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Abstract 
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Shallow landslides that usually involve only the colluvial soil mantle, are a widespread 

phenomenon in the United States and the world. Often triggered by extreme precipitation events, 
they can be the primary sources of debris flows, and are generally a threatening source of 
hazards, causing loss of life, destruction of property, and affecting communities all across the 
nation. Shallow landslides also play an important role in landscape evolution, dominating erosion 
in steeper landscape, unleashing debris flows that carve valley networks, and delivering sediment 
to rivers. The two primary aspects affecting the impact of shallow landslides, both in terms of 
downstream hazard and their geomorphic significance, are their location and size.  

Theoretical and observational research has provided some insight on the controls on the size 
of shallow landslides. It has been observed that landslide exhibit a smaller size in grasslands than 
in forested areas and that landslides were smaller in areas where root strength decreased as a 
result land use change. The parameters that are most relevant for the occurrence of rainfall-
triggered shallow landslides are slope, pore pressure, root and soil strength, and soil depth. 
Theoretical analyses have suggested that a decline in root strength results in failures having 
lower minimum lengths and widths, while low gradients, low pore water pressures, or high soil 
friction result in failures having higher lengths and widths. However, few if any studies examine 
the controls on both landslide location and size across a landscape. I hypothesize that the co-
organization of landscape properties, such as slope, soil depth, pore pressure, and root 
reinforcement, controls the size and location of shallow landslides.   

We currently lack mechanistic models for specifically predicting shallow landslide size 
across landscapes, thus reducing the effectiveness of landslide hazard delineation, and inhibiting 
our ability to formulate and apply mechanistic models for landslide flux and surface erosion. One 
reason for this is the one-dimensional representation of slope stability, generally applied in 
existing regional scale applications. Such a representation cannot produce discrete landslides and 
thus cannot make predictions on landslide size. Furthermore, one-dimensional approaches cannot 
include lateral effects which are known to be important in defining instability. These limitations 
can be addressed by a three-dimensional slope stability model, but its application to a landscape 
is challenging. Whereas the one-dimensional slope stability at a location can be determined 
independently of its dimensions and surroundings, multi-dimensional analyses require the 
treatment of discrete shapes. As these shapes are not known a priori, a search algorithm is 
required. This is a non-trivial problem, whose naïve solution (i.e. an exhaustive search) is of 
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exponential complexity, rendering the problem effectively intractable at any relevant scale. Any 
new procedure must be sufficiently general to evolve with current understanding, but with a 
parsimonious parameterization in order to be compatible with available data. The procedure must 
be computationally efficient to be applicable at scales large enough to be relevant for 
geomorphological and hazard related questions, yet at sufficiently fine resolution to capture the 
fundamental mechanics of slope failure. 

In this dissertation I develop a procedure which couples a novel slope stability model that 
captures the basic physics of shallow landsliding, with a new and efficient search algorithm 
based on spectral graph theory that can predict discrete shallow landslides. In order to apply this 
procedure at the regional scale, I define sub-models to produce the required data, when they are 
not available at the necessary resolution. These sub-models extract topographic attributes, 
compute the spatial distributions of soils, and estimate the root reinforcement and pore pressure 
fields. I define formal framework to evaluate the performance of the procedure, based on 
information retrieval theory. This procedure should advance our understanding and prediction 
capability, enabling me test the hypothesis that the co-organization of landscape properties, such 
as slope, soil depth, pore pressure, and root reinforcement, controls the size and location of 
shallow landslides. As these properties are mostly dictated by topography, I hypothesize that 
topography exerts a first order control on both location and size.  

In chapter two, I present a multi-dimensional stability model framework that can be applied 
to landscapes at the regional scale. This slope stability model is mechanistic but not so 
mechanistic that its application becomes impracticable. It is fully three-dimensional in the 
treatment of the forces acting on a discretized slope element and it is statically determinate. The 
model considers the effects of root cohesion and pore pressures, and includes the effects of earth 
pressure in a manner that is compatible with natural slopes. Finally, this model is easily 
applicable to spatially gridded data, and requires only a modest parameterization facilitated by 
procedures defined to obtain spatially explicit parameter fields at the required resolution. The 
slope stability model allows for the characterization of the forces acting on all the boundaries 
resulting from the discretization of a landscape into slope element blocks (and thus the role of 
each block in the stability of the landscape). However, it requires a deterministic search 
procedure that is able to select discrete least-stable combinations of slope elements across a 
landscape to obtain meaningful shallow landslide predictions.  

In chapter three, I define a procedure that can for the first time predict discrete landslides. Its 
foundation is a search algorithm based on spectral graph theory that can efficiently provide a 
good approximation for an otherwise intractable problem. This procedure relies on a slope 
stability model, as well as sub-models and data for, among others, topography, soil depth, and 
root strength, discussed in the previous chapter. However, the procedure is general, and is not 
confined by their choice: as better models and data emerge, the procedure can be easily modified 
to take advantage of such improvements. A formal framework is defined to evaluate the 
performance of the procedure, based on information retrieval theory. Applying the procedure to a 
synthetic landscape illustrates how landslide size and location are affected by the hetereogeneity 
of parameters such as root strength and pore pressure.  

In chapter four, the procedure is applied to an instrumented catchment in the Oregon Coast 
Range using field-measured physical parameters, successfully predicting the size and location of 
the shallow landslide which destroyed the site during a storm in November, 1996. The procedure 
was then applied to a larger study area using modeled physical parameters, under a suite of 
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diverse hydrological scenarios. The application of the procedure results in, and is able to 
reproduce the distribution of sizes and locations observed during the ten years of research at the 
site. Performance is quantified using a set of information retrieval measures, performing 
significantly better than a random classifier, demonstrating the applicability of the procedure.  

In chapter five, a sensitivity analysis is performed to explore the controls on shallow 
landslide size and location. Rainfall, vegetation, soil, and topographic characteristics are 
systematically varied, resulting in probability density functions of predicted landslide size and 
location. I find that increasing precipitation or soil depth results in an increased number of 
predicted landslides. In contrast, increasing soil strength through root reinforcement or friction 
angle results in a decrease in the number of predicted landslides. Increasing soil depth results in 
predicted landslides being preferentially located in locations with steep slopes, while increasing 
soil strength results in predicted landslides being preferentially located in locations with high 
drainage area. Precipitation affects characteristic landslide location differently: if lateral re-
distribution of water is dominant, landslides are predominantly found in locations with high 
drainage area; in contrast, when vertical infiltration dominates they are predominantly found in 
areas with steep slopes. Predicted characteristic size increases with increased precipitation and 
with increased root strength. However, it decreases when the increased strength results from an 
increase of the soil friction angle. Under uniform soil thickness, characteristic size decreases 
with increasing soil depth. When soil thickness distributions are instead controlled by 
topography, increasing soil depth causes the predicted characteristic landslide size to first 
increase and then to decrease, after a critical value, reflecting the stabilization effect of very thick 
soils.  

In chapter six the effects of the fine scale variability of root strength on slope stability are 
examined, using a method which could be extended to represent the impact of spatial variability 
of landslide-relevant parameters on landslide size, location, and abundance. A simple dynamic 
hydrological model is used in combination with a ten-minute rainfall intensity record for a 
landslide-triggering storm. When comparing with a map of debris flows which occurred during 
the storm, the procedure predicts landslides in the observed debris flow source areas. Although 
over-prediction is greatly reduced, there remain a considerable number of predicted landslides in 
areas which did not fail during the storm event. Regardless, this is a promising result, as it 
suggests that this procedure is capable of capturing the timing of landslides (as well as their size 
and location), given a sufficiently resolved characterization of the hydrology.  

I find that the spatial structure of soil depth, pore pressure, and root strength determines the 
areas favorable to landsliding that can be exploited by rain storms, resulting in the characteristic 
size and location distributions of rainfall-triggered landslides. Varying these controlling 
properties, even uniformly, changes the spatial distribution of these areas in the landscape. This 
results in new characteristic distributions of landslide size and location, as landslides sample 
different parts of the landscape. This reveals the first-order control exerted by topography on 
shallow landslides. Furthermore, the general spatial pattern of landsliding did not fundamentally 
change with the introduction of stochastic variability in root strength or with variations in the 
mechanism of pore pressure generation. This highlights the fundamental role played by the 
topographically-controlled distribution of soil thickness in defining landslide location. 

Understanding hazards posed by rainfall-triggered shallow landslides requires predicting 
where landslides will occur, when they will occur, how big will they be, how fast they will 
mobilize, and how far will they go.  This research constitutes a significant step in this direction 
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by providing some of the first coupled predictions of where and how big landslides are, and 
demonstrating that capturing their timing is well within reach. By coupling this procedure with 
climate and vegetation models we can now explore the impact of climate and land use change on 
the landsliding regime. By integrating the procedure into a landscape evolution model we can 
then explore how, over longer time scales, landslides shape a landscape. 
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Chapter 1 
Introduction 
1.1 Introduction 

Shallow landslides that usually involve only the colluvial soil mantle (usually less than a few 
meters deep), are a widespread phenomenon in the United States and the world. Often triggered 
by extreme precipitation events, they can be the primary sources of debris flows, and are 
generally a threatening source of hazards, causing loss of life, destruction of property, and 
affecting communities all across the nation (figure 1.1). It is estimated that in the United States 
alone landslides result in 25 to 50 deaths and damages exceeding $2 billion annually [Spiker and 
Gori, 2003]. It is crucial to accurately assess such hazards, and to be able to predict them more 
accurately, particularly in light of expected climate and land use changes. Shallow landslides 
also play an important role in landscape evolution, dominating erosion in steeper landscape, 
unleashing debris flows that carve valley networks, and delivering sediment to rivers [Dietrich 
and Dunne, 1978; Benda, 1990; Benda and Dunne, 1997]. The two primary aspects affecting the 
impact of shallow landslides, both in terms of downstream hazard and their geomorphic 
significance, are their location and size. Location affects travel distance and bulking-up potential, 
while size affects the amount of sediment discharged, as well as the scale of local morphological 
change [Benda and Cundy 1990; Fanning and Wise 2001]. Moreover, the magnitude of shallow 
landslides (defined as the volume of material displaced) controls the extent of the hazard area, 
the intensity of impact within it and the vulnerability of elements at risk [Hungr et al., 2008]. 
Location and size together thus determine the downstream effects, particularly the potential 
hazard for people and property. While the advent of high resolution topographic data has enabled 
the application of slope stability models to determine locations with high landslide susceptibility 
(see review in Casadei et al., [2003a]), we currently lack mechanistic models for specifically 
predicting shallow landslide size across landscapes, thus reducing the effectiveness of landslide 
hazard delineation, and inhibiting our ability to formulate and apply mechanistic models for 
landslide flux and surface erosion [Dietrich, et al., 2003].  

For the purpose of understanding and modeling landscape evolution, this limitation has been 
circumvented by incorporating the effects of landslides into non-linear, slope-dependent flux 
laws [Howard, 1994; Roering, et al., 1999], or by implementing grid-based infinite slope 
calculations in which each unstable grid cell is treated as an individual landslide [Tucker and 
Bras, 1998; Tucker et al., 2001]. Similarly, in landslide hazard delineation, calculations using a 
slope stability model and modeled local properties such as soil depth, root strength, and pore 
pressure are typically performed on a grid cell basis to map the spatial distribution of potential 
landslide areas [Montgomery and Dietrich, 1994; Casadei et al., 2003a; Tarolli and Tarboton, 
2006; Bellugi et al., 2011]. These approaches for hazard delineation allow for reasonable 
physically-based predictions, but tend to over-predict landslide extent and do not provide 
information about individual discrete landslides. 

Considerable attention has also been devoted to empirically characterizing landslide 
distributions. It has been observed that much like other natural hazards, landslides follow the 
concept put forth by Per Bak [1987] of self-organized criticality (e.g.: Turcotte, [1999]; 
Malamud and Turcotte, [1999]; Malamud et al., [2004a]; Malamud et al., [2004b]), and that 
frequency and landslide area are generally related by an inverse power law for at least a 
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truncated portion of their distribution (e.g. Stark and Hovius, [2001]; Brunetti et al., [2009]), a 
relationship that can be used empirically to approximate landslide-induced erosion rates [Hovius 
et al., 1997], or to infer the frequency of an event type in order to characterize regional landslide 
hazard [Guzzetti, et al., 2007]. These analyses have not distinguished between shallow landslides 
(typically smaller) and deep-seated ones involving the underlying bedrock. Empirical methods 
are also in use for landslide warning systems, in which historical landslide susceptibility is 
combined with precipitation thresholds (see reviews in Guzzetti et al., [2008], Baum and Godt, 
[2010]). Such approaches may be applied to a region, but certainly not to individual hillslopes as 
they do not enable spatially explicit predictions. 

