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SAMPLE LECTURE SLIDES 

The following pages contain sample lecture/lab slides from courses taught at the Massachusetts Institute of 
Technology, the University of California, Berkeley, and from one of three shourt courses given at a Summer 
School on Water Research: 
 

• Guest lecturer, MIT, Fall 2013, EAPS 12.163 “Geomorphology”. Instructor: Prof. Taylor Perron. 
Lecture on shallow landslide prediction.  

 
• Instructor, UCB, Spring 2011, EPS209 “Matlab Applications in Earth Science”, co-developed and co-

taught with Prof. Burkhard Militzer. Lecture and lab on image segmentation, lecture and lab on 
GIS, Mapping Toolbox, and WMS. 
 

• Lecturer, 2nd International Summer School on Water Research, “Landslide modeling and Early 
Warning Systems”, Summer 2013. Lecture on support Vector Machine Classification for Earth 
Science applications. 
 

 



Shallow landslides

Outline:

Slope stability
• Mohr-Coulomb failure
• Simple theory
• Implications for failure

Hydrological model
• Darcy’s law
• Simple model for wetness

Shalstab
• Theory
• Application

If we have time:

- Debris flows potential

- Landslide size
• 3-D stability model
• Search algorithm

[Photo: Bill Dietrich]

Shallow landslides

[Photo: Bill Dietrich]



Shallow landslides

[Photo: John Stock]

Shallow landslides

[Photo: Bill Dietrich]Near Rio de Janeiro, Brasil, January 2011, ~1500 casualties



Shallow landslides

Marin Co., CA 1998

Marin Co., CA 1998

Deep seated landslides

Laguna Beach 2005

La Jolla 2007



Risk Prediction

[Dietrich & Montgomery, 1998; Bellugi, et al., 2011; Stock & Bellugi, 2011]

Landscape 
Evolution

[Tucker and Bras, 1998]

Ridge and valley topography
In the Oregon Coast Range



Where?

When?

How big?

How far?

Mass gain or loss?

Laguna Beach, California, 1998 

5 Key Questions

What we know: when?

[Guzzetti, et al., 2008]

Location



What we know: how big?

Malamud, et al., 2005]

Where?

When?

How big?

How far?

Mass gain or loss?

Laguna Beach, California, 1998 

5 Key Questions



Ridge and valley topography
In the Oregon Coast Range

Unchanneled valley

Shallow landslide

Deep seated landslide
Debris 
flow 
runout

Landslide 
scar

Colluvium 
accumulation

Soil 
production 
from bedrock

A

A

B

B

B’

B’

A’

A’

Example: processes shaping the 
Oregon Coast Range



Shallow Landslides

[Dietrich]



Mohr-Coulomb Failure 

' tan C   
CohesionFriction angleNormal stress

(effective)
Shear strength

Frictional forceNormal force

Gravitational force

Questions: 
- When not applicable? 
- How is it parameterized?

Assumptions: 
- Brittle materials
- Contact area << total contact surface
- Normal force  contact area

Mohr-Coulomb Failure 

Assumptions and limitations: 
- Shear is the failure mechanism, occurring at peak strength
- Other mechanisms: strain-induced liquefaction
- Direction of failure doesn’t always agree with observations
- Friction and cohesion act in unison
- Strength-stress relationship often not linear

' tan C   



Mohr-Coulomb for Landslides 

 tan)( uC 
Cohesion

(soil and roots)
Friction angle

(angle of repose)
Normal stress

(increases friction)
Downslope 
Soil weight

Pore pressure
(reduces friction)

Valid immediately before failure

A simple implementation: 
- Ignore cohesion for now
- Pore pressure  normal component of the weight of 

the water present in the soil
- Compute the down-slope and slope-normal forces
- Use a typical value for phi (e.g. 30-45 degrees)

Infinite Slope Framework

- Infinite inclined plane with angle 
- Failure plane parallel to the surface
- Failure occurs at soil/bedrock boundary
- Flow parallel to the failure boundary

Key assumptions:



Infinite Slope

 tan)( uC 

Add force decomposition (sin and cos):

- Downslope weight = 

- Normal stress = 

- Pore pressure =

Where s and w are soil and water bulk density. 

We get:

2 2cos sin ( cos cos ) tans s wgz gz gh        

cos sins gz  
2coss gz 
2coswgh 

Cohesion
(soil and roots)

Friction angle
(angle of repose)

Normal stress
(increases friction)

Downslope 
Soil weight

Pore pressure
(reduces friction)

[Dietrich et al., 1994, 1995, 2001, etc.]

tan tan (1 ( ))s w     

Instability Condition

Implications:

- Soil does not need to be fully saturated for failure!
- Four cases:

• “Unconditionally stable”: failure requires h/z > 1, i.e.: 
• “Unconditionally unstable”: slope > than friction angle (h/z < 0)
• “Stable”: h/z < R.H.S.
• “Unstable”: h/z > R.H.S.

2 2cos sin ( cos cos ) tans s wgz gz gh        

tan1
tan

s

w

h

z

 
 

 
  

 

[Montgomery and Dietrich, 1994]

0 1h

z
 Note:

(when stress=strength)



tan tan (1 ( ))s w     

Instability Condition

- Four cases:
• “Unconditionally stable”: failure requires h/z > 1, i.e.: 
• “Unconditionally unstable”: slope > than friction angle (h/z < 0)
• “Stable”: h/z < R.H.S.
• “Unstable”: h/z > R.H.S. [Montgomery and Dietrich, 1994]

Coos Bay Field Site

- Instrumented:
• Piezometers
• Rain gauges
• Weirs

- Sprinkling 
experiments

- LiDAR data
- Mapped landslides



Coos Bay Field Site

- Instrumented:
• Piezometers
• Rain gauges
• Weirs

- Sprinkling 
experiments

- LiDAR data
- Mapped landslides

Coos Bay Instrumentation

[Montgomery et al 2009, Ebel et al 2007]



Coos Bay Rain

November 12-20, 1996 [Montgomery et al., 2009]

Coos Bay Before and After

[Photos: Dietrich]



h/z for Slope Instability

How do we 
compute h/z?

Unstable

Stable

h/z

Coos Bay field site

tan1
tan

s

w

h

z

 
 

 
  

 

[Dietrich and Montgomery, 1998]

Hydrology: Darcy’s Law
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Velocity: If flow is uniform:

Empirically:

Assumptions:
- Laminar flow (non-turbulent, kinetic energy ignored)
- Over areas much larger than pore sizes (~ 10x)
- Constant fluid properties (temperature, density, etc.)

θ: slope angle [L/L]
ks: the hydraulic conductivity [L/T]

Velocity [L/T]:Discharge [L3/T]:

http://biosystems.okstate.edu/Darcy



cos sinsk h b 

Hydrology: Darcy’s Law

bhkqa s  sincos

sinsV k 

cos cos sinsVh k h  

Velocity of fluid:

Flux (per 
unit width):

Conservation 
of mass:

At steady 
state:

Input Output Storage  
qa Output Storage  

0qa Output 
qa Output

sinθ: the head gradient [L/L]
ks: the saturated conductivity [L/T]
hcosθ: the (normal) saturated thickness [L]
q: effective precipitation (p-ev-d) [L/T]
a: horizontal surface area [L2] [Dietrich]

cos sinsk h b 

Steady State Subsurface Flow

bhkqa s  sincosSteady state
subsurface flow:

At saturation (h=z):

Note that:

Let:

Approximation:

cos sinsqa k z b 
( )sk f y

cossT k dy 
declines with depth
(often exponentially)

cossT k z 
sinqa T b

q: effective precipitation (p-ev-d) [L/T]
sinθ: the head gradient [L/L]
ks: the saturated conductivity [L/T]
T: the transmissivity [L2/T]
zcosθ: the (normal) soil thickness [L]
hcosθ: the (normal) saturated thickness [L] [Dietrich]



cos sinsk h b 

Steady state
subsurface flow:

At saturation:

Saturation Subsurface Flow

sinqa T b

Effective 
precipitation

Topographic
index

Material
properties

sin
a T

b q


q: effective precipitation (p-ev-d) [L/T]
sinθ: the head gradient [L/L]
ks: the saturated conductivity [L/T]
T: the transmissivity [L2/T]
zcosθ: the (normal) soil thickness [L]
hcosθ: the (normal) saturated thickness [L] [Dietrich]

Topographic Index

Effective 
precipitation

Topographic
index

Material
properties

sin
a T

b q


[Dietrich and Montgomery, 1998]



Drainage Area

Effective 
precipitation

Topographic
index

Material
properties

sin
a T

b q


[Dietrich and Montgomery, 1998]

At saturation:

In general:

Simple model for relative saturation

cos sinsk h b 

Effective 
precipitation

Topographic
index

Material
properties

sin
a T

b q


a/b: drainage area per cell width [L]
h/z: relative saturation [L/L]
q: effective precipitation (p-ev-d) [L/T]
sinθ: the head gradient [L/L]
T: the transmissivity [L2/T]

Relative saturation
(“wetness”) sin

h q a

z T b 


[Montgomery and Dietrich, 1994]

sin
a T h

b q z




Relative Saturation

sin
h q a

z T b 


log (q/T) 
(1/m)

q/T (1/m) q (m/day)
(for T=65m2/day)

-3.4 0.00040 0.026
-3.1 0.00079 0.05135
-2.8 0.00158 0.1027
-2.5 0.00316 0.2054
-2.2 0.00633 0.41145
-1.9 0.01266 0.818

Steady state precipitation
(generally not reached!)

Slope stability model:

Hydrological model:

Couple the models:

Shalstab:

Shalstab

tan1
tan

s

w

h

z

 
 

 
  

 

sin
h q a

z T b 


tan1
sin tan

s

w

q a

T b

 
  

 
  

 

tan1 sin
tan

s

w

q b

T a

  
 

 
  

 

Instability
condition

Relative
saturation

[Montgomery and Dietrich, 1994]



Shalstab: a compact simple model

Transmissivity

tan1 sin
tan

s

w

q b

T a

  
 

 
  

 

Topographic
slope

Head
gradient

Drainage 
area

Friction
angle

Effective 
Precipitation
(steady state)

Soil
density

: Increasing these values increases stability

: Increasing these values increases instability

Questions: 
- What is the role of slope? 
- What can Shalstab tell us?

