

- Mapped
landslides
D d f

Shalstab: a compact simple model

Transmissivity

tan1 sin
tan

s

w

q b

T a

ρ θ θ
ρ φ

 = − 
 

Topographic
slope

Head
gradient

Drainage
area

Friction
angle

Effective
Precipitation
(steady state)

Soil
density

: Increasing these values increases stability

: Increasing these values increases instability

For documentation and software go to:
http://calm.geo.berkeley.edu/~geomorph

[Montgomery and Dietrich, 1994]

Shalstab: Performance
(over-prediction)

log(q/T)
(1/m)

[Dietrich and Montgomery, 1998]

Parameters: • ρs/ρw = 1.6
• φ = 45°

 No soil depth  No cohesion

Soil depth

- Soil production:

- Soil transport:

- Regionally calibrated

- No landsliding in
this realization!

hbz
e

t
αε −∂

− =
∂

[Roering et al., 1999; Heimsath et al., 2001]

21 (/)c

K zq
z S
∇=

− ∇


Observation:
landslides in

thick soils

Root Strength

Observation: landslides
in low root strength

0
0

z

rl r
zjR C dze−= 

rl
l

R
C

z
=

b rzC C=

a: basal, b: lateral

- Exponential:

- Total:

- Lateral:

- Basal

0rz r
zjC C e−=

From
CB-1
data

Cr0 = 21666 Pa
j = 4.96 m-1

[Benda & Dunne, 1997; Schmidt et al., 1999; Montgomery et al., 2009]

The descriptor

True positives and true negatives?

True positives and true negatives?

Training and testing

Training and testing

Parameter search
(radial basis function)

Test area:
all data pixels
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab draped
on shaded relief

Pixel Statistics: Accuracy = 97.0 % , Precision = 34.8%, Recall = 12.9%,
F-Score: 18.9%, True Positive Rate = 12.9%, False Positive Rate = 0.7%

Typical values

Descriptor includes physical attributes and derivatives at fine and coarse scales.
Textural attributes: range, entropy, STD(fine scale), entropy, STD(coarse scale)

Smoothing:
None

Test area:
All data pixels
In red polygon
(not seen in
training phase)

Background:
Shalstab draped
on shaded relief

Actual
landslides

Predicted
landslides

Detail
Typical values

Why
here?

Test area:
all data pixels
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab (relative
potential for
instability) draped
on shaded relief

Pixel Statistics: Accuracy = 95.8 % , Precision = 28.8%, Recall = 35.2%,
F-Score: 31.7%, True Positive Rate = 35.2%, False Positive Rate = 2.4%

Typical values

Descriptor includes physical attributes and derivatives at fine and coarse scales.
Textural attributes: range, entropy, MAD(fine scale), MAD(coarse scale)

Smoothing:
5-pixel Gaussian

Test area:
All data pixels
In red polygon
(not seen in
training phase)

Background:
Shalstab draped
on shaded relief

Actual
landslides

Predicted
landslides

Detail
Typical values

No landslides
Here!

Test area:
all data pixels
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab draped
on shaded relief

Pixel Statistics: Accuracy = 94.2 % , Precision = 10.8%, Recall = 15.4%,
F-Score: 12.7%, True Positive Rate = 15.4%, False Positive Rate = 3.5%

Typical values

Effect of removing super-pixel STD and entropy:
Decrease in precision, increase in recall

Smoothing:
None

Test area:
all data pixels
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab draped
on shaded relief

Pixel Statistics: Accuracy = 90.0 % , Precision = 8.1%, Recall = 25.7%,
F-Score: 12.3%, True Positive Rate = 25.7%, False Positive Rate = 8.2%

Typical values

Effect of removing texture at all scales:
Decrease in precision, increase in recall, converging towards Shasltab!

Smoothing:
None

Test area:
all data pixels
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab draped
on shaded relief

Pixel Statistics: Accuracy = 89.3 % , Precision = 11.8%, Recall = 44.6%,
F-Score: 18.6%, True Positive Rate = 44.6%, False Positive Rate = 9.4%

Typical values

Effect of removing soil depth (i.e. constant 1m) not as bad as removing texture:
Decrease in accuracy and precision, big increase in recall

Smoothing:
5-pixel Gaussian
Morphing:
Majority

Test area:
all data pixels
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab draped
on shaded relief

Pixel Statistics: Accuracy = 92.4 % , Precision = 11.3%, Recall = 26.1%,
F-Score: 15.8%, True Positive Rate = 26.1%, False Positive Rate = 13.7%

Typical values

Effect of removing everything related to area:
Decrease in accuracy, precision, and recall

Smoothing:
5-pixel Gaussian
Morphing:
Majority

Results are encouraging:

- Implicitly figured out a
Shalstab-like rule

- Reduced over-
prediction

- Couple physical and
empirical models?

- Need landslide
databases with long
term observations!

- Can we apply to the
temporal domain?

Application to storms:
Seattle landslides

[Markuzon et al. 2012]

Application to storms:
Seattle landslides

[Markuzon et al. 2012]

Summary

 Data-driven approaches are easy to implement given good training data

 They can be used to identify geomorphological features in a landscape

 Such methods also have good predictive potential

 Coupling mechanistic and empirical slope stability models can help reduce
over-prediction

 Similar approach can be used to improve the prediction of landslide-
triggering storms

We need large, detailed,
accurate, and long-term

landslide datasets!

Dino Bellugi
Postdoctoral Scholar
Perron Surface Processes Group
O’Gorman Atmospheric and Hydrological Processes Group
Department of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology
77 Massachusetts Avenue, Building 54–1025
Cambridge, Massachusetts 02139–4307
Phone: (617) 253–2578, Fax: (617) 253–2578
Email: dinob@mit.edu
http://eapsweb.mit.edu/people/dinob

TEACHING EVALUATIONS

The following pages contain student teaching evaluations two courses at the University of California,
Berkeley:

• Instructor, Spring 2011, EPS209 “Matlab Applications in Earth Science”. New graduate course
offering a practical toolbox for analyzing Earth science data, and to explore selected problems in
earth and environmental sciences, with particular focus on image processing and machine learning
techniques. Responsible for curriculum, lectures, and labs development, grades, and office hours.
Co-developed and co-taught with Prof. Burkhard Militzer.

• Graduate Student Instructor, Fall 2009, EPS50 “The Planet Earth”. Instructors: Prof. Michael Manga
and Prof. Doug Dreger. Undergraduate introductory course on geology and geophysics. Gave
lectures, guided labs and field trips, advised students, graded assignments, and held office hours.

	GRADUATE TRANSCRIPT