  (a) 

 
  (b) 

 
Figure 1.1.  Shallow landslides in the San Francisco Bay area. a) Shallow landslides on hillslopes near Briones, 
California, showing a range of size and location (note that the unvegetated scars partly include the runout portion of 
the slide; scene width is about 300m), from [Dietrich, et al., 2008].  b) A landslide that struck Pacifica, CA, in 1982, 
destroying two residences and killing three children [photo: USGS]. 
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Mechanistic and empirical approaches have been combined to constrain the problem of over-
prediction and to make forecasts for individual storms [Stock and Bellugi, 2011]. While this 
approach is preferable to a purely empirical approach and applicable at the large scale [Bellugi et 
al., 2011], it cannot make a specific prediction about individual landslides and requires 
precipitation threshold data which are often not available in practice. Similarly, the power law 
relationship has been given a mechanistic foundation by Stark and Guzzetti [2009], combining 
an infinite-slope factor of safety analysis with a survival process approach in a probabilistic 
framework that expresses the likelihood that a failure will “survive” a series of random coin 
tosses simulating landslide rupture propagation, weighted by a limit-equilibrium analysis of the 
evolving rupture. This approach allows the exploration of the controls on the landslide size 
frequency distribution, but is not spatially explicit.  

The understanding of landslide size and its sensitivity to controls such as slope angle, soil 
texture, and root reinforcement is currently an active area of research. Recent work by Lehmann 
and Or [2012] introduced a new hydro-mechanical modeling framework for simulating rainfall-
induced rapid and shallow landslides. This framework is based on the fiber bundle paradigm, 
originally formalized by Daniels [1945] to analyze the strength of textiles, and more recently 
applied to quantifying root reinforcement by Schwarz et al. [2010], in which a load is 
incrementally and uniformly applied to a bundle of fibers until the weakest fiber breaks and its 
load is redistributed to remaining intact fibers. The fiber bundle paradigm is intimately tied to the 
concept of self-organized criticality, as the number of fibers failing during a load increment 
follows a power law [Hemmer and Hansen, 1992]. By coupling this paradigm to a hydrological 
model and an infinite-slope stability analysis, and applying it to many realizations of an artificial 
hillslope, the authors reproduce observed power law frequency-magnitude relationships arising 
from landslide inventory data. Although it has not been applied to natural landscapes, this 
framework has the potential for capturing the progressive nature observed in many failures. 

Theoretical and observational research has provided some insight on the controls on the size 
of shallow landslides. Selby [1976] observed that landslide exhibit a smaller size in grasslands 
than in forested areas. Gabet and Dunne [2002] also observed that landslides were smaller in 
areas where root strength decreased as a result land use change. Reneau and Dietrich [1987] used 
a slope stability model that accounted for the effect of lateral root reinforcement and conducted a 
theoretical analysis illustrating how a decline in root strength results in failures having lower 
lengths and widths, while low gradients or high soil friction result in failures having higher 
lengths and widths. Casadei et al. [2003b] used a similar model to perform a sensitivity analysis 
illustrating that minimum width for failure increases with root cohesion and friction angle, and 
decreases with increasing slope or increasing relative saturation.  

The methods reviewed above cover the range of what is used in current practice. The “next-
generation” landslide prediction procedure needs to be broadly applicable at the regional scale 
and capable of providing quantitative information about individual landslides. A central issue is 
our lack of understanding of what controls not only the location, but also the size of individual 
landslides. For example, there are sufficient studies available to allow a reasonable prediction of 
runout length based on initial landslide volume, but the prediction of volume of first-time 
failures remains a problem [Crozier and Glade, 2005]. One of the key limitations is the one-
dimensional representation of slope stability, generally applied in existing regional scale 
applications. Such a representation cannot produce discrete landslides and thus cannot make 
predictions on landslide size. Furthermore, one-dimensional approaches cannot include lateral 
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effects which are known to be important in defining instability (e.g. Arellano & Stark, [2000]; 
Schmidt et al., [2001]). These limitations can be addressed by a three-dimensional slope stability 
model, but its application to a landscape is challenging [Dietrich et al., 2008]. Whereas the one-
dimensional slope stability at a location can be determined independently of its dimensions and 
surroundings, multi-dimensional analyses require the treatment of discrete shapes. As these 
shapes are not known a priori, a search algorithm is required. This is a non-trivial problem, 
whose naïve solution (i.e. an exhaustive search) is of exponential complexity, rendering the 
problem effectively intractable at any relevant scale. Given that the physics of slope failure are 
poorly understood, and that field data and observations are scarce and often incomplete, any new 
procedure must be sufficiently general to evolve with current understanding, but with a 
parsimonious parameterization in order to be compatible with available data. The procedure must 
be computationally efficient to be applicable at scales large enough to be relevant for 
geomorphological and hazard related questions, yet at sufficiently fine resolution to capture the 
fundamental mechanics of slope failure. 

In this dissertation I develop a procedure which couples a novel slope stability model that 
captures the basic physics of shallow landsliding, with a new and efficient search algorithm 
based on spectral graph theory that can predict discrete shallow landslides. In order to apply this 
procedure at the regional scale, I will define sub-models that are able to produce the required 
data, when they are not available at the necessary resolution. These sub-models will extract 
topographic attributes, compute the spatial distributions of soils, and estimate the root 
reinforcement and pore pressure fields. A formal framework will be defined to evaluate the 
performance of the procedure, based on information retrieval theory. Such a procedure should 
advance our understanding and prediction capability, enabling to test the hypothesis that the co-
organization of landscape properties, such as slope, soil depth, pore pressure, and root 
reinforcement, controls the size and location of shallow landslides. These properties are mostly 
dictated by topography, thus it is hypothesized that topography exerts a first order control on 
both location and size.  

1.2 Dissertation Structure  

In chapter two, I define a slope stability modeling framework that is suitable for a regional-
scale application that is capable of predicting landslides of discrete size when coupled with a 
novel search algorithm (which in turn will presented in the following chapter).  This requires the 
adoption of models that are sufficiently mechanistic with physically meaningful parameters 
which can be established and tested, yet not overly complex so that their application at the 
regional scale is impractical. In particular, I present a fully three-dimensional and statically 
determinate slope stability model that considers the effects of root cohesion and pore pressures, 
and that includes the effects of earth pressure in natural (inclined) slopes. This model is easily 
applicable to spatially gridded data, and parsimonious in its parameterization. However, it 
requires high-resolution spatial data of topography, soil depth, pore pressure, and root 
reinforcement. Thus to effectively apply it at the regional scale I also introduce a suite of sub-
models that are able to produce these data, when they are not available at the necessary 
resolution. These sub-models extract topographic attributes, compute the spatial distributions of 
soils, and estimate the root reinforcement and pore pressure fields.  

In chapter three I show how the problem of predicting landslides across a landscape can be 
reduced to the problem of finding the minimally-stable collection of cells in that landscape. I will 
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present a search algorithm that directly determines the initial shape and location of the most 
likely landslide, given the local conditions (e.g. topography, hydrology, and vegetation). While 
the exact solution of this problem could be obtained by applying a stability analysis and testing 
all possible combination of grid cells, such an approach would be intractable as the number of 
combinations grows exponentially with the number of cells. I thus build a search algorithm based 
on spectral graph theory that efficiently approximates the exact solution. Coupled with the slope 
stability model and the sub-models defined in chapter two, this search algorithm defines a novel 
general procedure for predicting discrete shallow landslides. This procedure retains a general 
structure so that as models and data improve they can be swapped in to improve performance. In 
this chapter I also define a formal framework based on information retrieval theory for 
evaluating the performance of the procedure. 

The performance of the procedure is evaluated both qualitatively and quantitatively in 
chapter four. I will apply the procedure to a landslide-prone study area in the Oregon Coast 
Range using a dual approach. First, the slope stability model and the search algorithm is applied 
to a small catchment at the research site where an instrumental record of a rainfall-triggered 
shallow landslide allows the use of field-measured physical parameters  such as hydrological 
conditions, soil depth, and root strength. Second, the procedure is applied across a larger area 
where repeat field mapping provides an inventory of all the shallow landslides that occurred over 
a 10-year period, and intensive research during the same period provides constraints on soil, 
vegetation, hydrological, and rainfall characteristics. The local characteristics of soil, vegetation, 
and hydrology are estimated using the sub-models defined in chapter two. The shallow landslide 
predictions resulting from the application of the procedure to both datasets is compared to the 
mapped observations, with emphasis on their location and size.  

The sensitivity of landslide location and size to a variety of parameters is explored in chapter 
five. The procedure is applied to the landslide-prone study area and sensitivity analysis is 
performed by which soil, vegetation, rainfall, and topographic characteristics are systematically 
varied. Probability density functions of predicted landslide size and location are examined and 
general trends synthesized to illustrate the changes in landslide number, size, and preferred 
location in the landscape under varying conditions. In this process, parameter sets resulting in 
best performance with respect to the observed landslides are also examined. 

In the sixth and final chapter, I examine the role of spatial and temporal variability of 
parameters with respect to shallow landslide location and size. I discuss the impact on the 
landsliding regime brought by temporal and spatial variations in rainfall and vegetation patterns 
which are expected to arise through climate and landuse change, and point to methods which 
may allow for their improved characterization. Finally, I conclude by discussing the implications 
of this research on landscape evolution and hazard prediction. 



6 
 

Chapter 2 
Slope stability and shallow landslide size 
2.1 Introduction 

The increasing availability of high-resolution and LiDAR topographic data (e.g. 
www.opentopography.org; maps.csc.noaa.gov; lidar.cr.usgs.gov; www.nationalmap.gov; 
http://calm.geo.berkeley.edu/ncalm/dtc.html) and recent advances in climate model precipitation 
predictions (e.g. Anders et Al., [2007]; Dettinger et al., [2012]; Li et al., [2012]) allow for the 
design and application of mechanistic shallow landslide forecasting models that can predict 
failure timing and location at the regional scale [e.g. Casadei et al., 2003]. While the timing and 
location of shallow landslides is extremely important for hazard assessment at the regional scale, 
a fundamental attribute of landslides that is not predicted by any model at this scale is their size. 
Most models treat landslide size in an implicit fashion by either considering landslides as single 
grid cells or by grouping adjacent unstable cells. This results in arbitrary dimensions which 
depend strongly on grid resolution and on the accuracy of the digital data (e.g. Dietrich et al., 
[2001]; Claessens et al., [2005]). As the issue of landslide size is central to both hazards and 
geomorphic change [Dietrich et al, 2008], the ability to predict size is a necessary requirement 
for any advanced modeling effort. In this chapter I will define a slope stability modeling 
framework that is suitable for a regional-scale application that is capable of predicting landslides 
of discrete size using a novel search algorithm (which in turn will presented in the following 
chapter).  This will require the adoption of models that are sufficiently mechanistic with 
physically meaningful parameters which can be established and tested, yet not overly complex so 
that their application at the regional scale is impractical. 

The most common approaches used for mapping landslide hazard potential perform a limit-
equilibrium analysis (i.e. the investigation of the static force equilibrium of the soil mass at the 
limit of stability) in which some form of the infinite slope equation is coupled with hydrological 
models to estimate the local pore pressure field, and with local estimates of root reinforcement 
and soil depth [e.g. Montgomery & Dietrich 1994; Iverson 2000; Casadei et al., 2003a; Tarolli 
and Tarboton, 2006; Baum et al., 2008]. These models are essentially one-dimensional in their 
physical setup, are principally concerned with landslide location rather than size, and by 
definition cannot account for lateral stress terms which can contribute considerable additional 
strength [Stark and Eid, 1998]. Limit-equilibrium also assumes a shape and location of the 
failure surface, typically considered to be slope-parallel and at the soil-bedrock interface. Further 
important assumptions include considering stresses to be uniformly mobilized over the whole 
length of the failure surface, and the soil mass to behave essentially as a rigid block. 

The most common two-dimensional limit-equilibrium methods divide the soil mass above 
the failure surface into slices by vertical planes (e.g. the ordinary method of slices of Fellenius, 
[1927], boldly envisioned as implementable by a computer program by Whitman and Bailey, 
[1967]). The failure surface can be circular for rotational slides or planar for translational slides. 
These methods are theoretically statically indeterminate (i.e. more unknowns than equations, 
only solvable via optimization techniques), but can become determinate with some simplifying 
assumptions about the inter-slice forces. For example, Bishop’s simplified method of slices 
[Bishop, 1955; Spencer 1967], assumes that the inter-slice forces are horizontal, obtaining a 
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statically determinate formulation. There is mutual support between slices, and the stability of 
the soil mass is determined by the net balance of driving and resisting forces, but the lateral 
resistances are generally ignored.  