For documentation and software go to:
http://calm.geo.berkeley.edu/~geomorph

[Montgomery and Dietrich, 1994]

Controls on instability: Slope vs. Area

 Below 30 degrees area controls instability
 Slope becomes important above 30 degrees

[Dietrich and Montgomery, 1998]



Relative instability potential

tan1 sin
tan

s

w

q b

T a

  
 

 
  

 

 Drainage area dominates, until the slopes become steep!

a/b
(m)

log(q/T)
(1/m)

[Dietrich and Montgomery, 1998]

Controls on instability: Slope vs. Area



Shalstab: Performance

log(q/T)
(1/m)

[Dietrich and Montgomery, 1998]

Parameters: • s/w =  1.6
•  = 45°

 No soil depth  No cohesion  Over prediction!

Controls on instability: Resolution

[Dietrich et al., 2001]

High resolution vs. 
low resolution data:

 Number of captured landslides  Percent of landscape affected



Where?

How big?

How far?

When?

Mass gain or loss?

Laguna Beach, California, 1998 

5 Key Questions

Infinite Slope Framework

- Infinite inclined plane with angle 
- Failure plane parallel to the surface
- Failure occurs at soil/bedrock boundary
- Flow parallel to the failure boundary

Key assumptions:



Infinite Slope Framework

- Normal forces from upslope and downslope boundaries
- Sidewall friction
- Cohesion on the lateral boundaries

Neglects:

Landslide Size

[Schmidt, et al., 2001]



Lateral reinforcement matters

FS 
Fsb Fsl  Fp F

a

Fd

• Based on Wedge Method
(Chen, 1981)

•Consider forces on all 5 boundaries
• Include cohesion & friction
 Fsb =basal shear resistance
 Fsl = lateral shear resistance
 Fp = passive wedge resistance
 Fa = active wedge driving force
 Fd = block driving force

3-D Slope stability model

l = block length
w = block width
z = failure plane depth
θ = failure plane slope[Milledge et al., in prep.; Bellugi 2012]



3-D Slope stability model

Spatial Data:
• Elevation
• Soil depth
• Water table height
• Root strength field

Material Properties:
• Friction angle
• Bulk density

Assumptions: 
Rigid block
Failure plane location

[Milledge et al., in prep.; Bellugi 2012]

3-D Slope stability model

• Grid application based on Hovland’s method of columns
• i.e. ratio of the sum of driving and resisting forces

• But include new treatment of boundaries
[Hovland 1977]



A discrete landscape model

• Discretize landscape into grid of cells
• Associate each cell with a node in a graph

A discrete landscape model



A discrete landscape model

• Discretize landscape into grid of cells
• Associate each cell with a node in a graph
• Nodes: landscape cells annotated by driving forces
• Edges: resistive forces between neighboring grid cells

Storms

Composite (6 24-hour storms): 1996 storm 10-minute time series:

November 12-20, 1996



Results

Composite (6 24-hour storms): 1996 storm 10-minute time series:

Still much over prediction!

Results

Landslide size: Location (topographic index):

Captures observed distributions!



Homework

Final Project

Think about it soon:
 It will help us fine-tune the class
 We can point you towards useful resources
 You will run out of time

Individual:
 Exception: collaboration (2 people max) for a harder problem
 Proposal (< 1 page) stating objectives and methods by March 9th

 10 minute presentation (plus questions) on April 13th

 Note: a little more expected from a group effort

Current proposals:
 Quantify constituents in concrete from electron microscopy images
 Extract vegetation characteristics from satellite imagery
 Model hillslope hydrology



Review

 Transforming images to binary (thresholding, indexing, filtering)
 Regions from binary images (bwconncomp())
 Measuring regions (regionprops())

Today: Image Segmentation (part 1)

Algae Patches:
 Selecting a Region of Interest (ROI) in an image
 Alternative metric for measuring similarity
 Pixel-based segmentation

Victoria Crater (Mars):
 Images as watersheds
 The Watershed Transform
 Median filtering

San Pablo Reservoir:
 “Texture” Filters
 Morphological operations



Algae Identification and rgb2ind()

 Using rgb2ind() with 4 colors (recolored for more contrast)

 Our task: we only want to label coherent regions that are 
similar to a few user-defined algae types and discard the rest.

Algae Identification and rgb2ind()

 Note: rgb2ind() assigns every pixel to one of n colors
 Our task: we only want to label coherent regions that are 

similar to a few user-defined algae types and discard the rest.

 How do we define “similar”?
 How do we select a “color representation” for each type?



Selecting a Region of Interest (ROI)

 The function roipoly() allows for manual region selection
 It returns a mask containing 1 inside the region and 0 outside
 How do we describe this region?
 What is representative of this region?

Picking a Representative Color

 Simplest: pick the mean color
 Then similarity implies being 

within a certain (Euclidean) 
distance in RGB space
 The pixels that are within a 

sphere centered at the mean 
color are similar
 Is this too simplified?

B

R

G



Picking a Representative Color

 Compute the mean and the 
covariance matrix
 Then similarity implies being 

within a weighted distance 
 The pixels that are within an 

ellipsoid centered at the mean 
color are similar
 Known as the Mahalanobis

distance
 In Matlab: 

functions mahal(), cov()

1135.9 1072.1 380.2
1072.1 1031.7 364.7
380.2 364.7 335.6

 
 
 
 
 



Covariance MatrixMean

B

R

G

Smoothing

 Some of the variance is noise, and we’d like coherent regions
 We can remove it by averaging neighboring pixels:
myFilter = fspecial(‘average’, 10);
smoothImg = imfilter(myImage, myFilter);



Simple Supervised Learning Algorithm

 Read the image

 Smooth the 
image

 Pick the 
representative
color patches

 Learn mean and 
covariance for 
each patch 

Simple Supervised Learning Algorithm

 Compute the mininum Mahalanobis
distance of all pixels to any mean color

 Assign each pixel to 
index of closest color

 Function of two or three parameters:

 Label each pixel that is too distant as 
belonging to no class (index = 0)

 Number of colors  Threshold of distance  Filter size (optional)



Result

A reasonable and simple start, but still very crude
How could we improve the procedure?

Regions from “continuous” images

So far: 
 Pixel-based 

segmentation 
methods

Other approaches:
 Global: 

“Topography”
“Morphology”

 Local:
Edge 
detection
Topology

Cardiac MRI image Gradient image

Topography Edges



Victoria Crater (Mars)

Dunes in Victoria Crater

Goal:
Measure the geometry of 
depressions in the dunes



Watersheds

“That area of land, a bounded 
hydrologic system, within which all 
living things are inextricably linked 
by their common water course and 
where, as humans settled, simple 
logic demanded that they become 
part of a community."

Director of the USGS
(1881-1894)

John Wesley Powell

Watershed Transformation to Group 
Pixels into Regions

•Interpret grey level as elevation
•Decide which pixels are connected
•Drop water on every pixel and see 
which local minimum it drains to
•Identify regions that drain to the 
same minimum, identify borders 
also



Images and Watershed Transformation

Intensity as elevation:

Watershed Transform



Marker-Controlled Watershed Transform

Dunes in Victoria Crater

% clear and close all
clear all; 
close all

% read image
I = 
imread('victoria_crater4.png');
imshow(I); 
title('original image');



Grayscale

% grayscale image
G = rgb2gray(I);
figure; imshow(G);
title('grayscale');

Watershed

% now the watershed
L = watershed(G);
G2 = G;
G2(L == 0) = 255;
figure; imshow(G2);
title('result');
impixelinfo

What happened?



Smoothed (Mean)

% smooth a little
fSize = 24;
h = ones(fSize,fSize) / fSize^2;
Sm = imfilter(G, h);
figure; imshow(Sm);
title('mean smoothing');

Watershed on Smoothed Image

% now the watershed
L = watershed(Sm);
L0 = (L==0);
G2 = Sm;
G2(L0) = 255;
figure; imshow(G2);
title('result');



Overlay Watershed Boundaries and 
Original Color Image

% color image
I1=I(:,:,1); I1(L0)=0; % red
I2=I(:,:,2); I2(L0)=0;  % green
I3=I(:,:,3); I3(L0)=0;  % blue
II=cat(3, I1, I2, I3);  % rgb
figure; imshow(II); 
title('color image with 
watershed boundaries');

Detail View

Good enough?



Grayscale Image vs. Smoothed (Mean)

A Different Way to Smooth: Median Filter

% smooth a little (median)
fSize = 24;
Sm = medfilt2(G, [fSize fSize]);
figure; imshow(Sm);
title('median smoothing'); 

• Removes “salt and pepper” 
noise

• Preserves edges



Smoothed Image: Mean vs. Median

Watershed and Median Smoothing

% now the watershed
L = watershed(Sm);
L0 = (L==0);
G2 = Sm;
G2(L0) = 255;
figure; imshow(G2);
title('result');



% color image
I1=I(:,:,1); I1(L0)=0;  % red
I2=I(:,:,2); I2(L0)=0; % green
I3=I(:,:,3); I3(L0)=0;  % blue
II=cat(3, I1, I2, I3);  % rgb
figure; imshow(II); 
title('color image with 
watershed boundaries');

Comments, ideas?

Overlay Watershed Boundaries and 
Original Color Image

Guiding the Watershed Transform

• What do the depressions have in 
common?

• Can we inform the watershed 
transform?



Regional Extended Minima

% get regional minima "deeper" 
% than a specified threshold
thresh = 3;
Imin = imextendedmin(Sm,thresh);
figure; imshow(Imin);
title('extended minima');

Note: similar function for maxima:
imextendedmax()

Imposed Extended Minima

% now we have internal markers, 
% impose them on original image:
G2 = imimposemin(G, Imin);
figure; imshow(G2);
title('markers');

• Impose regional minima on the 
original grayscale image

• The function imimposemin(I, BW) 
modifies an intensity image I so that   
it only has the regional minima 
contained in BW



Marker-Controlled Watershed

% now the watershed
L2 = watershed(G2);
L0 = (L2==0);
G3 = Sm;
G3(L0) = 255;
figure; imshow(G3./255);
title('result');

% color image
I1=I(:,:,1); I1(L0)=0;  % red
I2=I(:,:,2); I2(L0)=0; % green
I3=I(:,:,3); I3(L0)=0;  % blue
II=cat(3, I1, I2, I3);  % rgb
figure; imshow(II); 
title('color image with 
watershed boundaries');

Better!

Overlay Watershed Boundaries and 
Original Color Image



Detail View

Better!

Watershed Function also Outputs Labels

% label and show
map = lines(max(L2(:)));
G4 = label2rgb(L2, map);
figure; imshow(G4);
title('result labels');

Output of Watershed function:

• Matrix the size of the image
• Zero on the boundaries
• Region number inside the regions



Applications of Watershed Transform

 Directly on an image
 On the gradient of the image
 On the Distance Transform

In Matlab: bwdist() Also called: the Euclidean Distance Map (EDM)

From: “The Image Processing Handbook”

San Pablo Reservoir

Identified lake area: 190146 pixels (last lecture)



Review: Entropy Filter

fSize = 9; nHood = true(fSize);
E = entropyfilt(G,nhood);
figure; imshow(E);

New: Range Filter

fSize = 9; nHood = true(fSize);
E = rangefilt(G,nhood);
figure; imshow(E);



New: Standard Deviation Filter

fSize = 9; nHood = true(fSize);
E = stdfilt(G,nhood);
figure; imshow(E);

New: Gradients

[Gx Gy] = gradient(double(G));
Gr = sqrt(Gx.^2 + Gy.^2);
figure; imshow(Gr); Also: diff(),  del2()



Morphological operations:
Erosion, Dilation, Opening Closing

Example of Erosion

Note: Matlab likes to operate on foreground objects! 

 Does B “fit” in the set X?
 Retain all points (i,j) in X such that when B is centered at (i,j), 

B is contained in X
 Mathematically:

 In Matlab: imerode(Img,Elt)

Image Erosion

Structuring 
Element



 Does B “touch” the set X?
 Add to X all points (i,j) in B such that when B is centered at 

(i,j), B is overlapping with X
 Mathematically:

 In Matlab: imdilate(Img,Elt)

Image Dilation

Structuring 
Element

Image Opening

 Does B “fit” in the set X?
 Like with erosion, retain all points (i,j) in X such that when B is 

centered at (i,j), B is contained in X
 When the previous is true, also keep all of B
 Mathematically:

 In Matlab: imopen(Img,Elt)

Structuring 
Element



 Does B “fit” in the background of the set X?
 When the previous is true, all of B belongs to the background
 The complement of the new background define X
 Mathematically:

 In Matlab: imclose(Img,Elt)

Image Closing

Structuring 
Element

Structuring Elements

Structuring Elements
'arbitrary' 'pair'
'diamond' 'periodicline'
'disk' 'rectangle'
'line' 'square'
'octagon'

Many shapes:



Next time: Segmentation from Edges

The Covariance Matrix (Review)

 Consider a 6-sided fair die where outcomes all have probability 1/6
 The mean (the expected value) is:

 The variance is the squared deviation from the mean:

 The covariance matrix is a generalization of the variance:

 i.e., the matrix whose (i,j) entry is:

 For the die this is an identical definition to the variance:

 But for the color pixels it is a 3x3 matrix

6 6

1 1

1( ) ( ) (1 2 3 4 5 6) / 6 3.5
6i i i

i i

E X XP X x p x
 

            

     
6 6

2 2 22

1 1

1( ) 3.5 2.9
6i i

i i

Var X E X p x i  
 

            

     ( )
T

Cov X E X E X X E X     
 

   ( , )
T

ij i j i i j jCov x x E x x        

   2.5 1.5 0.5 0.5 1.5 2.5 2.5 1.5 0.5 0.5 1.5 2.5 / 6 2.9T      

In Matlab:
function cov()



Spring 2011, EPS 209 “Matlab Applications in Earth Sciences”, Instructors: Burkhard Militzer and Dino Bellugi  

Computer Lab Assignment 3 

Image Segmentation 1 
 

This lab has two parts. First we will apply the watershed transform to identify dune regions on 
Mars. This is an application of the region-based image segmentation methods that were 
discussed in the lecture. In the second part, we will learn how to use the pixel-based image 
segmentation and the Mahalanobis distance measure. We will apply this approach to aerial 
imagery of Marin County, CA and measure the extent of forestation.  
 
Part 1 – Dunes in Craters on Mars 
Here we will apply the watershed transformation to identify dune regions on Mars. Different 
filtering techniques will be discussed to obtain good results. 
 

1) Download the file craterdunes2.jpg from bSpace. Then start 
writing a new Matlab script that displays it. 
    clf ; clear ; close all 
    I = imread('craterdunes2.jpg');  
    G = rgb2gray(I); 
    figure; imshow(G);title('grey scale image'); impixelinfo 

Apply the watershed transformation 
    L = watershed(G, 8); 
    figure, imshow(L); title('watershed'); 

and superimpose the region boundaries on the original image  
    I1=I(:,:,1); I1(L==0)=255;  
    I2=I(:,:,2); I2(L==0)=0; 
    I3=I(:,:,3); I3(L==0)=0; 
    II=I; II(:,:,1)=I1; II(:,:,2)=I2; II(:,:,3)=I3;  
    imshow(II); title('color image with watershed boundaries'); 

You obtain an over-segmented image that we shall now improve upon.  
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2) Smooth the image before the watershed transform by applying an averaging filter. Insert the 
following lines into your code: 
    n=3; h = ones(n,n) / (n*n);  
    G = imfilter(G,h); 
    figure, imshow(G); title('filtered image (averaged)'); 

Increase the filter size n until you obtain the best result. You should now have obtained an image 
with region of reasonable size but with boundaries shifted towards the setting sun.  

3) Rather than applying an averaging, or mean, filter, try a median filter: 
   G2 = double(G); 
    G3 = medfilt2(G2, [n n]) ./ 255; 
    figure; imshow(G3);title('median smoothing');impixelinfo 

Are the results any better? Decide for yourself and keep using your preferred filtering technique 
with the optimal filter size for part 4. 

4) Now we want to apply the marker controlled watershed transform where we first identify the 
shadiest regions in the filtered image that are darker then their surrounding by a certain 
threshold. Then we use the Matlab command imimposemin to manipulate the original image in 
such a way that it only has minima where GMin has been set to zero by the imextendedmin 
command. 
   % get regional minima "deeper" than a threshold 
    min_thresh = 3/255; 
    GMin = imextendedmin(G3, min_thresh); 
    figure; imshow(GMin);title('extended minima'); 
  
    % now we have “markers”, impose them on original image 
    G4 = imimposemin(G, GMin); 
    figure; imshow(G4);  
    title('original grey scale with minima imposed (markers for watershed)');impixelinfo 
  
    L = watershed(G4, 8); 

Try this method for different threshold values. You should see how the minima identified by 
imextendedmin grow or shrink. Characterize how this affects the resulting dune region. 
Determine the best threshold value and save your final code. Well done!! 
 
Part 2 – Telling the Forest from the Trees 
 

For this part, we will use images from the National Agriculture Imagery Program (NAIP). 
NAIP acquires aerial imagery during the agricultural growing seasons in the continental U.S.A. 
and makes digital ortho-photography available to the public through their web site: 
http://www.fsa.usda.gov/FSA/apfoapp?area=home&subject=prog&topic=landing 
For California, these and other geo-spatial data are available at http://www.atlas.ca.gov. 
These images have a spatial resolution of 1m, meaning that each pixel corresponds to 1 m2. 
For use in our lab, these images were converted to PNG format, hopefully preserving this 
resolution. 
  

http://www.fsa.usda.gov/FSA/apfoapp?area=home&subject=prog&topic=landing
http://www.atlas.ca.gov/
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1) Download the two images available on bSpace, named naip1.png and naip2.png: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Our goal will be to select a sample forest patch and automatically classify all the forest pixels in 
these images.  

Sample code will be provided for you to cut and paste into your Matlab session.  

As the size of these images is rather large, some operations such as smoothing might be slow. 
For this reason, we recommend you save the code samples in separate files so that you don’t 
have to repeat unnecessary operations and only execute those that you will be modifying. Also, 
you will need most of this code for your next homework assignment. 

 
2) Read one of the two images into Matlab and display it:  
 

% set image name 
imName = 'naip1.png'; 
 
% read and check image, get size 
rgbImg = imread(imName); 
[nRows nCols nLyrs] = size(rgbImg); 
if (nLyrs ~= 3) 
error('Image is not RGB!'); 
end 
nPix = nRows * nCols; 
 
% display original image 
figure; 
imshow(rgbImg); 
title(['RGB image ' imName]); 

Note how in the last line the string ‘RGB image’ is concatenated with the variable “imName”.  