There also exist two-dimensional methods which use a continuum approach instead of a 
limit-equilibrium analysis. In such methods, implemented with finite-difference or finite-element 
deformable meshes which track the strains and stresses produced in the material body, the shear 
surface develops as a part of the solution. Continuum analysis provides clear advantages as few 
assumptions need to be made about shape or location of a failure surface (or about the inter-slice 
forces), but this comes at a high computational cost. No such model is in fact at the point where 
it could be applied at the regional scale. Continuum models vary in complexity: FLAC [Itasca 
Consulting Group, 2000], and [Griffiths and Lane, 1999] are examples of finite difference and 
finite element methods, respectively, with a prescribed water table height and uniform material 
properties; Griffiths and Fenton [2004] extends the latter method to probabilistically account for 
spatially-correlated, non-uniform cohesion; Borja and White [2010] extend the finite element 
approach in a different direction and couple a deformation model with a hydrologic model for 
flow in variably saturated soils. Being two-dimensional, none of these models consider the 
lateral resistances. Their three-dimensional equivalents (e.g. FLAC3D [Itasca Consulting Group, 
2002]; Griffiths and Marquez [2007]) are an extension of the two-dimensional ones described 
above, and thus present even more challenging computational obstacles. Recent advances in 
massively-parallel computing hardware and software will allow these methods to be explored on 
larger scales in the not too distant future. In particular, software that can perform parallel 
adaptive mesh refinement on overlapping grids should be well suited to treat complex solid 
deformation and fluid flow problems under changing boundary conditions [Henshaw and 
Schwendeman, 2008]. 

In practice, three-dimensional stability analysis still relies on the limit-equilibrium approach. 
Hovland [1977] extends the two-dimensional method of slices to columns in three dimensions. 
All inter-column forces are ignored, and the normal and shear forces acting on the base of each 
column are derived as components of the weight of the column. The failure surface is assumed to 
be at the base of the columns, and the factor of safety is defined as the ratio of total available 
resistance to the total mobilized stress along this surface. Lateral resistances are also ignored. 
Chen [1981] incorporates the effect of friction on the sides of translational failures, and assumes 
a geometry consisting of a failure body bounded upslope and downslope by wedges used to 
quantify the effects of active and passive earth pressure (see figure 2.3). Such a three-block 
geometry with active wedges driving failure and passive wedges resisting failure of a central 
block has been in use since the 1960’s in geotechnical engineering [e.g Terzaghi and Peck, 
1967]. As in most engineering approaches, these wedges are assumed to be horizontal thereby 
limiting its applicability in natural slopes.  Burroughs [1985] applies earth pressure at the lateral 
boundaries, but also incorporates the effects of root strength on these boundaries. His model 
requires a graphical solution using Mohr circles in the passive earth pressure calculation. Reneau 
and Dietrich [1987] and Casadei and Dietrich [2003b] ignore lateral friction and boundary 
pressure effects to estimate shallow landslide shape and size. Dietrich et al. [2008] take an 
approach similar to Burroughs [1985] but provide an analytical solution for earth pressure for 
geometries similar to those assumed by Chen [1981].  

Few three-dimensional models have been applied to the catchment scale. Okimura [1994] 
computes a least stable cell using an infinite slope stability then explores potential rectangular 
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slide masses oriented downslope, finding good agreement between predicted locations and 
shapes and of observed failures over a limited area (and without any consideration of pore 
pressures, friction, and cohesion effects). Qiu et al. [2007] use a Monte Carlo approach to test 
potential ellipsoidal slip surfaces, using Hovland’s method [Hovland, 1977] to compute their 
three-dimensional stability (thus without considering edge effects). 

In this research I define a multi-dimensional stability model to be applied to landscapes at the 
regional scale in order to search for the least stable landslide sizes and shapes, by using a factor 
of safety approach and identifying areas that collectively would be expected to fail for a given 
hydrologic event. This is similar to the approach of Qiu et al. [2007], but here the search is 
deterministic rather than involving a random sample of possible shapes. The minimal 
requirements for such a slope stability model are that it is mechanistic but not so mechanistic to 
be impracticable, that it is fully three-dimensional and statically determinate, that it considers the 
effects of root cohesion and pore pressures, that it includes the effects of earth pressure in natural 
(inclined) slopes, that it is easily applicable to spatially gridded data, and that it requires minimal 
parameterization. While no off the shelf model matches all these requirements, many studies 
discussed here do include some of the necessary elements. In this chapter I will build on such 
previous studies to develop a slope stability framework which meets these requirements. New 
treatments will be added when needed, and particular attention will be devoted to defining 
procedures to obtain the necessary spatially explicit parameter fields at the required resolution, 
especially when these data are sparse. 

2.2 Models and Sub-Models 
In this section the physical model framework and the parameter choices used in this research 

are presented. The foundation is a mechanistic three-dimensional slope stability model that meets 
the requirements discussed in the previous section by appropriately considering resistances 
acting on all sides of a discretized hillslope element. To perform effectively, this model requires 
high-resolution spatial data of topography, soil depth, pore pressure, and root reinforcement. In 
order to apply this model at the regional scale, I define self-standing components, which will be 
hereafter referred to as sub-models, that are able to produce the required data, when they are not 
available from measurements at the necessary resolution. We thus present sub-models which 
extract topographic attributes, compute the spatial distributions of soils, and estimate the root 
reinforcement and pore pressure fields. These data are stored in spatial layers on which the slope 
stability model operates. In turn, the slope stability model computes the stability attributes (i.e. 
driving forces and resistances) associated with the discretized 3-D elements of the terrain. This 
framework will then be used to search for least stable combinations of discretized elements, 
using a novel algorithm presented in the next chapter. 

2.2.1 Slope stability model 

Because of its simplicity, generality, and applicability at the regional scale to grid-based 
spatial data, I adopt a method, which will be further described in [Milledge et al., in prep], that 
extends the simple three-dimensional force balance on an idealized slope element (figure 2.1), 
proposed by [Dietrich, et al., 2008], to account for lateral earth pressures on a sloping surface. 
This model does not consider progressive failure with strain softening, pore water pressure 
dynamics, or other unequal stress-strain behavior, effectively treating a potential failure as a rigid 
block. The rigid block assumption [e.g. Newmark, 1965] is likely incorrect in detail (see Iverson 
and Reid 1992), however it is useful with respect to our goal of determining the initial size and 
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shape of a failure. While mobilization can be induced by very different means, field evidence 
points to the fact that forces such as those acting on the boundaries of a rigid block may indeed 
set the scale for the initial failure, particularly when a large amount of multi-branched root 
material is present [Schmidt, et al., 2001]. The model is fully three-dimensional in its geometry 
(and multi-dimensional in terms of its parameterization), and follows the approach laid out by 
Hovland [1977], Chen [1981], and Arellano and Stark [2000]. It considers translational slides 
with non-circular failure surfaces and assumes that the failure plane is located at the soil-bedrock 
interface, which is likely the position of the sharpest shear strength contrast and a boundary for 
hydraulic conductivity. As a result of the three-dimensional discretization, similar to that used by 
[Hovland, 1977], complex failure surfaces are accommodated, in the sense that they will follow 
the shape of the soil-bedrock boundary. 

 
Figure 2.1. Three dimensional force balance stability analysis of a soil element on a slope.  Force Rb on the element 
bottom boundary results primarily from the lithostatic force of the element Fw. Forces Ru and Rd arise from active 
and passive earth pressure, respectively, while shear forces Rl and Rr result from the normal forces Fl and Fr that 
arise from at rest earth pressure on the element lateral margins. Adapted from [Milledge, et al., in prep].  

The four lateral boundaries of a slope element are assumed to be vertical, while the base is 
assumed slope-parallel (figure 2.1). Length, width, and height of the slope element are measured 
in the three-dimensional Cartesian coordinate system of the elevation grid, with length and width 
measured horizontally on the X-Y plane and height measured vertically in the Z direction. The 
resistances along these boundaries are a combination of cohesion (soil and root cohesion) and 
friction, where the frictional resistances are the result of earth pressure acting normal to the 
boundary. For an element of width W (m), and length L(m), corresponding to the grid spacing, 
with a vertical soil depth Z (m), and sloping in the L direction, the resistance Rl (N) and Rr (N) 
acting on the lateral boundaries of the element are defined as: 
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 2 21
cos tan

2l r l o s wR R C ZL K g Z h L          (2.1) 

where Cl (Pa) is the total lateral cohesion from both soil and roots, h (m) is the saturated part of 
Z, s and w (kg/m3) are the soil and water densities, θ and φ (degrees) are the slope and soil 
friction angles, g (m/s2) is the force of gravity, and Ko is the coefficient of at-rest lateral earth 
pressure (discussed below) applied from the elements immediately to either side.  The resistance 
Rd (N) acting on the downslope boundary is defined as: 

        2 2 ' '1
cos sin tan

2d p s wR gK Z h W             (2.2) 

where Kp is the coefficient of passive lateral earth pressure (discussed below) applied from the 
element immediately downslope, and φ’ is the angle of friction at the boundary between the 
elements. The resistance Ru (N) acting on the upslope boundary is defined as: 

        2 2 ' '1
cos sin tan

2u a s wR gK Z h W             (2.3) 

where Ka is the coefficient of active lateral earth pressure (discussed below) applied from the 
element immediately upslope. The resistance on the base of the element is defined as: 

 sec cos tanb b s wR C WL Z h gWL      
    

(2.4) 

where Cb (Pa) is the total cohesion from both soil and roots acting on the base of the element. 
Finally, the driving force Fd (N) is defined to be 

 sind sF gZWL        (2.5) 

The theory of lateral earth pressure (Ko, 
Ka, and Kp) has been developed by Terzaghi 
[1941; 1943] within the context of earth-
retaining structures, typically involving a 
wall, but can also be extended to discrete 
boundaries (such as those illustrated of the 
slope element of figure 2.1) by assuming 
these boundaries to be vertical, and not 
deforming [Eid et al., 2006]. The earth 
pressure coefficients are used to convert the 
vertical effective pressures, to which a soil 
element is subjected at some depth, to 
effective horizontal pressures acting on the 
lateral boundaries between soil elements. The 
case in which this boundary is static (i.e. it 
does not move towards or away from the soil 
element) is that of at-rest earth pressure 
(figure 2.2) in which the soil mass is in a case 
of static equilibrium. Following Arellano and 
Stark (2000) we assume that this is the case 
for the lateral boundaries (those parallel to the 
L direction of slope) of the geometry shown 
in figure 2.1. The conventional formulation 
for the at-rest coefficient is given by Lambe 

Figure 2.2. Lateral at-rest earth pressure: the coefficient 
Ko converts the effective vertical pressure to an 
effective lateral pressure. Adapted from [Das, 2010]. 
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and Whitman, [1969] as: 
1 sin( )oK        (2.6) 

In contrast, the upslope and downslope boundaries of figure 2.1 (those parallel to the W 
direction) will move with respect to the upslope and downslope adjacent wedges, shown in the 
schematic cross-section in figure 2.3. At failure, the central block will move away from the 
boundary with the upslope (active) wedge, and towards the boundary with the downslope 
(passive) wedge. As illustrated in [Das, 2010], this causes the upslope wedge soil mass to fail 
along a basal curved surface (best represented as a logarithmic spiral), at the same time 
stretching outward and moving downward relative to the boundary (figure 2.4a). The downslope 
wedge soil mass will similarly fail along a basal curved surface, but the soil mass will in this 
case be compressed and move upward relative to the boundary (figure 2.4b). In both cases the 
earth pressure coefficients must take into account the friction along the block and the wedge 
(which offsets the direction of the lateral forces), as well as friction and soil and root cohesion 
along the curved failure 
surface [Soubra and 
Macuh, 2002]. 

Terzaghi and Peck 
[1967] developed a 
procedure using trial 
wedges defined by 
different logarithmic 
spirals for evaluating the 
active and passive earth 
pressure coefficients in 
the case of a cohesionless 
soil mass: for various 
combinations of θ , φ, 
and φ’, the log-spiral 
surface resulting in the 
lowest earth pressure force is selected, leading to the definition of the coefficient. Terzaghi’s 
rationale is a direct consequence from Coulomb theory [Coulomb, 1773, 1776; Cullmann, 1875], 
in which the failure plane resulting in the most critical wedge is considered. Following this 
approach, Soubra and Macuh [2002] proposed an optimization procedure which minimizes the 
pressure force exerted by as soil mass of depth Z given θ , φ, φ’, and γ (the unit weight of the 
soil, expressed in N/m3) as a function of the two angles θ0 and θ1, which define a logarithmic 
spiral, accounting for soil and root cohesion C (Pa) along the logarithmic spiral boundary. They 
minimize the active and passive earth pressure forces Pa and Pp (Pa), defined as: 

2

2a a ac

Z
P K K C


 

 
, and 

2

2p p pc

Z
P K K C


     (2.7) 

where the coefficients Kaγ, Kac, Kpγ, and Kpc, represent the effects of soil weight and cohesion for 
the active and passive cases, respectively. Once Pa and Pp are minimized then the active and 
passive earth pressure coefficients are given by: 

2a a ac

C
K K K

Z 
 

 
, and 2p p pc

C
K K K

Z 
     (2.8) 

Figure 2.3. Active and passive earth pressure: the geometry of the upslope and 
downslope wedges. Adapted from [Eid et. al, 2006]. 
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This method is adopted here in an offline fashion, whereby tables containing the active and 
passive earth pressure coefficients for binned values of Z, θ, φ, φ’, and γ are pre-calculated. In 
order to limit the parameter search space φ’  is set to φ (i.e. the soil friction angle is the same 
everywhere), and Z, γ, and C are lumped into a single dimensionless parameter log(C/γZ), 
thereby producing three-dimensional tables defining Ka, and Kp for binned values of θ, φ, and 
log(C/γZ). 

 

a. 

 

b. 
Figure 2.4. Schematic diagram of lateral active (a) and passive (b) earth pressure forces. The earth pressure 
coefficients Ka and Kp convert the vertical effective pressures to effective horizontal pressures acting on the upslope 
and downslope boundaries Adapted from [Das, 2010].  

It is important to note that while the three-block landslide geometry shown in figure 2.3 is 
assumed here, the upslope and downslope wedges used to compute the earth pressure forces 
acting on the central block will not ultimately considered to be part of the landslides as 
delineated by the search procedure that will be presented in the next chapter. This procedure will 
indeed use the active and passive wedges to compute the forces acting on potential landslide 
boundaries, but because the length of these wedges is not fixed and is unknown a priori, the 
procedure will only return least-stable collections of central blocks (i.e. the blocks bounded 
upslope and downslope by the active and passive wedges, respectively). 

 With these assumptions and definitions, the factor of safety (FS) of a slope element can be 
calculated as indicated by Hovland [1977], as the ratio of total available shear force resistance, 
Rt, over the driving force, Fd: 

    t u d l r b

d d

R R R R R R
FS

F F

   
      (2.9) 
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It should be noted that the slope direction of a slope element is not necessarily aligned with the 
grid reference frame. In this case the forces on each grid cell boundary are calculated as a 
combination of the two lateral forces acting on that boundary (i.e. the forces acting on the two 
sides of the slope element which intersect the grid cell boundary). These two forces are 
partitioned based on the orientation of slope element with respect to the grid reference frame 
(figure 2.5 a). Similarly, the driving forces contributed by a grid cell may not be pointing in the 
same direction as those contributed by another grid cell. Thus, when adding forces for a 
collection of cells the vector sum is used (figure 2.5 b). 

 
Figure 2.5. Force partitioning and re-orientation. a) Each edge of a slope element oriented parallel to the slope 
direction is subjected to one of the active, passive, and at rest earth pressure forces. When applied to the 
corresponding grid cell, which is not oriented in the slope direction, these forces must be re-distributed so that each 
edge of the grid cell receives a combination of forces. In this example, the slope element edges a-b and a-d 
experience active and at rest forces, respectively. The grid cell edge a’-b’ (which intersects both a-b and a-d) 
experiences a combination of active and at rest forces proportionate to the amount of rotation between the slope 
element and the grid cell. b) A potential landslide consisting of a collection four grid cells. Each cell contributes a 
different amount of driving force to the collection. The total driving force for the landslide is equal to the vector sum 
of the four individual forces. Note that the length of the resulting vector is less or equal to the sum of the individual 
lengths. 

The inputs required by this model are spatial layers of topographic slope, soil depth, soil 
saturation height, root cohesion (basal and lateral), and scalars indicating material properties (soil 
and water densities, soil cohesion and friction angle. While field-measured data is desirable, in 
practice it is rarely available, particularly at the required spatial resolution.  This requires the 
adoption of other sub-models, which will be discussed in the following sections. 

2.2.2 Topographic sub-model 

Topographic data is typically made available in several forms. The most widely used models 
for topographic representation are Digital Elevation Models (DEM’s), which consist of a matrix 
of elevations arranged into a regular grid or lattice. DEM’s (also commonly referred to as grids) 
are always a product of some form of interpolation, as elevation data points are not collected at 
regular intervals. While this introduces another level of pre-processing, and thus a potential 
source for errors, the algorithmic advantages of regular grids, as well as modern resampling 

a. b.
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techniques have made DEM’s the dominant application choice for elevation data. Alternative 
representations include Triangular Irregular Networks (TIN’s), in which each elevation data 
point is connected to two neighboring points, thus defining a triangular facelet, and Digital Line 
Graphs (DLG’s), which consist of a vector-based map of isolines or contours.  Of these, only 
TIN’s created using a Delauney triangulation from a regular lattice (by which a circle passing 
through a triangle’s vertices includes no other data point) offer a valid alternative to DEM’s as 
the resulting Voronoi diagram consists of hexagonal cells that can provide similar benefits as the 
square cells of a DEM. Such TIN’s have the advantage of being able to represent planar surfaces 
with fewer elements than DEM’s, thus resulting in increased computational efficiency, but their 
generation is no simpler, and the potential for errors is similar when a lattice is required for their 
generation. DEM’s are adopted for this research because they are the most readily available 
format for elevation data, and there is a trivial mapping from square grid cells to the idealized 
slope element of figure 2.1. Moreover, the adoption of a regular grid results in a mathematical 
representation of the forces acting on a landscape consisting entirely of symmetric matrices, 
whose computational advantages will become apparent in chapter three. However, it is pointed 
out that a regular Voronoi tessellation would achieve similar computational results. 

While elevation data of almost the entire world is available at resolutions ranging from 10 to 
90 meters, the advent of Light Detection and Ranging (LiDAR) technology has resulted in 
greater availability of high-resolution (from sub-meter to 3 meters) DEM’s, which enable the 
accurate definition of topographic features relevant to geomorphologic and hydrologic modeling. 
This does not come without a cost, as such datasets contain orders of magnitude more entries 
than conventional data. For this reason the resolution is set equal to the scale of the smallest 
features of interest, and a 2 meter LiDAR-derived DEM is adopted. Elevations are pre-processed 
in ArcGis to remove depressions from the DEM, and the ArcGis ASCII format is adopted for 
greater interchangeability between other software packages. 

Two fundamental topographic attributes must be derived from a DEM for modeling 
processes relevant to shallow landslides: slope and drainage area (also called contributing or 
upslope area). There are numerous methods to extract these attributes, and while the procedure 
that will be developed in the following chapter is independent of them, care should be used in 
their selection.  

The two most widely used methods for computing slope on a DEM are those proposed by 
Zevenbergen and Thorne [1987] and by Horn [1981]. Both use a 3 cell by 3 cell moving window 
to assign a slope to the center cell, but differ in the number of adjacent neighbors used. The 
former method fits a quadratic equation to the window by using the four nearest cells (up, down, 
left, right), while the latter uses a third-order finite difference scheme which weighs the four 
closest cells more than the remaining four neighbors. While there is no established best method, 
it is common knowledge that in practice using four neighbors produces better results in smoother 
surfaces while using eight neighbors produces better results in rougher surfaces [Burrough and 
McDonnell, 1988]. As LiDAR-derived topographic data is generally rougher than conventional 
data, the method proposed by Horn [1981] is adopted. This is the same method used by many 
commercial GIS software packages, such as ArcGis (www.esri.com). 

The three most common methods for routing flow and thus defining how drainage area is 
delineated are the steepest descent (D8) method, first introduced by O'Callaghan and Mark 
[1984], the multiple direction (MS) method, first introduced by Quinn, et al. [1991], and the 
single flow infinite directions (D) method first introduced by Tarboton [1997]. As with slope, 
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all the above methods rely on a 3 by 3 window to define flow direction from the center cell. The 
D8 method assigns flow to the single cell which results in the steepest descent out of the eight 
possible neighbors. This method concentrates flow and thus commonly used for routing flow in 
channels, but is most sensitive to grid orientation as it can only discriminate between directions 
that vary in multiples of 45 degrees. In contrast, the MS method assigns flow proportionally to 
slope to all downhill neighbors of the center cell. This results in a very dispersive flow, more 
descriptive of less convergent areas such as hillslopes, and is the least sensitive to grid 
orientation. The D method attempts to bridge the other two methods by assigning flow to a 
single direction, but considering all possible directions and not just the eight defined by the 
immediate neighbors. In practice this results in flow being partitioned between two of the eight 
neighbors, slightly more dispersive than the D8 method but less than the MS method. While our 
procedure is general, in other words it does not depend on the choice of flow partitioning, in 
practice this choice can have a pronounced effect. Because sub-surface flow in hillslopes is the 
primary interest, the MS method is selected although the D method could easily be substituted 
if sub-surface flow was deemed to be more concentrated.  

Contributing area at a specific grid cell is simply the area of the collection of cells from 
which flow can reach this cell. Given a flow direction matrix, contributing area can be computed 
by recursively accumulating the contributing area of upslope cells, or conversely by handing off 
contributing area downslope from the highest elevations downwards. Regardless, it should be 
noted that, unlike slope, contributing area at a cell is a non-local operation as it may depend on 
cells which are a considerably removed. This can become problematic on very large datasets: 
because of this dependence, the data cannot easily be processed in separate tiles. For such cases 
Bellugi et al., [2011] developed a parallel algorithm based on the partitioned global address 
space (PGAS) parallel programming model and a graph representation of the landscape, which 
reproduces the results of standard serial implementations. Other algorithms based on numerical 
iterative approaches such as the biconjugate gradient stabilized method (BiCGSTAB), are under 
development [Richardson et al., 2011]. 

It is important to note that all flow-routing methods (and thus drainage area algorithms) 
assume that the DEM has been treated to remove sinks or pits (topographic depressions generally 
resulting from gridding topographic elevation data). This is generally achieved by the standard 
flooding approach described by Jenson and Domingue [1988] by which elevations of sinks are 
increased to those of their lowest neighboring outflow point, and the flow is directed towards this 
point. For this research all DEM’s are pre-processed in this fashion using the tools packaged 
within the commercial software package ArcGIS (www.esri.com). 

2.2.3 Soil depth sub-model 

Based on the framework illustrated in Dietrich et al., [1995], soil depth is estimated by 
coupling an exponential soil production term [Heimsath, et al., 2001] with a non-linear diffusive 
term [Roering et al., 1999] in a finite-difference scheme, which is then run to match the generally 
sparse observations. Under the assumption that rivers efficiently transport away any material that 
is delivered, soil depth in channels is set to zero at each finite-difference iteration. 

The rate of conversion of intact bedrock to mobile soil (typically due to biotic disturbance) 
declines exponentially with soil depth, and can be expressed as:  

hbz
e

t
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

     (2.10) 
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Here zb (m) is the height of the soil-bedrock boundary above some datum, t is time,  is the 
production rate (m/yr) at zero soil thickness,  (1/m) is the rate constant, h (m) is the soil 
thickness normal to the bedrock boundary. The annual transport across the entire hillslope is 
determined by the nonlinear flux equation: 

21 ( / )c

K zq
z S


 
      (2.11) 

where q (m3/m/year) is the flux, K (m2/yr) is the diffusion coefficient, z (m) is the topographic 
elevation above a reference datum, and Sc (m/m) is the critical slope. For the model application 
described in chapter four, site-specific parameters that were calibrated for the Oregon Coast 
Range (the site of our application) are chosen. K is set to 0.0032 (m2/yr) and Sc to 1.25 (m/m) 
based on Roering et al., [1999]; a is set to 0.0003 (1/m) and to 0.000268 (m/yr), based on 
Heimsath et al., [2001].  

2.2.4 Hydrologic sub-model 

Shallow sub-surface storm flow (SSSF) [Dunne and Black, 1970a; 1970b], plays a critical 
role in increasing soil water pore pressures, which in turn reduce the shear strength of soils, 
affecting the stability of hillslopes. SSSF is a very complex phenomenon involving, among many 
other factors, transient saturated and unsaturated flow, the interaction between surface water and 
ground water, the spatial heterogeneity of soils and their porous properties (including the 
distribution of macropores), the permeability and fracture density of the underlying bedrock,  
antecedent soil moisture conditions, as well the effects of vegetation. This complexity presents a 
formidable challenge to the definition, calibration, and validation of mechanistic hydrological 
models, suggesting that “their application is more an exercise in prophecy than prediction” 
[Beven, 1993]. There is thus a wide variety of approaches, all with a varying degree of 
simplifications, ranging from purely statistical approaches (e.g. Moore and Clarke, [1981]), to 
fully parameterized three-dimensional integrated surface and subsurface parallel codes designed 
to take advantage of modern high-performance computing platforms (e.g. Kollet and Maxwell, 
2006]). Many studies have also focused on the hydrological triggering component of landslides, 
and their approaches also range from purely empirical (e.g. Caine, [1980]), to coupled, 
distributed hydrological-geotechnical models (e.g. Simoni et al., [2008]).  