If you wish you could save this section as readNaip.m 
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3) Smooth the image you selected and display it:  
 

% set filter size 
filtSize = 25; 
 
% smooth image 
fprintf('Smoothing image ...\n'); 
myFilt = ones(filtSize) ./ filtSize^2; 
smoothImg = imfilter(rgbImg, myFilt); 
 
% display smoothed image 
figure; 
imshow(smoothImg); 
title('smoothed RGB image'); 

Keep in mind that results may be dependent on the filter size chosen here, you may decide to 
vary the filter size after you see the results. Again, you may wish to save this code in a file such 
as smoothNaip.m 

Region selection is performed with the function roipoly(). This function enables the user to click 
around a region and create a polygon. To complete the function, right click on the polygon and 
select the option “Create Mask”. The process should look something like this: 
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4) Select a representative sample forest patch and display it:  
 
% print some instructions with the function fprintf() 
fprintf('Use mouse to delineate region for color sample\n'); 
fprintf('Click to place a vertex\n'); 
fprintf('Right-click and select Create Mask to close polygon\n'); 
 
% open a new figure for the region selection and call roipoly()  
figure; 
title('Select region'); 
roiMask = roipoly(rgbImg); 
 
% display the mask 
figure; 
imshow(roiMask); 
title('Mask'); 
 
% use the mask to extract the color region 
fprintf('Masking region ...\n'); 
red = immultiply(roiMask, smoothImg(:,:,1)); 
green = immultiply(roiMask, smoothImg(:,:,2));  
blue = immultiply(roiMask, smoothImg(:,:,3)); 
roiImg = cat(3, red, green, blue); 
 
% display the color region 
figure; 
imshow(roiImg); 
title('Color sample'); 

You may want to save this code in a separate file (such as selectNaip.m) in order to easily repeat 
the selection process roipoly() produces a black and white mask. The color region is extracted 
from the smoothed image using this mask: multiplying the image’s individual color planes by 
this mask preserves only the pixels which correspond to the value of 1 in the mask. The function 
cat() can then concatenate the resulting color planes back together into a new image. The result 
should look something like this: 

 

 

 

 

 

 

 

 

To compute statistics and distances, we need to reshape both the image and the color patch into 
vectors. This is done by using the function reshape(), you are encouraged to look it up in the 
help. Also note that these vectors are converted from integers to doubles. 
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5) Compute mean patch color and standard deviation, and print their values:  
 
% reshape image into vector of size nPix by 3 
imgPix = double(reshape(smoothImg, nPix, 3)); 
 
% reshape roi region into vector of size nPix by 3 
roiPix = double(reshape(roiImg, nPix, 3)); 
 
% find the nonzero entries in the mask 
roiIdx = find(roiMask); 
 
% keep only the RGB pixels corresponding to the mask 
roiPix = roiPix(roiIdx, 1:3); 
 
% get statistics 
fprintf('Computing region statistics ...\n'); 
 
% mean color (could be used for drawing the forest in a "truer" color) 
myMean = mean(roiPix)  
% standard deviation (use the max value for R, G, or B) 
myStd = max(std(roiPix)) 

Don’t forget to save your code. Note that printing the mean and std can be done by simply 
omitting the semi-colon at the end of the line. Also note the above code only stores the maximum 
standard deviation (from red, green, or blue). Finally, notice the use of the function find() which 
returns the indices of the nonzero values. These indices are then used to select the masked color 
information. Look at the help for this function. 

The Mahalanobis distance (see lecture notes) is computed using the function mahal(). This 
function computes the distance for each row of a (large) vector to a smaller sample, by 
considering the covariance of the smaller sample. The resulting distance needs to then be 
reshaped into the size of the image. 

6) Compute Mahalanobis distance from all image pixels to region pixels:  
  

% compute distance vector 
mahDist = mahal(imgPix, roiPix); 
 
% reshape distance and store in matrix 
myDist = reshape(mahDist, nRows, nCols); 
 
% display the distance 
figure; 
imagesc(myDist); 
title('Mahalanobis distance from region color'); 
colorbar; 
impixelinfo 

What are the sizes of imgPix, roiPix, and mahDist? What is the size of myDist after the 
reshaping?  

Enlarge the figure with the Mahalanobis distance and hover over it with your cursor (use the 
command impixelinfo if you didn’t include it in the code). What value ranges do you see? Can 
you use them to discriminate forest from non-forest? 

Segmentation is performed by assigning each pixel to either forest or not forest, based on this 
distance. Rather than picking a completely arbitrary value, we will use the region’s standard 
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deviation value as a threshold of distance. If the distance is less than one or two standard 
deviations (you get to play with these values), then the pixel is classified as forest. 

7) Segment the image based on the Mahalanobis distance and display the result: 
% define how many standard deviations are allowed 
kThresh = 1; 
% myDist contains the distances of each pixel to mean color 
% if minimum is more than k*std label it 0, else label 1 
fprintf('Thresholding pixels with distance from region color ...\n'); 
mySegm = false(nRows, nCols); 
mySegm(myDist <= kThresh * myStd) = true;  
 
% get the red, green and blue parts of the image 
Ir = rgbImg(:,:,1); 
Ig = rgbImg(:,:,2); 
Ib = rgbImg(:,:,3); 
 
% label the segmented pixels in red 
Ir(mySegm==1) = 255; 
Ib(mySegm==1) = 0; 
Ig(mySegm==1) = 0; 
 
% put the red, green, and blue parts back together 
I = cat(3,Ir,Ig,Ib); 
 
% display the labeled image 
figure; imshow(I); 
title('Classified forest on original image'); 

Look at the line mySegm(myDist <= kThresh * myStd) = true; What does it do? How many 
operations is it performing? Can you think of a way to do the same using loops? Replacing loops 
in this fashion is called “code vectorization”. 

Your result should look something like this: 

 

 

 

 

 

 

 

 

Compare the original image (the very first figure) with your result. Are you identifying most of 
the forested areas? Are you getting too much or too little forest? Which parameters affect this 
outcome?  
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8) As the region you selected is rather small compared to the entire image, one standard 
deviation might not be sufficient to accommodate the variation in the forest colors. In your 
homework you will learn how to sample from several regions, but for now we can simply relax 
the distance threshold. Increase the standard deviation threshold (kThresh) to another value 
(perhaps to 1.5 or 2) and re-run the code from section 7. Again, compare with the original image. 
Are you getting too much or too little forest? How does the smoothing affect this result? 

In this exercise we restricted classification to separating forest from not-forest. In general, more 
land cover classes may be desirable. One way to visualize such results may be with the use of a 
normalized histogram. 

9) Build a normalized histogram of the forest and non-forest pixel counts: 
% count the foreground pixels 
myCount = sum(mySegm(:)); 
 
% make a normalized distribution 
myDistr = [myCount nPix-myCount] ./ nPix; 
 
% display histogram 
figure; 
bar(myDistr); 
axis([0.5 2.5 0 1]); 
set(gca, 'XTickLabel', {'Forest', 'Other'}); 
title('Forest percentage'); 

Note that because mySegm contained only 0 and 1 values, it was sufficient to sum the mySegm 
matrix to count the forest pixels. This will not be true in general, you will have to select the 
specific class values and count how many times they occur. You have done a similar operation in 
previous exercises using loops. This operation can also be done in a “vectorized fashion”. For 
example, consider these two statements: class2 = (mySegm == 2); class2count = sum(class2(:)); 
What do they do? Also note in the above code how one can set axis labels on a figure by using 
the functions set() and gca() (get current axis). 

Perhaps the forest was not our only interest, and we wished to also measure how much plowed 
land we see in the image. We can select a different patch and run the code again without any 
changes. Note that you only have to start from step 4), no need to run from the beginning unless 
you wish to use a different smoothing filter. 
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10) Sample a patch from the image that looks like it has been plowed or farmed (like in the 
example below) and re-run the code starting from step 4. 

How does your code perform in identifying the farmed pixels? Did you have to change the 
standard deviation threshold or the smoothing filter size? How different are the distance values 
from the ones you examined during the forest exercise? Your result should look something like 
this (except perhaps better!): 
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            Lon: [1x521 double] 

            Lat: [1x521 double] 

           Name: 'Alabama' 

       LabelLat: 32.2827 

       LabelLon: -86.9206 
  
Notice the variables present in this structure. In particular, note the two arrays ‘Lon’ and ‘Lat’, as 
there are what are used by Matlab to draw the shape of the state.  
 
(3) Now let’s load a shapefile (a common file format for vector data) with the location and 
names of major world cities. This file is called 'worldcities.shp'and it also comes packaged 
with the Mapping Tollbox: Type the following commands in your editor window and execute 
them: 
 
cities = shaperead('worldcities.shp', 'UseGeoCoords', true); 
 
Again, type cities(1) in the command window. Note that since the geometry is now a point, Lat 
and Lon now have only a single value. 
 
(4) Now let’s display the map: type the following commands in your editor window and execute 
them: 
 
geoshow(states); 
 
(5) Now let’s add the names of the states to the map. Note that the structure in the shapefile also 
contained fields called ‘LabelLat’ and ‘LabelLon’. We will use these coordinates to place our 
labels. Type the following commands in your editor window and execute them: 
 
textm([states.LabelLat], [states.LabelLon], {states.Name}, 
'HorizontalAlignment', 'center', 'FontSize', 6); 
 
(6) Now let’s plot the cities to the map. Type the following commands in your editor window 
and execute them: 
 
plotm([cities.Lat], [cities.Lon], '.r'); 
 
(7) Now let’s add the names of the cities to the map. Note that the cities structure did not contain 
label coordinates. We will thus use the city coordinates but place our labels right above the city. 
Type the following commands in your editor window and execute them: 
 
textm([cities.Lat], [cities.Lon], {cities.Name}, 'HorizontalAlignment', 
'center', 'VerticalAlignment', 'bottom', 'FontSize', 5); 
 
(8) Finally, add a title to the map: 
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In the variable editor, explore the WMS layer array ‘nasa’, and note the diverse nature of its 
contents. Now we can refine the search to look for the words ‘blue marble’: 
 
nasa = nasa.refine('blue marble'); 
 
The command ‘refine’ is an object function of the layer structure. Again, in the variable editor 
explore the WMS layer array ‘nasa’, and note the much reduced nature of its contents. 

(4) Now we are ready to retrieve the image using the bounding box of our map: 
 
[BM, R] = wmsread(nasa(1), 'ImageFormat', 'image/png', 'Latlim', latlim, 
'Lonlim', lonlim, 'CellSize', 0.1); 

In the variable editor, look at the variables BM and R. The former is the RGB image, and the 
latter is a geo-referencing matrix used for drawing the image onto the map. 

(5) Now we are ready to display the image and the state boundaries on our map: 
 
figure(gcf); 
geoshow(BM, R); 
hold on 
geoshow(states, 'FaceColor', 'none', 'EdgeColor', 'w'); 
geoshow(cities, 'Color', 'r', 'Marker', '.'); 

Note how BM and R are passed to ‘geoshow’. Also note that to overlay the multiple layers one 
has to use “hold on” just like with regular Matlab figures. 

(6) Let’s pretend that we are about to fly between two of these cities. Let’s trace our route by 
inputting the start and end points directly on the map: 
 
figure(gcf); 
disp('Input start and end points') 
[lat lon] = inputm(2); 
start = [lat(1) lon(1)]; 
dest = [lat(2) lon(2)]; 

The function ‘inputm’ takes the number of desired points as a parameter. Click on the start and 
end city. 

(7) The next step is to construct a great circle (the shortest distance on the surface of a sphere) 
between the two cities and to display it on the map. This is done with the navigation functions 
‘gcwaypts’ and ‘track’, and the usual ‘geoshow’: 
 
[lat_gc,lon_gc] = gcwaypts(start(1),start(2),dest(1),dest(2)); 
[lattrk_gc lontrk_gc] = track('gc', lat_gc, lon_gc, 'degrees'); 
figure(gcf); 
geoshow(lattrk_gc, lontrk_gc, 'DisplayType', 'line', 'Color', 'r'); 

(8) One can measure the length of this path using the navigation function ‘legs’ which returns the 
bearing and the distance along the way: 
 
[course_gc dist_gc] = legs(lat_gc, lon_gc, 'gc'); 
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Support Vector Machine Classification

2nd International Summer School 
on Water Research

Landslide modeling and Early Warning Systems
8 July 2013

Dino Bellugi
Massachusetts Institute of Technology

Support Vector Machine Classification

SVM-based Classification
• Classification
• Object representation
• Training and validation
• Linearly separable data
• Linearly non-separable data
• Non-linearly separable data
• The SVM formulation
• The Kernel trick

Rock Classification
• Rock image database
• Rock characteristics
• Creating a rock descriptor
• SVM Software
• SVM Cookbook
• Training an SVM
• A test
• Results

Some slides adapted from: 

Dino Bellugi - EPS 209: 

“Matlab Applications in Earth Science”

Michael Jordan - CS 294:

“Practical Machine Learning”

University of California, Berkeley

Landslide Identification
• Deep seated landslides

Landslide Prediction
• Landslide database
• Landslide characteristics
• Creating the descriptor
• Training the SVM
• A preliminary test

Discussion
• Storm classification
• A real application (Luigi!)



Classification

• In classification problems, each entity in some domain can be 
placed in one of a discrete set of categories: yes/no, 
friend/foe, good/bad/indifferent, etc.

• Given a training set of labeled entities, develop a rule for 
assigning labels to entities in a test set

• For example:
• Observe whether a given medication affects various patients positively 

or negatively over several years (the training set).
• Given this data, extract a rule allowing us to predict whether or not any 

new patient will respond positively or negatively to the medication.

• Many variations on this theme:
• binary classification
• multi-category classification
• non-exclusive categories

Example: face detection



Example: object recognition

Example: object recognition

Try to find: blimp, clutter, grasshopper, picnic-table, refrigerator, watermelon 



Example: object recognition

blimp clutter

watermelon refrigerator

picnic-table

grasshopper

Example: object recognition



Object Representation

• Each object to be classified is represented as a pair (x, y):
• x is a description of the object (see examples of data types in the 

following slides)
• y is a label (assumed binary for now: 1 or -1)

• Success or failure of a machine learning classifier often 
depends on choosing good descriptions of objects
• the choice of description can also be viewed as a learning problem
• but good human intuitions are often needed here

• Vectorial data:
• physical attributes
• textual attributes
• context
• history

feature
vector

(x)

Example: Spam Filter

• Input: email
• Output: spam/ham
• Setup:

• Get a large collection of 
example emails, each 
labeled “spam” or “ham”

• Note: someone has to hand 
label all this data

• Want to learn to predict 
labels of new, future emails

• Features: The attributes used to 
make the ham / spam decision

• Words: FREE!
• Text Patterns: $dd, CAPS
• Non-text: SenderInContacts
• …

Dear Sir.

First, I must solicit your confidence in this 
transaction, this is by virture of its nature 
as being utterly confidencial and top 
secret. …

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, but 
when I plugged it in, hit the power nothing 
happened.



Example: Digit Recognition

• Input: images / pixel grids
• Output: a digit 0-9
• Setup:

• Get a large collection of example images, each 
labeled with a digit

• Note: someone has to hand label all this data
• Want to learn to predict labels of new, future 

digit images

• Features: The attributes used to make the digit 
decision

• Pixels: (6,8)=ON
• Shape Patterns: NumComponents, 

AspectRatio, NumLoops
• …

• Current state-of-the-art:  Human-level 
performance

0

1

2

1

??

Training and Validation

• Data: labeled instances, e.g. emails marked spam/ham
• Training set
• Validation set
• Test set

• Training
• Estimate parameters on training set
• Tune hyperparameters on validation set 
• Report results on test set
• Anything short of this yields over-optimistic claims

• Evaluation
• Many different metrics
• Ideally, the criteria used to train the classifier should be closely 

related to those used to evaluate the classifier

• Statistical issues
• Want a classifier which does well on test data
• Overfitting: fitting the training data very closely, but not 

generalizing well
• Error bars: want realistic (conservative) estimates of accuracy

Training
Data

Validation
Data

Test
Data



Some State of the Art Classifiers

• Support vector machines (SVMs)

• Decision trees

• Random forests

• Kernelized logistic regression

• Kernelized discriminant analysis

• Kernelized perceptron

• Bayesian classifiers

• Boosting and other ensemble methods

Some Resources

• Google ‘Berkeley practical machine learning’ for 
more information

• Trevor Hastie’s “The elements of statistical 
learning: data mining, inference, and prediction.” 
Springer. 2001

• Nello Cristianini’s web page:
http://www.support-vector.net/



Intuitive Picture of the Problem

Class1
Class2

Linearly Separable Data

Class1
Class2Linear Decision boundary



Which Hyper-plane to Use?

x1

x2

Maximizing the Margin

x1

x2

Margin 
Width

Margin 
Width

Select the 
separating 
hyperplane that 
maximizes the 
margin



Support Vectors

x1

x2

Margin 
Width

Support Vectors

Setting up the Optimization Problem

x1

x2

0=+⋅ bxw


w


class -1

class 1

Linear decision boundary:  



The Optimization Problem

x1

x2

w


The maximum margin can be 
characterized as a solution to 
an optimization problem:

class -1

class 1

Linear Hard-Margin SVM Formulation

• Simple manipulation yields an equivalent problem: find w,b
that solves

• Problem is convex, so there is a unique global minimum 
value (when feasible).

• There is also a unique minimizer, i.e. w and b value that 
provides the minimum.

• Quadratic Programming
• very efficient computationally with procedures that take 

advantage of the special structure

21min
2

. . ( ) 1,  i i i

w

s t y w x b x⋅ + ≥ ∀



Linear Non-Separable Case

x1

x2

0=+⋅ bxw


w


iξ

Allow some 
instances to fall 
within the margin, 
but penalize them.

Introduce slack 
variables iξ

Formulating the Optimization Problem

Objective function 
penalizes for 
misclassified instances 
and those within the 
margin

C trades-off margin width 
and misclassifications

x1

x2

w


iξ



Linear Soft-Margin SVM’s

• Equivalent problem:

• Algorithm tries to push ξi to zero while maximizing 
margin

• As C→0, we get the hard-margin solution

• Notice: algorithm does not minimize the number of 
misclassifications (NP-complete problem) but the sum of 
distances from the margin hyperplanes

• Other formulations can use ξi
2 instead

( ) 1 ,  
0

i i i i

i

y w x b xξ
ξ

⋅ + ≥ − ∀
≥

21min
2 i

i

w C ξ+ 

Robustness of Hard vs. Soft Margin 
SVM’s

iξ

x1

x2

0=+⋅ bxw


ξi

x1

x20=+⋅ bxw


Soft Margin SVM Hard Margin SVM



Non-Linearly Separable Data

Non Linear Classifier Class1
Class2

Advantages of Non-Linear Surfaces

x1

x2



Linear Classifiers in High-Dimensional 
Spaces

x1

x2 Constructed 
Feature 1

Find function Φ(x) to map to 
a different space

Constructed 
Feature 2

Example

X=[x z] Φ(X)=[x2 z2 xz]

wTΦ(x)+b=0

f(x) = sign(w1x2+w2z2+w3xz + b)



Mapping Data to High-Dimensional 
Spaces

• Find function Φ(x) to map to a different space, then SVM 
formulation becomes:

• Data appear as Φ(x), weights w are now weights in the new 
space

• Explicit mapping expensive if Φ(x) is very high dimensional

• Solving the problem without explicitly mapping the data is 
desirable

21min
2 i

i

w C ξ+  0
 ,1))((  ..

≥
∀−≥+Φ⋅

i

iii xbxwyts

ξ
ξ

The Kernel Trick

• Φ(xi) ⋅ Φ(xj): means map data into new space, then take the inner 
product of the new vectors

• We can instead simply find a function such that: K(xi ⋅ xj) = Φ(xi) ⋅
Φ(xj), i.e., the image of the inner product of the data is the inner 
product of the images of the data

• Then, we do not need to explicitly map the data into the high-
dimensional space to solve the optimization problem



Kernels

• Some common kernels

• Linear kernel: k(x,z) = xTz

 equivalent to linear algorithm

• Polynomial kernel: k(x,z) = (1+xTz)d

 polynomial decision rules

• RBF kernel: k(x,z) = exp(-||x-z||2/2σ)

 highly nonlinear decisions

A hyperplane
in some space

CVPR 2005



- Implements HOG on a quad-tree
- Canny edges, Sobel gradients
- No smoothing
- Gradients transferred to edges
- Binned for orientation
- Weighted by their strength

- PHOG descriptor:
Concatenation of HOG 
descriptors for each level 
of pyramid (BFS)

CIVR 2007

- Matlab code available from the
Robotics Research Group
(Visual Geometry), 
University of Oxford:

www.robots.ox.ac.uk/~vgg

Rock Classification



Rock Classification: Igneous

Rock Classification: Sedimentary



Rock Classification: Metamorphic

Rock Classification: my Exams

Igneous? Sedimentary? Metamorphic?

D’oh!