Most studies suggest that landslides result from development of positive pore water pressures 
resulting from a critical level of saturation (Iverson, 1997). The two dominant mechanisms that 
generate high pore water pressures at a point are topographically-steered subsurface flow (over 
timescales of days to weeks), and rapid vertical infiltration (over timescales of minutes to hours). 
An additional mechanism which can contribute to pore water pressure generation is flow into the 
soils from the underlying fractured bedrock. Partial or full saturation of soils can occurs in these 
exfiltration areas [Montgomery and Dietrich, 2002], directly contributing to landslide initiation 
[Mongomery et al., 2009]. However, due to the current inability to characterize flow to and from 
the bedrock, this mechanism is generally ignored. There is still much debate over which the 
dominant process is and how to parameterize it. For example, there are models that principally 
focus on the short-term vertical component (e.g. Iverson [2000], Baum et al., [2008]), others that 
favor the long-term lateral component (e.g. Montgomery and Dietrich [1994], Beven et al., 
[1995]), while others try to account for both short-term and long-term components (e.g. 
D’Odorico et al., [2005]).  
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In this research both topographically-steered subsurface flow and vertical flow will be 
considered, but they will be treated in the simplest way possible. This is because focus of this 
study is on developing a landslide search procedure (which is not dependent upon the choice of 
hydrological parameterization), and on understanding the controls on landslide size (in a fashion 
that is independent of specific parameterizations). The long-term subsurface flow is thus 
represented using the steady state hydrological model proposed by Montgomery and Dietrich, 
[1994]:  

sin

h qa

z Tb 
         (2.12) 

where h (m) is the saturated fraction of the soil column z (m), q (m/day) is the effective 
precipitation (precipitation – evapotranspriration), a (m2) is the upslope contributing area, T 
(m2/day) is the transmissivity (m2/day), b (m) is the grid cell size, and sin is the topographic 
gradient (figure 2.6). It should be noted that T is the integral of the saturated conductivity k 
(m/day) over the depth of the soil z. Because k does not appear to vary with depth in the Oregon 
study site [Ebel, et al., 2007b], T can be effectively be approximated as k*z. Thus the height of 
the saturated fraction of the soil column h can be expressed as: 

sin
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h

kb 
         (2.13) 

Because of the steady-state assumption, after steady-state is reached time has no bearing in this 
model: a variation of the effective precipitation q, causes an instantaneous change in h. The 
short-term vertical component is modeled in a similar instantaneous fashion by setting the 
saturated fraction of the soil column h to a fixed amount of uniformly applied instantaneous 
pressure addition p (m) divided by the porosity η:  

p
h


                        (2.14) 

where η is the dimensionless ratio of the volume of the voids to the total volume. It is assumed 
here that the precipitation depth p is the result of a short burst of rain in which there is no lateral 
re-distribution. When steady-state is obtained in the topographically steered model, an 
instantaneous vertical delivery can be also added to the laterally-dominated model. The short-
term and the long-term components are thus combined by adding a fixed amount of pressure 
addition p to the long-term state:  

sin

qa p
h

kb  
           (2.15) 

It should be noted that throughout this study, if the application of equations 2.13 to 2.15 results 
in a local value of h that exceeds the local soil thickness z , h is assigned the value of z (i.e. h can 
never exceed z). 

In this research shallow subsurface flow scenarios will be explored by varying the 
dimensionless parameter q/k. For a specific value of k, this ratio results in a precipitation rate 
having units of length per time. However this rate should not be compared with actual storm-
induced rainfall rates as steady-state is rarely reached in reality. The results of these simulations 
will be compared with the vertical-only case obtained by just varying the parameter p (m). 
Additional simulations will also be performed to assess the effect of vertically dominated flow 
on antecedent conditions as represented by topographically-steered subsurface flow. In this case 
p will be varied for some fixed values of q/k. These results will be presented in chapters four and 
five of this dissertation. 
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A transient version of the steady state model of equation 2.13 can be obtained by re-
elaborating the model proposed by Rosso et al. [2006]: water table height at each cell and each 
time step during a storm sequence is a function of the local precipitation plus the fraction of 
water which may arrive from upslope area (modulated by an exponential decay which is in turn 
also a function of the topographic control and of the time step), minus a similarly computed 
fraction which can drain out of the cell. In essence water is instantaneously redistributed at each 
time step, and mass is conserved. The height of the saturated fraction hi (m) of the soil column z 
(m), at a discrete time step i can be written as: 
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  (2.16) 

where qi (m/day) is the effective precipitation at time step i, hi-1 (m) is height of the saturated 
fraction at time step i-1, ti (days) is the duration of time step i, e, and Sr are the void ratio 
(volume voids over the volume of solids), and degree of saturation of soils (volume of water over 
the volume of voids), respectively (dimensionless), and the other parameters are defined as 
above. When T = k*z, this equation becomes: 
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  (2.17) 

This model will be explored in chapter six. 

Figure 2.6. Shallow subsurface runoff model. Plan view (a) and cross section (b) of drainage area a draining across a 
contour length, b. In the cross section, the heavy line depicts the ground and water table surfaces. At steady state, q 
equals precipitation, p, minus evaporation, e, and deep drainage, d; h is the saturated fraction of the soil depth z 
(both measured normal to the ground surface). Adapted from [Dietrich et al., 1993]. 

2.2.5 Root cohesion sub-model 

The characterization of the root reinforcement field is critical in landslide hazard assessment, 
as roots mechanically reinforce shallow soils in vegetated landscapes, promoting slope stability 
[Schmidt et al., 2001]. Species-specific spatial vegetation distributions thus play an important 
role in controlling the size of failures in landscapes [Roering et al., 2003]. As with soil depth, 
such data are often very sparse in most landscapes, and thus require a modeling approach. 
Commonly, root density declines exponentially with depth [Roering, 2008], and thus the 
contribution of roots to soil cohesion is often predicted as an exponential function of depth [e.g. 
Dunne, 1991; Benda and Dunne, 1997] of the form:  
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where Crz (Pa) is the amount of root cohesion at a depth z (m), Cr0 (Pa) is a coefficient 
representing the maximum root cohesion value at the surface, and j (m-1) is a coefficient which 
controls the depth at which Crz approaches zero. Root cohesion can be integrated over the depth z 
to obtain the total root reinforcement:   
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where Rrl (Pa m) is the lateral reinforcement per unit perimeter length. Thus the root cohesion Cb  
(Pa) acting across the base at a depth z is equal to Crz, and the average lateral root cohesion Cl  
(Pa) acting on a unit perimeter length of depth z is Rrl averaged over z:  
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The coefficients Cr0 and j are typically obtained either from field data or literature-based 
estimates of the relationship between root strength, root density and depth. The approach chosen 
for our application is to extend the site-specific measurements reported by [Montogomery et al., 
2009]. Using the methods described by Schmidt et al. [2001], they measured the spatial 
distribution of root type, size, and depth along the perimeter of the scarp of the landslide which 
occurred at the site. They report that the depth-averaged, spatially weighted apparent cohesion 
values due to roots is 4600 Pa, and they also report the apparent cohesion attributable to roots as 
a function of depth. By fitting an exponential function constrained to integrate to the reported 
average, values of Cr0 = 21666 Pa, and j = 4.96 m-1 are obtained.  These values will be extended 
to the entire research area, but as root cohesion is not expected to remain constant, Cr0 and j will 
be also halved and doubled in the simulations presented in chapters four and five. The 
contribution of vegetation surcharge to the normal and tangential forces is neglected, as on 
slopes nearing 45° they are nearly offsetting. This is confirmed by a sensitivity analysis showing 
that with respect to all the other variables, vegetation surcharge has minimal impact on slope 
stability [Borga et al., 2002].  

Root reinforcement has thus far been treated as spatially uniform. In reality, one can expect 
root cohesion values to be somewhat spatially normally distributed and at the same time to 
exhibit some spatial correlation, according to some correlation length [Griffiths and Fenton, 
2004]. This spatial correlation length determines the distance over which random values will be 
correlated: a short correlation length will result in a patchier root strength field, while a long 
correlation length will generate a smoother root strength field. To explore this effect a random 
grid is sampled from a Gaussian distribution with user-defined mean μ and standard deviation σ. 
A spatial correlation is obtained by repeatedly convolving the random Gaussian field with a two-
dimensional symmetric Gaussian low-pass filter by which every cell in the Gaussian field is 
averaged (with Gaussian weights) with its neighbors. The resulting spatial root cohesion grid will 
approximately retain the mean value μ and standard deviation σ, but the number of iterations n 
will impose a spatial correlation. If we view this process as a random walk on a grid, it is 
intuitive that n determines how far information will travel from a specific cell and that the 
expected travel distance (and thus the correlation length) will be of the order of n0.5. The specific 
correlation length will of course also depend on the filter size and on the filter’s standard 
deviation. Here this is simplified by choosing Gaussian filter of size 3 by 3 (which allows 
information only to travel one cell in any direction at each iteration), resulting in a correlation 
length of b*n0.5 where b (m), is the grid cell size. While this approach produces visually realistic 
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results, as shown in figure 2.7, it is only intended for exploratory purposes and is not 
representative of actual interactions between the landscape and the vegetation. The effect of 
spatially-correlated, normally distributed root reinforcement will be illustrated in chapter six. 

2.2.6 Soil material properties sub-model 

Additional parameters are required to describe the material properties of the colluvial soils 
which play a role in the slope stability calculation. These are the friction angle φ (degrees), the 
soil cohesion C (Pa), and the mean saturated bulk density ρs (kg m3). Schmidt et al., [2001] 
report φ values of 40° obtained from tri-axial compression strength tests performed on five soil 
samples from two locations at the Oregon field site. Montogomery et al., [2009], report values of 
39.1° and 41° obtained from similar tests performed on two undisturbed soil samples from the 
same site. Both Schmidt et al., [2001] and Montogomery et al., [2009] find the soils to be 
essentially cohesionless, with a saturated bulk density of 1600 (kg m3). Here we treat soil 
parameters to be constant and set the soil material properties are treated as constant: φ = 40°, ρs 
=1600 (kg m3), and C = 0 (Pa). 

  
2.3 Discussion 

In order to define the initial size and shape of a shallow landslide, the fundamental 
assumption is made that the potential failure mass behaves coherently as a rigid entity. In 
actuality, a failure may occur in a progressive fashion. For example, in cohesive soils failures 
have been observed to begin as small-scale cracks or deformations that ultimately coalesce into a 
continuous failure plane [Petley, et al., 2005]. Similarly, reduced internal strength and 
liquefaction can cause progressive failure, as suggested by the unusually small cross-sectional 
areas at the toe of some landslides [Lehre, 1982b]. Such complex behaviors are generally too 
challenging to be modeled at the regional scale. However the progressive nature of some failures 
can be represented with models which embrace the rigid block assumption. For example, 
Lehmann and Orr [2012] treat discretized soil columns as rigid blocks, but they remove them 
from the landscape and re-distributed their load to their neighbors once a failure threshold is 

Figure 2.7. Example of spatially-
correlated randomized root 
cohesion: a uniform value of 
10,000 Pa (a) is replaced with a 
random normal distribution (μ  ≈ 
10,000, σ ≈ 3*μ), then convolved 
with a 3x3 Gaussian filter for 1, 2, 
10, 100, 1000 iterations (b, c, d, e, 
respectively) 
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reached. This can cause neighboring columns to fail in both the upslope and downslope 
directions. There are challenges to this type of approach: inevitably it will be resolution-
dependent as if the discretization is too fine no individual column may fail, yet if it is too large 
the progressive nature of some landslide events will be lost. It is possible that that a sufficiently 
fine discretization (i.e. very small rigid blocks) coupled with a search for the initial failure within 
an iterative approach that effectively removes (and possibly re-distributes) individual failed 
blocks from the landscape may offer a more faithful representation of observed dynamics. 

Another significant assumption that was made here is that the failure plane of a shallow 
landslide lies at the interface between the colluvium (soil) and the (weathered) bedrock. While 
this is often the case [e.g. Reneau et al., 1986; Dietrich and Montgomery, 1998], many failures 
have been observed entirely within the colluvium [Reneau et al., 1984; Lehre, 1982b], generally 
below the root mass and at some textural, or permeability discontinuity. In the study area for this 
research all shallow landslides failed at or very near the soil-bedrock interface [Montgomery et 
al, 2000; Schmidt, 2012]. As an important focus of this research is the development of a 
regional-scale search algorithm for shallow landslide prediction, it is necessary to make the 
simplifying assumption of a fixed failure plane to limit the search space to the X-Y (horizontal) 
domain. Given this requirement and the landslide scar observations, it is thus assumed that the 
most likely failure location along the Z (vertical) axis is thus the soil-bedrock interface. 

It is also assumed here is that a soil mass unit is of parallelepidal shape. Clearly this is not the 
case in reality as edges of an actual failure can be inclined and curved in the X, Y, and Z 
directions [Stark and Eid, 1998]. Non-vertical walls will cause earth pressures from adjoining 
cells to operate very differently. However, it is generally assumed that vertical walls will 
diminish the surface area on which lateral resistances operate resulting in a conservative 
underestimation of the factor of safety. In contrast, discretized straight walls (i.e. in the X and Y 
directions) will generally increase the perimeter length, thus overestimating the factor of safety. 
The issue of whether discretization is ultimately conservative is further complicated by the fact 
that on the X-Y plane the grid area is as likely to be an over estimate of the failure area than it is 
to be an under estimate. The discretization effects on the driving forces and on the basal 
resistance are thus unclear, although on average they should offset. In the limit, a finer 
discretization should remove this effect entirely resulting in a net conservative approach. 