Rock Database

Igneous Rocks



Sedimentary Rocks

Metamorphic Rocks



Training Set: Igneous Rocks 
(85 samples) 

Training Set: Metamorphic Rocks 
(56 samples) 



Training Set: Sedimentary Rocks
(70 samples)

Rock Descriptor

Igneous

Sedimentary

Metamorphic

Andesite Diorite Granite Obsidian

Travertine Sandstone Shale Conglomerate

Gneiss Slate Marble Schist

Feature
Vector



Color Spaces

% convert image to R, G, B, HSV and to Gray
G = double(rgb2gray(I))./255;
HSV = rgb2hsv(I);
H = HSV(:,:,1);
R = I(:,:,1);
Gr = I(:,:,2);
B = I(:,:,3);

Multiple Scales (Spatial Pyramid)

function [distrG bSeps]= …
makeHistograms(G, nBins, imScale, noZero, doCat, opts)    

% makes normalized histograms 
% with nBins bins at scale imScale
% if doCat is false:
%    returns a matrix nBins by nBlocks
% if doCat is true: 
%    returns a vector of length nBins x nBlocks
% if noZero is true:
%    only nonzero elements are considered

Scale: 2

Scale: 3

Scale: 1



Rock Color

% number of pyramid levels and histogram bins
nLevs = 3;
nBins = 16;

% initialize distributions
GDis = []; HDis = [];
RDis = []; GrDis = []; BDis = [];
sGDis = []; sHDis = []; 
sRDis = []; sGrDis = []; sBDis = [];

% make histogram at all levels and concatenate
for n = 1:nLevs

GDis = [GDis; makeHistograms(G, nBins, n, 0, 1, opts)];
HDis = [HDis; makeHistograms(H, nBins, n, 0, 1, opts)];
RDis = [RDis; makeHistograms(R, nBins, n, 0, 1, opts)];
GrDis = [GrDis; makeHistograms(Gr, nBins, n, 0, 1, opts)];
BDis = [BDis; makeHistograms(B, nBins, n, 0, 1, op opts)];
sGDis = [sGDis; makeHistograms(sG, nBins, n, 0, 1, opts)];
sHDis = [sHDis; makeHistograms(sH, nBins, n, 0, 1, opts)];
sRDis = [sRDis; makeHistograms(sR, nBins, n, 0, 1, opts)];
sBDis = [sBDis; makeHistograms(sB, nBins, n, 0, 1, opts)];

end

Parameters

A lot more histograms than what is shown: 
at 3 scales there are 25 histograms  per image

Grain Contours: Oriented Edges

function [OE E A Gx Gy]= getOrEdges(G, options)
% creates a matrix of oriented edges:
%   each canny edge pixel contains the angle of the gradient direction

A lot more histograms !



Rock Texture: Local Standard Deviation

% apply std filter
fSize = 21;
dG = stdfilt(G, ones(fSize));
dH = stdfilt(H, ones(fSize));
sdG = stdfilt(sG, ones(fSize));
sdH = stdfilt(sH, ones(fSize));

% initialize distributions
dGDis = [];
dHDis = [];
sdGDis = [];
sdHDis = [];

% make histogram at all scales
for n = 1:nLevs

dGDis = [dGDis; makeHistograms(dG, nBins, n, false, true, options)];
dHDis = [dGDis; makeHistograms(dH, nBins, n, false, true, options)];
sdGDis = [sdGDis; makeHistograms(sdG, nBins, n, false, true, options)];
sdHDis = [sdHDis; makeHistograms(sdH, nBins, n, false, true, options)];

end

Parameter

A lot more histograms than what is shown: 
at 3 scales there are 25 histograms  per image

Rock Texture: Local Entropy

% apply entropy filter
fSize = 21;
eG = entropyfilt(G, ones(fSize));
eH = entropyfilt(H, ones(fSize));
seG = entropyfilt(sG, ones(fSize));
seH = entropyfilt(sH, ones(fSize));

% initialize distributions
eGDis = [];
eHDis = [];
seGDis = [];
seHDis = [];

% make histogram at all scales
for n = 1:nLevs

eGDis = [eGDis; makeHistograms(eG, nBins, n, false, true, options)];
eHDis = [eGDis; makeHistograms(eH, nBins, n, false, true, options)];
seGDis = [seGDis; makeHistograms(seG, nBins, n, false, true, options)];
seHDis = [seHDis; makeHistograms(seH, nBins, n, false, true, options)];

end

Parameter

A lot more histograms than what is shown: 
at 3 scales there are 25 histograms  per image



Rock Texture: Local Range

% apply range filter
fSize = 21;
rG = rangefilt(G, ones(fSize));
rH = rangefilt(H, ones(fSize));
srG = rangefilt(sG, ones(fSize));
srH = rangefilt(sH, ones(fSize));

% initialize distributions
rGDis = [];
rHDis = [];
srGDis = [];
srHDis = [];

% make histogram at all scales
for n = 1:nLevs

rGDis = [rGDis; makeHistograms(rG, nBins, n, false, true, options)];
rHDis = [rGDis; makeHistograms(rH, nBins, n, false, true, options)];
srGDis = [srGDis; makeHistograms(srG, nBins, n, false, true, options)];
srHDis = [srHDis; makeHistograms(srH, nBins, n, false, true, options)];

end

Parameter

A lot more histograms than what is shown: 
at 3 scales there are 25 histograms  per image

Co-Occurrence Matrix

Gray Level Co-Occurrence Matrix (GLCM)

• GLCM functions characterize texture
• Calculate how often pairs of pixels with 

specific values and in a specified spatial 
relationship occur in an image

• Function of angle and distance
• Various properties can be extracted
• In Matlab: graycomatrix() and graycoprops()



Co-Occurrence Matrix

% read image and convert to grayscale
circuitBoard = rgb2gray(imread('board.tif'));
imshow(circuitBoard);

% create horizontal offsets
offsets0 = [zeros(40,1) (1:40)'];

% get GLCM and stats
glcms = graycomatrix(circuitBoard,'Offset',offsets0);
stats = graycoprops(glcms,'Contrast Correlation');

% plot correlation
figure, plot([stats.Correlation]);
title('Texture Correlation as a function of offset');
xlabel('Horizontal Offset');
ylabel('Correlation');

Global Values
% compute normalized entropy at all levels
EG = []; EH = []; sEG = []; sEH = [];
for n = 1:nLevs

EG = [EG; getNEntrs(G, n, opts)];
EH = [EH; getNEntrs(H, n, opts)];
sEG = [sEG; getNEntrs(sG, n, opts)];
sEH = [sEH; getNEntrs(sH, n, opts)];

end 
% compute standard deviation at all levels
DG = []; DH = []; sDG = []; sDH = [];
for n = 1:nLevs

DG = [DG; getStddevs(G, n, opts)];
DH = [DH; getStddevs(H, n, opts)];
sDG = [sDG; getStddevs(sG, n, opts)];
sDH = [sDH; getStddevs(sH, n, opts)];

end
% compute variance at all levels
VG = []; VH = []; sVG = []; sVH = [];
for n = 1:nLevs

VG = [VG; getVariances(G, n, opts)];
VH = [VH; getVariances(H, n, opts)];
sVG = [sVG; getVariances(sG, n, opts)];
sVH = [sVH; getVariances(sH, n, opts)];

end 
% compute mean at all levels
AG = []; AH = []; sAG = []; sAH = [];
for n = 1:nLevs

AG = [AG; getMeans(G, n, options)];
AH = [AH; getMeans(H, n, options)];
sAG = [sAG; getMeans(sG, n, options)];
sAH = [sAH; getMeans(sH, n, options)];

end
% compute median at all levels
MG = []; MH = []; sMG = []; sMH = [];
for n = 1:nLevs

MG = [MG; getMedians(G, n, options)];
MH = [MH; getMedians(H, n, options)];
sMG = [sMG; getMedians(sG, n, options)];
sMH = [sMH; getMedians(sH, n, options)];

end

A lot more values than what is shown: 
at 3 scales there are 25 values per field



The Descriptor 
(22,052 Dimensions)

% concatenate descriptor
descriptor = [ ...

GDis; HDis; sGDis; sHDis; ... % intensity, hue histogram
RDis; GrDis; BDis; sRDis; sGrDis; sBDis; ... % RGB histogram
rGDis; rHDis; srGDis; srHDis; ... % local range histogram
eGDis; eHDis; seGDis; seHDis; ... % local entropy histogram
dGDis; dHDis; sdGDis; sdHDis; ... % local std histogram

statsG.Correlation'; sstatsG.Correlation'; ... % intensity correlation
statsH.Correlation'; sstatsH.Correlation'; ... % hue correlation

statsG.Contrast'; sstatsG.Contrast'; ... % intensity contrast
statsH.Contrast'; sstatsH.Contrast'; ... % hue contrast

statsG.Energy'; sstatsG.Energy'; ... % intensity energy
statsH.Energy'; sstatsH.Energy'; ... % hue energy

statsG.Homogeneity'; sstatsG.Homogeneity'; ... % intensity homogeneity
statsH.Homogeneity'; sstatsH.Homogeneity'; ... % hue homogeneity

EG; EH; sEG; sEH; ... % global entropy
VG; VH; sVG; sVH; ... % global variance
DG; DH; sDG; sDH; ... % global std
AG; AH; sAG; sAH; ... % global mean
MG; MH; sMG; sMH; ... % global median

];

SVM Software

LIBSVM: a Library for Support Vector Machines
Chih-Chung Chang and Chih-Jen Lin 

Department of Computer Science
National Taiwan University, Taipei 106, Taiwan

http://www.csie.ntu.edu.tw/~cjlin
(Version 3.0 released: September 13, 2010)

Abstract
LIBSVM is a library for support vector machines (SVM). Its goal is to help users to easily use SVM as a tool. In this document, we present all its
implementation details. For the use of LIBSVM, the README file included in the package and the LIBSVM FAQ provide the information.

Different SVM formulations 
Efficient multi-class classification 
Cross validation for model selection
Probability estimates
Various kernels (including precomputed kernel matrix)
Weighted SVM for unbalanced data
Both C++ and Java sources
GUI demonstrating SVM classification and regression
Python, R, MATLAB, Perl, Ruby, Weka, Common LISP, CLISP, Haskell, and LabVIEW, interfaces. 
C# .NET code and CUDA extension is available. 
It's also included in some data mining environments: RapidMiner and PCP. 
Automatic model selection which can generate contour of cross validation accuracy. 



SVM Cookbook

A Practical Guide to Support Vector Classication
Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin

Department of Computer Science
National Taiwan University, Taipei 106, Taiwan

http://www.csie.ntu.edu.tw/~cjlin
(Initial version: 2003 Last updated: April 15, 2010)

Abstract
The support vector machine (SVM) is a popular classification technique. However, beginners who are not familiar with SVM often get unsatisfactory
results since they miss some easy but significant steps. In this guide, we propose a simple procedure which usually gives reasonable results.

We propose that beginners try the following procedure first:

• Transform data to the format of an SVM package
• Conduct simple scaling on the data
• Consider the RBF kernel K(x; y) = e-γx-y2

• Use grid search and cross-validation to find the best parameters C and γ
• Use the best parameters C and to train the whole training set
• Test

% svm type (RBF)
svm_type = ' -t 2 ';   

% svm command (cross-validation and parameters)
svm_cmd = ['-v ', num2str(num_folds), ...

' -c ',num2str(C_param), ...
' -g ', num2str(G_param)];

% get cross-validation value
result = svmtrain(trainLabels, trainDescriptors, [svm_cmd svm_type]);

SVM Type and Cross Validation

Ex.: 4-fold cross validation

Defined in training arguments:
• Kernel type
• Cross validation subsets
• Cost and Gamma parameters

Example:



Parameter Search: Coarse

Finding Cost and Gamma parameters:
• Search a large grid space using coarse steps
• Use cross validation to find region with good results

% initialize variables
cv = zeros(ceil(numGIters), ceil(numCIters));
xvec = min_csearch:coarse_step:max_csearch;
yvec = min_gsearch:coarse_step:max_gsearch;
[xcv,ycv] = meshgrid(xvec, yvec);

% loop over cost parameter
for indlog2c = 1:numel(xvec)

log2c = xvec(indlog2c);

% loop over gamma parameter
for indlog2g = 1:numel(yvec)

log2g = yvec(indlog2g);

% store all cross-validation results
svm_cmd = ['-v ', num2str(sub_num), ' -c ', ...

num2str(2^log2c), ' -g ', num2str(2^log2g)];
cv(indlog2g, indlog2c) = ...

svmtrain(trainLabels, trainDescriptors, [svm_cmd svm_type svm_opts]);

% update best result
if (cv(indlog2g, indlog2c) > bestcv)

bestcv = cv(indlog2g, indlog2c); bestc = 2^log2c; bestg = 2^log2g;
end

end
end

Parameter Search: Fine

Finding Cost and Gamma parameters:
• Repeat procedure on smaller space with fine steps
• Use cross validation to find region the best result

% initialize variables
cv = zeros(ceil(numGIters), ceil(numCIters));
xvec = min_csearch:fine_step:max_csearch;
yvec = min_gsearch:fine_step:max_gsearch;
[xcv,ycv] = meshgrid(xvec, yvec);

% loop over cost parameter
for indlog2c = 1:numel(xvec)

log2c = xvec(indlog2c);

% loop over gamma parameter
for indlog2g = 1:numel(yvec)

log2g = yvec(indlog2g);

% store all cross-validation results
svm_cmd = ['-v ', num2str(sub_num), ' -c ', ...

num2str(2^log2c), ' -g ', num2str(2^log2g)];
cv(indlog2g, indlog2c) = ...

svmtrain(trainLabels, trainDescriptors, [svm_cmd svm_type svm_opts]);

% update best result
if (cv(indlog2g, indlog2c) > bestcv)

bestcv = cv(indlog2g, indlog2c); bestc = 2^log2c; bestg = 2^log2g;
end

end
end



Training the SVM

% use best parameters
svm_params = [' -c ', num2str(bestc), ' -g ', num2str(bestg) ' '];

% train
svm_model = svmtrain(trainLabels, trainDescriptors, [svm_type svm_params]);

% test
[labels, accuracy, value] = ... 

svmpredict(trainLabels, trainDescriptors, svm_model, svm_opts);

Training:
• Use the best discovered parameters
• Train on the entire training data (no cross-validation)

Check:
• Use the trained model on the training data
• Ideally you should get 100% accuracy

Classifying with the SVM

% test on separate labeled data
[labels, accuracy, value] = ... 

svmpredict(testLabels, testDescriptors, svm_model, svm_opts);

Validating:
• Use the trained model on the separate testing data with labels

(same as on previous slide  but on data that was not part of the training)
• Decide if your accuracy is good enough

% generate random labels (2-class in this example)
randLabels = double(round(rand(numInstances, 1)));

% predict on new data
[labels, accuracy, value] =  ... 

svmpredict(randLabels, neDescriptors, svm_model, svm_opts);

Predicting:
• Use the trained model on new data with unknown labels



iRock: Results

How well did it do?

Note: the selection of the training and testing images was entirely random 
(and no rocks were harmed in the process)

Man vs. Machine: the Turing Test

Turing, A.M. (1950). Mind, 59, 433-460.
COMPUTING MACHINERY AND INTELLIGENCE
By A. M. Turing

I propose to consider the question, "Can machines think?" 
This should begin with definitions of the meaning of the terms "machine" and "think." The definitions might be 
framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous, If the 
meaning of the words "machine" and "think" are to be found by examining how they are commonly used it is 
difficult to escape the conclusion that the meaning and the answer to the question, "Can machines think?" is 
to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a 
definition I shall replace the question by another, which is closely related to it and is expressed in relatively 
unambiguous words.

The new form of the problem can be described in terms of a game which we call the 'imitation game." It is 
played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The 
interrogator stays in a room apart front the other two. The object of the game for the interrogator is to 
determine which of the other two is the man and which is the woman. He knows them by labels X and Y, and 
at the end of the game he says either "X is A and Y is B" or "X is B and Y is A." The interrogator is allowed to 
put questions to A and B thus:

C: Will X please tell me the length of his or her hair?

Now suppose X is actually A, then A must answer. It is A's object in the game to try and cause C to make the 
wrong identification. His answer might therefore be:

"My hair is shingled, and the longest strands are about nine inches long."

In order that tones of voice may not help the interrogator the answers should be written, or better still, 
typewritten. The ideal arrangement is to have a tele-printer communicating between the two rooms. 
Alternatively the question and answers can be repeated by an intermediary. The object of the game for the 
third player (B) is to help the interrogator. The best strategy for her is probably to give truthful answers. She 
can add such things as "I am the woman, don't listen to him!" to her answers, but it will avail nothing as the 
man can make similar remarks. 

We now ask the question, "What will happen when a machine takes the part of A in this game?" Will the 
interrogator decide wrongly as often when the game is played like this as he does when the game is played 
between a man and a woman? These questions replace our original, "Can machines think?" 

Alan Mathison Turing, 1912-1954 



Man vs. Machine: Deep Blue

Garry Kimovich Kasparov
World Chess Champion 1985-2000 

Man vs. Machine: Watson



Man vs. Machine: ISSWR Students & 
iRock

Thank you, 
iRock!

ISSWR Students iRock

Igneous

Sedimentary

Metamorphic

• Take one picture card and three colored voting cards
• Study the picture card while we get ready
• A random sequence of 26 images will be shown
• Vote quickly by raising one of the colored cards
• One volunteer to call the vote
• Another volunteer to tally the counts on the board Ready?

Man vs. Machine: ISSWR Students & 
iRock



ISSWR vs. iRock: Image 1

ISSWR vs. iRock: Image 1

Truth: Limestone – Sedimentary
iRock: Sedimentary 



ISSWR vs. iRock: Image 2

ISSWR vs. iRock: Image 2

Truth: Schist – Metamorphic
iRock: Metamorphic 



ISSWR vs. iRock: Image 3

ISSWR vs. iRock: Image 3

Truth: Shale – Sedimentary
iRock: Sedimentary



ISSWR vs. iRock: Image 4

ISSWR vs. iRock: Image 4

Truth: Diorite – Igneous
iRock: Igneous 



ISSWR vs. iRock: Image 5

ISSWR vs. iRock: Image 5

Truth: Andesite – Igneous
iRock: Igneous



ISSWR vs. iRock: Image 6

ISSWR vs. iRock: Image 6

Truth: Conglomerate – Sedimentary
iRock: Sedimentary 



ISSWR vs. iRock: Image 7

ISSWR vs. iRock: Image 7

Truth: Gypsum – Sedimentary
iRock: Sedimentary



ISSWR vs. iRock: Image 8

ISSWR vs. iRock: Image 8

Truth: Marble – Metamorphic
iRock: Metamorphic 



ISSWR vs. iRock: Image 9

ISSWR vs. iRock: Image 9

Truth: Shale – Sedimentary
iRock: Sedimentary



ISSWR vs. iRock: Image 10

ISSWR vs. iRock: Image 10

Truth: Granodiorite – Igneous
iRock: Igneous



ISSWR vs. iRock: Image 11

ISSWR vs. iRock: Image 11

Truth: Anhydrite – Sedimentary
iRock: Sedimentary 



ISSWR vs. iRock: Image 12

ISSWR vs. iRock: Image 12

Truth: Granite – Igneous
iRock: Igneous



ISSWR vs. iRock: Image 13

ISSWR vs. iRock: Image 13

Truth: Marble – Metamorphic
iRock: Metamorphic



ISSWR vs. iRock: Image 14

ISSWR vs. iRock: Image 14

Truth: Rhyolite – Igneous
iRock: Metamorphic



ISSWR vs. iRock: Image 15

ISSWR vs. iRock: Image 15

Truth: Skarn – Metamorphic
iRock: Metamorphic 



ISSWR vs. iRock: Image 16

ISSWR vs. iRock: Image 16

Truth: Limestone – Sedimentary
iRock: Sedimentary 



ISSWR vs. iRock: Image 17

ISSWR vs. iRock: Image 17

Truth: Schist – Metamorphic
iRock: Metamorphic 



ISSWR vs. iRock: Image 18

ISSWR vs. iRock: Image 18

Truth: Syenite – Igneous
iRock: Igneous 



ISSWR vs. iRock: Image 19

ISSWR vs. iRock: Image 19

Truth: Sandstone – Sedimentary
iRock: Sedimentary



ISSWR vs. iRock: Image 20

ISSWR vs. iRock: Image 20

Truth: Schist – Metamorphic
iRock: Metamorphic



ISSWR vs. iRock: Image 21

ISSWR vs. iRock: Image 21

Truth: Conglomerate – Sedimentary
iRock: Sedimentary



ISSWR vs. iRock: Image 22

ISSWR vs. iRock: Image 22

Truth: Diabase – Igneous
iRock: Igneous



ISSWR vs. iRock: Image 23

ISSWR vs. iRock: Image 21

Truth: Limestone – Sedimentary
iRock: Sedimentary 



ISSWR vs. iRock: Image 24

ISSWR vs. iRock: Image 24

Truth: Siltstone – Sedimentary
iRock: Sedimentary



ISSWR vs. iRock: Image 25

ISSWR vs. iRock: Image 25

Truth: Schist – Metamorphic
iRock: Metamorphic 



ISSWR vs. iRock: Image 26

ISSWR vs. iRock: Image 26

Truth: Volcanic Sandstone – Igneous
iRock: Igneous 



Man vs. Machine: ISSWR Students & 
iRock

Woohoo!!