The method chosen to represent active and passive earth pressure relies on the Upper Bound 
Limit Theorem, commonly used in limit analysis [e.g. Chen 1975; Chen and Liu, 1990]. This 
theorem states that “the soil mass (of the upslope and downslope wedges) will collapse if there is 
any compatible pattern of plastic deformation for which the rate of work of the external loads 
exceeds the part of internal dissipation” [Drucker et al., 1952]. This means that the most critical 
solution (i.e. the one resulting in lowest of all possible upper bounds) corresponding to the 
assumed mechanism must be found. For the geometry shown in figure 2.3 this solution depends 
on the characterization of the wedge failure surface. As discussed in section 2.2.1, a log-spiral 
slip surface adopted here is an improvement over the classic Coulomb planar slip surface, as 
relaxing the planarity constraint allows for a more critical wedge to be found, and not yielding 
failure surfaces of infinite length (as produced by the Coulomb method when the slip surface is 
parallel to the bedrock surface). The two angles which define a log-spiral surface can be pre-
computed (offline) by numerical optimization, thus not resulting in a higher computational 
overhead. It should be noted that while the log-spiral choice relaxes the (strict) planar 
assumption, it still imposes a constraint on the geometry of the failure. It is unlikely that a more 
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complex slip surface that results in a more unstable wedge would not exist. However, in order to 
numerically find a reasonable slip surface, it must be defined by relatively few parameters, so a 
compromise must be made. In practice, this may result in an over-estimation of the earth 
pressure term [Milledge et al., in prep].  

A more conservative approach would be to find a lower bound solution (i.e. one that would 
guarantee stability, rather than instability). Such approaches are based on the Lower Bound Limit 
Theorem, also commonly used in limit analysis [e.g. Chen, 1975; Chen and Liu, 1990]. This 
theorem states that “If an equilibrium distribution of stress can be found which balances the 
applied load and nowhere violates the yield criterion, which includes c, the cohesion, and phi, the 
angle of internal friction, the soil mass will not fail, or will be just at the point of failure” 
[Drucker et al., 1952]. Rankine theory [Rankine, 1857] is a commonly used stress field approach 
to computing active and passive earth pressure for retaining structures. It assumes that the soil is 
cohesionless, the wall is frictionless, the soil-wall interface is vertical, the failure surface on 
which the soil moves is planar, and the resultant force is angled parallel to the backfill surface. 
Mazindrani and Ganjali [1997] extended Rankine theory to allow for a cohesive backfill and an 
inclined surface, but do not report results for surfaces inclined by an angle which is greater than 
the soil friction angle. Milledge et al., [in prep.] test this approach and indeed find that it is 
problematic at high slopes, and that at low slopes it generally results in an underestimation of the 
earth pressure. 

The lower and upper bounds define an envelope in which the “true” earth pressure resides. 
These bounds rarely coincide when the surface is inclined, the soil is cohesive, and there is 
friction on the boundaries. As limit equilibrium analysis, commonly adopted for slope stability 
models (including the one used in this study) follows the approach and assumptions dictated by 
the Upper Bound Limit Theorem [Chen, 1975], the log-spiral method if not perfect is at least 
consistent. Finally, this method can be used and produces reasonable results over the range of 
conditions in which shallow landslides are common [Milledge, et al., in prep]. However, it 
should be pointed out that different characterizations of earth pressure may result in non-trivial 
slope stability differences, and thus more research is needed to develop a general method on 
which scientists can agree. 

The soil depth sub-model chosen here produces a pattern of thin colluvium near ridges (and 
in divergent areas in general), and thick colluvium in hollows (and in convergent areas in 
general) which matches well field observations. However, because both soil production and 
downslope transport are not likely to vary significantly from one grid cell to the next, the 
predicted patterns are very smooth. In reality, greater local variations in soil depth are indeed 
observed in the field. This is probably due to the stochastic nature of soil production, which is 
mostly a result of small-scale (local) biotic events [Dietrich et al., 2003] such as tree throw and 
animal burrowing. Such events can be taken into account in a more probabilistic fashion. For 
example, Dietrich et al. [2008] propose that events such as tree throw in a specific location have 
a characteristic recurrence time N, initiate a stochastic soil production event with probability 1/N, 
and multiply the right hand side of equation 2.10 by the time elapsed since the last production 
occurrence. This approach produces more heterogeneous soil depth patterns, but recurrence 
times vary by orders of magnitude depending on the nature of the biotic event. Moreover, it is 
difficult to imagine that any single biotic event is mostly responsible for the conversion of rock 
to soil, suggesting that perhaps a distribution of types and recurrence of soil-producing events 
must be considered. While such a study is beyond the scope of this research, it should be noted 
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that the effect of soil heterogeneity on slope stability could be quite significant due to the 
interplay between soil, hydrology, and vegetation.  

The parameters used to model soil depth in this research are region-specific. While similar 
data exist for some other regions (e.g. McKean et al., 1993; Heimsath, et al, 1997), this is 
generally not the case. In absence of soil production/transport parameters (or estimates from 
similar geologic settings) alternative methods must be established. For example, because soil 
depth is well correlated with topography, Ho et al. [2011] propose a simple relation between 
topographic index as defined by Kirkby [1975] and soil depth, with an empirically calibrated 
coefficient. Such methods, well guided by empirical observations may be sufficient to capture 
the topographically steered soil depth variations when better data are not available. It is 
important to notice that none of these approaches (including ours) accounts for the periodic 
evacuation of soil from hollows from shallow landslides and debris flows typical of these 
landscapes [Dietrich and Dunne, 1978]. Thus, any soil depth realization should generally be 
considered as an upper bound prediction, and that predicted deep pockets of soil may at times not 
correspond to reality.  

We have adopted the three-block landslide geometry shown in figure 2.3, with the upslope 
and downslope wedges used to compute the earth pressure forces acting on the central block, in 
turn aiding or resisting its mobilization. The choice of only including the central block (or 
collections of central blocks) in the delineation of a landslide shape can have a significant impact 
on predicted landslide size. On slopes higher than the friction angle, the failure plane of the 
active or passive wedge can be arbitrarily close to the bedrock surface. The length of the wedges 
will thus extend beyond the upslope or downslope neighboring cells and it could be argued that 
these cells should in fact be considered part of the landslide. Rather than introducing rules for 
these cases, we choose to let the search procedure include the neighboring cells if the resulting 
factor of safety is decreased as a result. In some extreme cases, where very deep pockets of soils 
are predicted on slopes significantly higher than the friction angle, the force exerted by the active 
wedge on the central block may exceed the resisting force of the passive wedge. This could lead 
to abnormally small (e.g. single-cell) and deep (several meters) landslide predictions which are 
rarely observed. Pointing out that this is a limitation of earth pressure theory which often gives 
incorrect results for slopes exceeding the friction angle, we rely on the on the extremely low 
likelihood of such conditions in real landscapes (where deep soils are generally not found on 
very steep slopes) to avoid using an arbitrary rule to remedy the situation. Notwithstanding, a 
bias towards smaller landslides may result from these assumptions.  

The treatment of hydrology is perhaps overly-simplistic in this study. This is because the aim 
here is only to capture the very essential elements of the landscape’s response to landslide-
triggering storms. The pore pressure response to such events is an extremely complex matter 
[e.g. Iverson, 1990], which depends among many other things on the abundance of macropores 
[e.g. Beven and Germann, 1982], and the amount of exfiltration from the underlying fractured 
bedrock [e.g. Montgomery et al., 1997; Montgomery and Dietrich, 2002]. There exist very 
complex three-dimensional distributed groundwater flow models [e.g. Ashby and Falgout, 1996; 
Jones and Woodward, 2001; Kollet and Maxwell, 2006] which can account for very 
heterogeneous media and preferential flow patterns. However, in practice their applicability is 
limited in natural settings as knowledge of the subsurface is generally limited [Beven, 1993] and 
model calibration is a daunting, if not impossible, task as parameter values cannot be measured 
in the field at the required scales [Beven, 1996].  
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While three-dimensional flow calculations have been performed over small areas [e.g. Ebel 
et al., 2007a, b], at the larger scale very crude simplifications of reality are required [e.g. 
Montgomery and Dietrich 1994; Beven et al., 1995; Iverson 2000]  that will surely not hold 
everywhere. However, such approaches offer simplicity, inexpensive calculations, and a minimal 
number of parameters, with a quasi-physical interpretation to be estimated in representing the 
subsurface storage [Beven, 1997]. There is much debate on which are the essential mechanisms 
and the minimal parameters which must be taken into account for a quasi-mechanistic 
representation of hydrologic processes in the context of shallow landslide forecasting [e.g. 
Iverson, 2004; Montgomery and Dietrich, 2004]. Such debate is beyond the scope of this 
research, and in fact the approach taken here is to further relax mechanistic faithfulness by 
simply assuming that instantaneous topographically-steered or vertical flows (or both) contribute 
to the definition of landslide-triggering pore pressure fields. However, it is the hope that this 
research may shed some light on the signature of such processes on landslide size and location 
distributions. Iverson [2000] offers an elegant model for infiltration-based pore pressure 
development. This model only requires knowledge of initial conditions (i.e. location of the water 
table), and is thus compatible with the framework defined in this study: in infiltration dominated 
scenarios unsaturated initial conditions can be assumed, while in scenarios in which 
topographically-steered subsurface flow plays a dominant role initial conditions can be set to the 
output of the Montgomery and Dietrich [1994] model. The Iverson [2000] model will be 
included in subsequent research,  

Following Schmidt et al. [2001], two simplifying assumptions are made in characterizing 
root reinforcement in the context of slope stability: that the tensile strength of individual root 
fibers is fully mobilized, and that all roots observed to be broken after the occurrence of a 
landslide failed simultaneously. It is acknowledged here that this is not always the case, and that 
models which use a fiber-bundle approach to represent progressive root failure (e.g. Schwarz et 
al., [2010]) are likely more realistic. However, for the scope of this research these simplifications 
are appropriate as the focus is on the initial landslide size sought over a regional scale. On such a 
scale a sufficiently fine discretization should capture the essential mechanics without unduly 
increasing the computational cost.  

Root reinforcement is also assumed to decay exponentially with depth. This is supported by 
field observations in our research area: with the exception of the first few centimeters which 
don’t have significant root presence the root mass noticeably diminishes with depth. This may 
not always be the case: for example, in a mature forest with a weaker understory the peak 
strength may occur lower in the soil column below the understory roots. In such cases a simple 
exponential decay may not be the most appropriate. It should also be pointed out that both the 
strength value and the exponential shape factor (controlled by the rooting depth) will vary with 
vegetation type. In an area with more complex vegetation than our study site, this may result in a 
different parameterization of root reinforcement. Most importantly, root reinforcement is 
spatially variable and not just with respect to soil depth. This variability is not trivial to 
characterize, as different vegetation species and ages will result in different correlation length 
across a landscape, which are not well characterized at present time.  

Also neglected in this study is root strength deterioration following vegetation removal and 
root strength recovery following vegetation regrowth [e.g. Sidle, 1991; Sidle, 1992; Gerber, 
2004; Dhakal and Sidle, 2003]. These effects are extremely important, but are outside the scope 
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of this research. For our purposes, the effects of root strength deterioration and recovery are 
captured by systematically varying the parameters Cr0, and j from equation 2.18. 

Soil material properties such as friction angle and bulk density are held constant in this study. 
While these properties will change in different geologic settings, they do not vary considerably 
in the Oregon Coast Range. For example, reported values of the soil friction angle range between 
35° and 44° [Yee and Harr 1977; Schroeder and Alto 1983; Burroughs 1985, Montgomery et al., 
2009]. Considering the relatively few number of measurements and the margin of error involved 
in soil tests, this assumption is not unreasonable.  