… out of 26 correct 24 out of 26 correct

iRock: Recap

Truth: Igneous
iRock: Igneous (87.5%), Sedimentary (12.5%), Metamorphic (0%)



iRock: Recap

Truth: Sedimentary
iRock: Sedimentary (91%), Igneous (0%), Metamorphic (9%)

iRock: Recap

Truth: Metamorphic 
iRock: Metamorphic (100%), Igneous (0%), Sedimentary (0%)



iRock: Another Test 
(after re-training)

Truth: Igneous
iRock: Igneous (87.5%), Metamorphic (12.5%), Sedimentary (0%) 

iRock: Another Test 
(after re-training)

Truth: Sedimentary
iRock: Sedimentary (80%), Igneous (0%), Metamorphic (20%)



iRock: Another Test 
(after re-training)

Truth: Metamorphic 
iRock: Metamorphic (42.9%), Igneous (57.1%), Sedimentary (0%)

Not so lucky this time!

iRock: Discussion

How many features?
Which features?

Can we take better advantage of prior knowledge?

What happened and why?

How much training?
How much testing?

How could we apply this technique to landslide prediction?
How could we apply this technique to landslide identification?



Landslide (deep) identification

LiDAR 1m data

LiDAR 1m data

Yay NCALM!



Filter vegetation

Bare earth



Landslides

Landslides
(3-D, vertical
exaggeration)

- Rougher texture
- Edges around scarp

- Differently dissected
- Differently sloping

Signature:



USGS 10m data

- Smoother texture
- Less defined edges
- Flatter slopes
- More uniform 
slope direction

Signature:

Can we learn the signature independently of the type of data?

Test patches



Non-landslide (patch 2)

Landslide (patch 1) GradientsP-HOG

Not landslide (patch 4)

Landslide (patch 3)
GradientsP-HOG



Lib-SVM
(thanks Subhransu!)

- Matlab implementation:
- LibSVM
- Training, test, and 

classify routines
- Linear, Radial Basis, 

or Sigmoid Kernels

- Learning:
- 6 training patches

(red – landslide,
green – non landslide)

Lib-SVM
(thanks Subhransu!)

- Matlab implementation:
- LibSVM
- Training, test, and 

classify routines
- Linear, Radial Basis, 

or Sigmoid Kernels

- Learning:
- 6 training patches

(red – landslide,
green – non landslide)

-Testing:
- 10 new patches

(orange – landslide,
yellow – non landslide)



Lib-SVM Results

- Much to my surprise:
Nine out of ten correct!
(correct – green, 
incorrect - red) 

Lib-SVM Results

- Much to my surprise:
Nine out of ten correct!
(correct – green, 
incorrect - red) 

- False positive:
Not sure who was right … 



Lib-SVM Results

- Much to my surprise:
Nine out of ten correct!
(correct – green, 
incorrect - red) 

-10m data:
Same result 

Landslide (shallow) prediction

- Instrumented:
• Piezometers
• Rain gauges
• Weirs

- Sprinkling 
experiments

- Mapped 
landslides
D d f



Shalstab: a compact simple model

Transmissivity

tan1 sin
tan

s

w

q b

T a

ρ θ θ
ρ φ

 = − 
 

Topographic
slope

Head
gradient

Drainage 
area

Friction
angle

Effective 
Precipitation
(steady state)

Soil
density

: Increasing these values increases stability

: Increasing these values increases instability

For documentation and software go to:
http://calm.geo.berkeley.edu/~geomorph

[Montgomery and Dietrich, 1994]

Shalstab: Performance
(over-prediction)

log(q/T)
(1/m)

[Dietrich and Montgomery, 1998]

Parameters: • ρs/ρw =  1.6
• φ = 45°

 No soil depth  No cohesion



Soil depth

- Soil production:

- Soil transport:

- Regionally calibrated

- No landsliding in
this realization!

hbz
e

t
αε −∂

− =
∂

[Roering et al., 1999; Heimsath et al., 2001]

21 ( / )c

K zq
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Observation:
landslides in

thick soils

Root Strength

Observation: landslides 
in low root strength

0
0

z

rl r
zjR C dze−= 

rl
l

R
C

z
=

b rzC C=

a: basal, b: lateral

- Exponential:

- Total:

- Lateral:

- Basal

0rz r
zjC C e−=

From
CB-1
data

Cr0 = 21666 Pa
j = 4.96 m-1

[Benda & Dunne, 1997; Schmidt et al., 1999; Montgomery et al., 2009]



The descriptor

True positives and true negatives?



True positives and true negatives?

Training and testing



Training and testing

Parameter search
(radial basis function)



Test area:
all  data pixels 
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside 
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab draped
on shaded relief

Pixel Statistics: Accuracy = 97.0 % , Precision = 34.8%, Recall = 12.9%, 
F-Score: 18.9%, True Positive Rate = 12.9%, False Positive Rate = 0.7%

Typical values

Descriptor includes physical attributes and derivatives at fine and coarse scales.
Textural attributes: range, entropy, STD(fine scale), entropy, STD(coarse scale)

Smoothing:
None

Test area:
All data pixels
In red polygon
(not seen in
training phase)

Background:
Shalstab draped
on shaded relief

Actual 
landslides

Predicted
landslides

Detail
Typical values

Why 
here?



Test area:
all  data pixels 
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside 
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab (relative
potential for
instability) draped
on shaded relief

Pixel Statistics: Accuracy = 95.8 % , Precision = 28.8%, Recall = 35.2%, 
F-Score: 31.7%, True Positive Rate = 35.2%, False Positive Rate = 2.4%

Typical values

Descriptor includes physical attributes and derivatives at fine and coarse scales.
Textural attributes: range, entropy, MAD(fine scale), MAD(coarse scale)

Smoothing:
5-pixel Gaussian

Test area:
All data pixels
In red polygon
(not seen in
training phase)

Background:
Shalstab draped
on shaded relief

Actual 
landslides

Predicted
landslides

Detail
Typical values

No landslides 
Here!



Test area:
all  data pixels 
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside 
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab draped
on shaded relief

Pixel Statistics: Accuracy = 94.2 % , Precision = 10.8%, Recall = 15.4%, 
F-Score: 12.7%, True Positive Rate = 15.4%, False Positive Rate = 3.5%

Typical values

Effect of removing super-pixel STD and entropy:
Decrease in precision, increase in recall

Smoothing:
None

Test area:
all  data pixels 
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside 
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab draped
on shaded relief

Pixel Statistics: Accuracy = 90.0 % , Precision = 8.1%, Recall = 25.7%, 
F-Score: 12.3%, True Positive Rate = 25.7%, False Positive Rate = 8.2%

Typical values

Effect of removing texture at all scales:
Decrease in precision, increase in recall, converging towards Shasltab!

Smoothing:
None



Test area:
all  data pixels 
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside 
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab draped
on shaded relief

Pixel Statistics: Accuracy = 89.3 % , Precision = 11.8%, Recall = 44.6%, 
F-Score: 18.6%, True Positive Rate = 44.6%, False Positive Rate = 9.4%

Typical values

Effect of removing soil depth (i.e. constant 1m) not as bad as removing texture:
Decrease in accuracy and precision, big increase in recall

Smoothing:
5-pixel Gaussian
Morphing:
Majority

Test area:
all  data pixels 
in red polygon
(not seen in
training phase)

Training area:
(+) all pixels inside 
mapped slides
(not in test area),
and (-) a 4-pixel
buffer around them

Background:
Shalstab draped
on shaded relief

Pixel Statistics: Accuracy = 92.4 % , Precision = 11.3%, Recall = 26.1%, 
F-Score: 15.8%, True Positive Rate = 26.1%, False Positive Rate = 13.7%

Typical values

Effect of removing everything related to area:
Decrease in accuracy, precision, and recall

Smoothing:
5-pixel Gaussian
Morphing:
Majority



Results are encouraging:

- Implicitly figured out a 
Shalstab-like rule 

- Reduced over-
prediction

- Couple physical and 
empirical models?

- Need landslide 
databases with long 
term observations!

- Can we apply to the 
temporal domain?

Application to storms:
Seattle landslides

[Markuzon et al. 2012]



Application to storms:
Seattle landslides

[Markuzon et al. 2012]

Summary

 Data-driven approaches are easy to implement given good training data

 They can be used to identify geomorphological features in a landscape

 Such methods also have good predictive potential

 Coupling mechanistic and empirical slope stability models can help reduce
over-prediction

 Similar approach can be used to improve the prediction of landslide-
triggering storms

We need large, detailed, 
accurate, and long-term 

landslide datasets!
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TEACHING EVALUATIONS 

The following pages contain student teaching evaluations two courses at the University of California, 
Berkeley: 
 

• Instructor,  Spring 2011, EPS209 “Matlab Applications in Earth Science”. New graduate course 
offering a practical toolbox for analyzing Earth science data, and to explore selected problems in 
earth and environmental sciences, with particular focus on image processing and machine learning 
techniques. Responsible for curriculum, lectures, and labs development, grades, and office hours. 
Co-developed and co-taught with Prof. Burkhard Militzer. 
 

• Graduate Student Instructor,  Fall 2009, EPS50 “The Planet Earth”. Instructors: Prof. Michael Manga 
and Prof. Doug Dreger. Undergraduate introductory course on geology and geophysics. Gave 
lectures, guided labs and field trips, advised students, graded assignments, and held office hours. 
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