2.4 Conclusion 
In this chapter I presented a multi-dimensional stability model framework that can be applied 

to landscapes at the regional scale. This slope stability model is mechanistic but not so 
mechanistic that its application becomes impracticable. It is fully three-dimensional in the 
treatment of the forces acting on a discretized slope element and it is statically determinate. The 
model considers the effects of root cohesion and pore pressures, and includes the effects of earth 
pressure in a manner that is compatible with natural slopes. Finally, this model is easily 
applicable to spatially gridded data, and requires only a modest parameterization facilitated by 
procedures defined to obtain spatially explicit parameter fields at the required resolution. While 
this framework allows for the characterization of the forces acting on all the boundaries resulting 
from the discretization of a landscape into slope element blocks (and thus the role of each block 
in the stability of the landscape), a deterministic search procedure that is able to select discrete 
least-stable combinations of slope elements across a landscape must be defined in order to obtain 
meaningful shallow landslide predictions. No such procedure exists, and its development will be 
the focus of the next chapter. 
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Chapter 3 
Searching for the optimal landslide: a new efficient method for 
shallow landslide prediction 
3.1 Introduction 

In a discretized landscape, one can imagine a shallow landslide as a collection of elements 
(e.g. grid cells), which behave coherently, mobilizing together in accordance to some physical 
properties and conditions which characterize their instability (i.e. their propensity to mobilize 
into a landslide). One can also imagine that for a particular discretized landscape and a particular 
criterion to quantify the instability of a collection of cells, there is one such collection which is 
less stable than any other. If one further imagines that under such conditions this minimally- 
stable configuration is the most likely to mobilize first, then the problem of predicting landslides 
across a landscape can be reduced to the problem of finding the minimally-stable collection of 
cells in that landscape, and iterating to find the next distinct collection of cells until no more 
unstable collections are found. This is precisely the goal: I wish to directly determine the initial 
shape and location of the most likely landslide, given the local conditions (e.g. topography, 
hydrology, and vegetation). I shall refer to this minimally-stable collection of grid cells as the 
most favorable or optimal landslide. The exact solution of this problem could be obtained by 
testing every combination of grid cells and applying a stability analysis such as those discussed 
in the previous chapter. However, such a brute-force approach would be intractable, as the 
number of possible combinations of cells grows exponentially with the number of cells n in the 
grid, resulting in O(2n) complexity. As an example, using brute force to find the least stable 
landslide across a small 1 km2 landscape discretized into a square grid composed of 1000 by 
1000 cells (as one would obtain using modern LiDAR data) could result in exploring a number 
of different combinations of cells of the order of O(21,000,000), a number so vast that the task 
would be unfeasible even using the world’s most powerful computers.  

In this chapter I will examine the computational complexity of this problem, and show that it 
is as hard as most problems known to computer scientists today. I will then build an algorithm 
based on spectral graph theory that efficiently approximates the exact solution. I will insert this 
algorithm into a novel general procedure for finding shallow landslides. This procedure will rely 
on models and data such as those discussed in the previous chapter, but will not be confined by 
them: as our models and data improve they can be swapped in to substitute the current choices. I 
will lay the groundwork for a real-world application, to follow in the next chapter, by devising 
metrics to assess the procedure’s performance. Finally I will conclude by discussing the quality, 
complexity, implementation, and possible improvements for this procedure. 

3.2 A hard problem 

Let us examine the problem of finding landslides from a computational complexity theory 
view point. If we state the problem as “given a discretized landscape, produce the most unstable 
collection of cells contained in it”, what can we say about its complexity? In order to discuss 
this, a succinct review of complexity theory is necessary. Some of the material presented in this 
section derives from text books by Papadimitriou, [1994], Cormen et al., [2001], Dasgupta et al., 
[2006], and Arora and Boaz, [2009]. For further details and definitions I refer the reader to these 
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texts. Some of the examples used here are inspired by lectures given in the Computer Science 
department at U.C. Berkeley by Christos Papadimitriu, Satish Rao, and Umesh Vazirani. 

In computational complexity theory there are several classes of problems, the simplest of 
which is denoted by the letter P, representing the set of all decision problems (i.e. problems 
having a yes or no answer) for which a solution can be obtained efficiently. Here an efficient 
solution means a polynomial time solution, i.e. that there is an algorithm that solves the problem 
and whose running time can be upper-bounded by a polynomial expression which is a function 
of the input size. For example, it is easy to verify that a naïve sorting algorithm which compares 
every element to every other element of a list in order to produce a sorted list will have a running 
time of at most k*n2, where n is the number of elements in the list, and k is some constant which 
will depend on how much time the algorithm takes to compare any two elements in the list. 
Thus, the problem of determining whether some list is sorted belongs to the set P.  

The next class of computational problems is denoted by NP (which stands for non-
deterministic polynomial time), and it consists of all the decision problems for which no such 
polynomial time algorithm is known, but for which a candidate solution could be quickly 
verified. A classic example of such a problem is the simplified version of the traveling salesman 
problem: given a set of cities and their pairwise distances, is there a route of length less than k 
which passes through all the cities exactly once? The problem could potentially require exploring 
all possible orders in which to visit the cities, resulting in an exponential time upper bound. 
However, given a candidate solution, it is easy to add up the distances of the proposed city order 
and verify whether it is less than k. Clearly the set P is a subset of NP. However it should be 
noted that determining whether P = NP or P ≠ NP is perhaps the most notable unsolved problem 
in computer science [Cook, 1971]. Another subset of NP is the set of NP-complete problems: 
these are the problems that are in NP and whose solution could solve any other problem in NP. 
The first such problem to be discovered was the satisfability problem (also known as SAT): that 
of determining if the variables of a given Boolean formula can be assigned in such a way as to 
make the formula evaluate to TRUE [Cook, 1971]. To this day, no algorithm which can 
efficiently solve this problem is known. Since Cook’s seminal paper, the list of NP-complete 
problems has grown exponentially. This is because the task of proving that a candidate problem 
is NP-complete simply requires that a solution can be easily verified and that an algorithm which 
efficiently solves an NP-complete problem can be easily transformed to solve the candidate 
problem. For example, it turns out that the traveling salesman problem described above is in the 
NP-complete set. 

Now consider the stricter version of the traveling salesman problem: given a set of cities and 
their pairwise distances, find the shortest a route which passes through all the cities only once. 
Firstly this is not a decision problem to which there is a yes or no answer, rather a search 
problem. Secondly, it is easy to imagine that like its decision equivalent the search traveling 
salesman problem could require an exponential time algorithm to find a solution. Thirdly, this 
search version of the problem is at least as difficult as the decision version. In other words, if a 
search algorithm could find a minimal path between the cities, then it could also answer 
questions about the existence of a path of some arbitrary length. This means that the decision 
version of the traveling salesman problem is reducible to the search version of the same problem. 
Problems such as this one which are as least as difficult as NP-complete problems but to which 
an NP-complete problem can be reduced are called NP-hard.  
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This particular nomenclature is somewhat misleading, as not every NP-hard problem is in the 
set NP. The simplest example of an NP-hard problem which is not in NP is perhaps the halting 
problem: given a program and its input, will it halt? While this is a decision problem, if the 
program were to loop indefinitely for some particular input, then the running time could not be 
bounded at all, implying that the halting problem does not belong to NP. In contrast, every NP-
complete problem is also NP-hard, leading to the alternative definition that a problem is NP-
complete if and only if it is in both sets NP and NP-hard.  

The requirement of a problem to belong to the class of decision problems is also misleading. 
For example, the search version of the traveling salesman problem can be solved by repeatedly 
calling the decision version and doing a binary search: if n is the number of cities and m the 
maximal pairwise distance between any of them, we initialize the current minimum length to be 
0 and the current maximum length to be m*n. We initialize the current path length k as we 
would in any binary search, halfway between the minimum and the maximum. Then we call the 
algorithm which solves the decision version of the problem, and check if there is a path between 
the cities of length less than k. If the answer is yes, we replace the current maximum length with 
k, and if the answer is no we replace the current minimum length with k. We re-initialize k 
halfway between the new maximum and new minimum lengths and repeat the process until the 
current minimum length is equal to the current maximum minus one. After at most log(m) 
iterations we obtain the length l of the minimal path. Now one must find a path of length l which 
touches each city only once: beginning from any city a, we select a road to another city b that we 
have not seen before. Knowing that d is the distance between a and b, we ask the decision 
algorithm the following question: if the distance between a and b were l instead of d would we 
still have a minimal path of length l? If the answer is yes, then going from a to b cannot be part 
of the desired minimal path. To make sure we never go from a to b we forever pretend that the 
distance from a to b is indeed l and not d. If in contrast the answer is no, we move to b. From b 
we repeat the process towards another city c, and so on. Eventually we will get back to a having 
excluded all the choices which will not result in the minimal path length l. As there are n cities, 
this process will take at most n2 iterations. As the total number of iterations is log(m)+ n2, a 
polynomial running time, we can conclude that the search version of the traveling salesman 
problem is also NP-complete. 

This theory can be applied to our problem of finding the minimally-stable collection of cells 
in a discretized landscape. Much like the search for the minimal path for the traveling salesman, 
ours is a search problem. There are many search problems that ask for an optimal solution among 
a great number of them. Some are easy, and some are hard. For example, consider the minimum 
spanning tree problem which could be illustrated as follows: an electric company has to service a 
new residential development.  They have to service every house, and the wires need to be buried 
underground, which imposes a high cost that can vary with length of each section. Thus, the 
company wants to find the shortest such path which touches all the homes in order to minimize 
their costs. While at first glance this may appear to be the same problem as the traveling 
salesman problem, in fact it is a very easy problem. It was solved in 1926 by Otakar Boruvka to 
construct an efficient electricity network for the region of Moravia in the Czech Republic 
[Nesetril, 2001]. For an example of a minimum spanning tree, see figure 3.2.e. So we ask, is our 
problem more like the traveling salesman or like the minimum spanning tree? Is it easy or is it 
hard? It turns out that it is very hard, and we will see later in this chapter that indeed it is NP-
hard as the solution of it will solve an NP-complete problem. In practice what is done in such 
situations is to devise an algorithm which approximates the exact solution efficiently, and then 
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demonstrate that approximation error is bounded. This is the path I shall follow in the next 
sections. 

3.3 An alternative approach: spectral clustering 

If finding the exact solution to the minimally-stable collection of cells problem is NP-hard, 
perhaps we can devise a tractable way to approximate the exact solution. For example, we could 
imagine there should be some contrast between elements of the minimally-stable collection of 
cells and elements outside of it. It thus seems intuitive that delineating the boundary of the 
minimally-stable collection of cells entails maximizing the similarity of the elements in the 
collection and at the same time maximizing the contrast between these elements and the 
neighborhood not in the collection, and that that collections having such a boundary would 
produce ideal candidates for potential landslides. Some of the material presented in this section 
derives from text books by Chung [1997], Kogan, [2007], Hastie, et al., [2009], Cvetković et al., 
[2010], and from review papers by Mohar, [1991], Jain et al., [1999], and Von Luxburg [2007]. 
Some of the examples used here are inspired by lectures given in the Computer Science 
department at U.C. Berkeley by Michael Jordan, Satish Rao, Umesh Vazirani, and Jitendra 
Malik. 

3.3.1 Clustering 

Such a goal is a classic example of a clustering problem. Clustering is a fundamental data 
analysis task with broad (and seemingly disparate) applications in fields such as data mining, 
machine learning, pattern recognition, image analysis, bioinformatics, information theory, 
control and signal processing, and psychology, just to name a few, in the context of unsupervised 
classification. In essence, it is the process of finding a structure in otherwise unlabelled data by 
dividing them into clusters such that objects in a the same cluster are similar to each other and 
dissimilar from objects in other clusters. This can be done in a hard fashion, by which objects 
can only be assigned to one cluster, or in a fuzzy fashion, so that objects are assigned a 
probability of belonging to each cluster. A typical clustering process requires the following steps 
[Jain et al., 1999]: 

(1) Pattern representation:  determining the number of classes, and the number, type, and 
scale of the features available to the clustering algorithm. An important part of this task 
involves feature selection and feature extraction, which are the processes of identifying 
the most effective subset of the original features available and to apply transformations to 
these features to produce new salient ones, respectively.  

(2) Definition of a similarity measure appropriate to the data: typically such a measure takes 
the form of a distance function which must obey distance axioms (e.g. the triangle 
inequality), although more perception-based measures related to the saliency of features 
may be used.  

(3) Clustering (also called grouping): the application of an algorithm which divides data into 
clusters. There are two basic classes of such algorithms: non-parametric methods 
typically recursively merge or split data clusters, depending on how similar they are, 
while parametric methods attempt to minimize a cost function or an optimality criterion 
which associates a cost to each instance-cluster assignment. 

(4) Data abstraction: the process of extracting a simple and compact representation of the 
clustered data for further processing tasks. This could be as simple as the centroid of each 
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cluster, although typical applications require more information such as a geometrical 
and/or statistical description. 

 (5) Output assessment: the evaluation of a clustering procedure’s output. This analysis can 
be performed by selecting a specific (and often subjective) criterion of optimality, or by 
applying more objective statistical methods, depending on the application. 

The definition of these steps is critical and at the same time application-dependent, as illustrated 
in figure 3.1.  

Clustering is not a new problem, as it has been traced all the way back to Aristotle [Hansen 
and Jaumard, 1997]. Consequently, it is not suprising that many algorithms have been developed 
over time. Hierarchical methods which group or divide data based on their similarity, generally 
resulting in a binary tree whose root is the entire dataset, and whose leaves are the individual 
data objects. In contrast, partitional methods such as K-Means assign data into a pre-defined 
number of clusters, with no hierarchical structure. Probabilistic or mixture methods instead 
assume that objects in different clusters are generated according to different probability 
distributions, and thus algorithms such as the expectation-maximization or EM algorithm can be 
used to estimate distribution parameters. An extensive review of many clustering algorithms can 
be found in [Hastie, et al., 2009].  

 
Figure 3.1. Four different object pairings illustrating the difficulty of defining a clustering process. A few questions 
for the reader: should the two objects in each pairing be in the same or different clusters? What would be an 
appropriate similarity measure? What would the objective of a clustering procedure be in this case? Clearly the 
answers depend on the application. Inspired by [Kogan, 2007]. 
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3.3.2 Spectral Clustering 

In recent years, clustering algorithms inpired by spectral graph theory, the study of the 
eigenvalues of graphs, best described by Chung [1997], have become increasingly popular as 
they often can outperform the traditional approaches, and can take advantage of the 
computational efficiency of modern linear algebra software. As with computational complexity 
theory, discussed in section 3.2, I provide here only a minimal introduction to spectral clustering 
methods, as such a general discussion is beyond the scope of this study. Rather I shall focus on 
essential notions which are needed for the shallow landslide prediction problem. For more 
technical details the reader may refer to spectral clustering reviews such as Von Luxburg [2007].  

As with traditional clustering methods, spectral clustering relies on the same main five steps 
described above. The pricipal difference is is that the objects (or data points) are represented as a 
graph, an abstract representation of a collection of objects, some of which are linked together. 
The graph could be connected, in which case there is a path from any object to any other object, 
fully connected, in which case each object is connected to all other objects, or partially 
connected, in which case there are objects which are not connected to each other. There are some 
fundamental characteristics of a graph, which are defined based on these connections. 
Undirected graphs are such that if an object a is connected to an object b, then b is also 
connected to a. In contrast, a directed graph may have one-way connections. For example, if our 
objects were all the people at a party, the people who were introduced to each other would form 
an undirected graph, while the people who know other party guests would form a directed graph, 
as knowing someone is not necessarily a mutual relationship. Both for simplicity and of 
relevance to our application I shall only focus on undirected graphs. The other fundamental 
characteristic is whether a these connections have weights associated to them. To stay with our 
example, the party guest who have been introduced to each other would be represented as an 
unweighted graph. However, if we said that two guests, once introduced to each other, were 
more connected if they were closer in age, then one would have to use a weighted graph to be 
able to capture this distinction. Examples of such graphs are shown in figure 3.2. Without loss of 
generality one can assume that all the weights of the graph are positive, as one can always add a 
constant to them. For simplicity, I will also restrict the weight values to real numbers, although it 
should be noted that these methods can be used with complex numbers. 

In the construction of a graph, one has to decide what criteria to use to determine which 
objects are connected, and how these objects are connected. In the previous example any guest 
could be connected with any other guest, as long as they had been introduced. Suppose however 
that they then sat at a formal dinner, so that they could only interact with people seated at their 
vicinity, then the graph would be a k-nearest neighbor graph, where k would be the number of 
people seated next to or directly across from each guest.  The connection in this case is 
determined by spatial constraints, and the weight associated to that connection may be dependent 
on their age. Suppose instead that guests were at a standing buffet dinner, while their teenage 
kids were to be seated at a separate little table were they could all interact. In this case the 
teenagers would form an ɛ-neighborhood graph, where the ɛ is solely based on belonging to the 
same age group. In this case, adding weights to these connections may not add much to the 
descriptive power of this graph, particularly if the teens were roughly of the same age. 

Another particularity of graphs is that they define a series of special matrices. The party 
guests who have been introduced in the previous example could be listed as entries of an n by n 
matrix, where n is the number of guests: if guest i has been introduced to guest j, then the entry 
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(i,j) of the matrix would be set to 1, and to 0 otherwise. Such a matrix is called an unweighted 
adjacency matrix. This entry could further encode the age difference of the guests in which case 
the matrix is weighted. This is the general case we shall use, and we will denote this matrix by 
W. A degree matrix D is also a n by n matrix, but where the number of connections of each 
object is encoded, for example how many people each guest has been introduced to. In this case 
the matrix is strictly diagonal, as each guest i is represented by the entry (i,i). Perhaps the most 
important matrix defined by a graph is the Laplacian matrix L, which in its un-normalized form 
is simply the degree matrix minus the adjacency matrix: L = D - W. The most important 
properties of the Lapacian matrix are that it is symmetric, and positive semi-definite.  This means 
that for any vextor x, xTLx ≥ 0. It also means that all the eigenvalues of L, which form the 
spectrum of L, are real-valued and ≥ 0. The reader is reminded that for a square M of size n by n, 
a non-zero vector v of size n is an eigenvector of M if it satisfies the set of linear equations 
defined by Mv = λv, with the scalar λ being the eigenvalue associated with v.  

While incredibly simple in its construction, the Laplacian matrix can tell us much about the 
graph through its eigenvalues. One example that is particularly relevant for clustering 
applications is concerned with the number of connected components of a graph, i.e the number of 
groups of objects which are connected to each other and disconnected from the rest of the graph. 
In our dinner party example, these would be the groups of guests who have all met each other 
within their group but did not meet other groups of guests, perhaps because they came later. It 
may seem almost magical that the number of such connected components is exactly the number 
of zero-valued eigenvalues in the spectrum of L! For an example of the connected components of 
a graph, see figure 3.2.d. An overview of many such properties of the Laplacian matrix can be 
found in Mohar [1991]. The normalized Laplacian matrix is the Laplacian matrix defined above, 
normalized by the degree matrix: Ln = D-0.5LD-0.5. It has the same exact properties of the 
standard Laplacian, but can be more useful for some clustering applications. Intuitively, 
normalizing by the degree matrix can be seen as taking an average of each object’s connection. 
In practical applications this diminishes the effects of noise, and prevents some small isolated 
clusters from accidentally forming. An in-depth review of normalized graph Laplacians and their 
properties can be found in Chung [1997]. I will exploit the spectral properties of graphs to find 
our optimal landslides. 

3.3.3 Spectral Clustering and Shallow Landslides 

In the next sections will introduce an efficient spectral clustering search procedure 
specifically developed for next-generation shallow landslide prediction. In order to define such 
procedure, I first make an important assumption: the initial landslide shape is the result of an 
optimization of the forces acting on a cluster of grid cells, locally resulting in the minimal factor 
of safety, defined as the ratio of the driving and resistive forces. I also impose what is perhaps 
the only constraint of the search algorithm, namely that the landscape is represented as an 
undirected graph. As we will see later in this chapter, this enables us to exploit properties of 
symmetric matrices, and of their spectra. We define a weighted, undirected k-neighborhood 
graph with k set to 4 in the case of a regular square grid (or k set to 6 in the case of a regular 
Voronoi tessellation), requiring grid cells to be connected only to their neighbors. In essence, the 
classical factor of safety analysis is recast as a graph partitioning problem, where the nodes are 
annotated with the landslide mobilizing forces, the edges with the resistive forces, and their ratio 
(the factor of safety) is the objective function to be minimized. In other words, we want to find a 
partition of the graph such that the edges between different groups have a very low weight 
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(which means generally that points in a landslide cluster are dissimilar from points outside of a 
landslide cluster, and specifically that there is little resistance holding the landslide cluster 
connected to the non-landslide cluster) and the edges within a group have high weight (which 
means generally that points within a landslide cluster are similar to each other, and specifically 
that high resistance between them will allow them to mobilize coherently). The approach used 
here is a spectral method reminiscent of the normalized cut, introduced by Shi & Malik [2000] in 
the context of image segmentation, which computes the cut cost as a fraction of the total edge 
connections to all the nodes in the graph using the spectrum of the normalized Laplacian 
described above. The principal differences in our method, aside from the very different 
application, lie mainly in the definition of the graph (ɛ-neighborhood in their case), and in the 
construction of the matrices (our matrix is only Laplacian-like, and the normalization is non-
standard). As a result our algorithm is better suited for landslide prediction. 

Figure 3.2. Five examples of graphs. a) an un-weighted connected undirected graph with 6 vertices and 7 edges; b) 
an un-weighted fully-connected undirected graph with 7 vertices, each having degree 6; c) a un-weighted directed 
graph showing both the in-degree and the out-degree of each vertex; d) an un-weighted partially connected 
undirected graph with 3 connected components; e) a weighted connected undirected graph and its minimum 
spanning tree. Source: www.wikipedia.org. 

The search procedure is general, in the sense that it does not rely on a particular definition of 
the driving and resistive forces involved in landslide mobilization, but it requires a slope stability 
model to characterize the stability of a soil mass. As discussed in chapter 2, any such model in 
turn will require a series of input data and sub-models (e.g. slope, soil depth, root strength, 
material properties, pore pressure), thus defining feature selection step for the clustering 
algorithm. These features are then transformed into features that describe boundary forces and 
resistances salient for the clustering process, thus defining the feature extraction step. In the 
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following chapters I will show the effects of different parameterizations of a physical slope 
stability model, particularly with respect to the choices of sub-models. and point to the most 
significant unknowns. But in developing the search I will remain as abstract as possible, in order 
not to impose limitations which could make the procedure not applicable in the future, as better 
data and sub-models become available. 

3.4 A novel procedure 

The shallow landslide land prediction procedure is conceptually illustrated in figure 3.3. At 
the base lie a series of models which are used to describe the physical attributes of the landscape, 
the hydrological processes, and the distributions and characteristics of soils and vegetation. 
These models produce spatially explicit layers on which a slope stability model can be applied. 
The foundation of the procedure, and the principal original contribution of this work, is the 
search for the optimal landslide, given knowledge about the local conditions of topography, 
hydrology, precipitation, and soil characteristics. As mentioned in the previous section, I base the 
otherwise intractable search on spectral graph theory [Chung, 1997]. The goal is to represent and 
analyze the attributes of the landscape that are relevant to shallow landsliding as abstractly as 
possible, in order to separate the search algorithm from specific physical representations or 
specific physically-based models, which all come with advantages and disadvantages. To 
achieve this goal, I choose as the principle instrument a graph, a mathematical abstraction 
representing a set of objects where some pairs of the objects are connected to each other. The 
objects in turn are represented by mathematical abstractions called vertices or nodes, and the 
connections between some pairs of vertices are called edges. Typically, we depict a graph (in 
diagrammatic form) as a set of dots for the vertices, connected by lines (or curves) for the edges. 
In this framework, delineating a landslide is equivalent to partitioning such a graph into a set of 
vertices labeled “landslide” and another set labeled “not a landslide”. The collection of edges 
separating these two vertex sets is referred to as a cut, which in this case represents the forces 
acting on the perimeter of a potential landslide. The collection of vertices within the cut 
represents the forces acting on the base of a landslide, as well as the gravitational forces which 
collectively influence mobilization. In the next sections I describe how to build such a graph, 
how to evaluate the goodness of the (exponentially numerous) possible cuts, and how to  

3.4.1 Graph representation 

The landscape and all its spatial attributes are discretized into a regular grid (i.e. with square 
grid cells). The attributes of landscape relevant to a mobilizing process (in this case shallow 
landslides) are represented as a weighted graph G=(V,E), where the vertices (or nodes) vV of 
the graph represent the vertical soil columns corresponding to the original discretized grid cells. 
An edge eijE is formed between every pair of vertices vi and vj whose corresponding cells were 
adjacent in the original grid. These edges represent the forces that act between the vertical soil 
columns. An example of such a graph is shown in figure 3.4. Any graph G can be represented as 
an adjacency matrix A, where an entry Aij is nonzero if and only if there is a connection between 
vi and vj in G. While in an unweighted graph these entries are binary, in a weighted graph these 
entries encode the weights wij which can be seen as the strength the connection represented by 
edge eij. Note that if the original grid is of size n by m, then A will be of size nm by nm. 
However, A will contain mostly zero values as there are only connections between nodes and 
their immediate neighbors, and thus will be extremely sparse. This is important computationally, 
as it introduces little memory overhead, when compared to the original grid. It should also be 
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noted that, safe for the 1-cell wide boundary along the edges of the grid, all cells have the same 
number of neighbors, and thus G is k-regular (4-regular in the case where only the upslope, 
downslope, left, and right neighbors are considered) and A is symmetric.  

Figure 3.3. Diagram of the shallow landslide predicting procedure. Sub-models and/or data (represented in orange) 
produce the features (represented in green) which are selected by the slope stability model. This model in turn 
produces the criteria used by the search algorithm (represented in blue). The output of the search is a list of shallow 
landslide predictions (represented in red). 

The nodes of this graph are annotated with the forces that each individual column 
contributes: the gravitationally driven downslope mobilizing forces and the frictional resistive 
forces acting on the base of the column. To remain within the confines of an undirected graph, 
only the magnitude of the forces is encoded. In practice, this will result in an over-estimation of 
the driving force, as in a non-planar slope some forces contributed by individual grid cells may 
partially offset each other. However, it should be noted that this is a conservative approach, in 
the sense that more potential landslides are sought. Furthermore, when candidate landslides are 
presented to the search algorithm the factor of safety is correctly computed by summing the east-
west and north-south components of the forces separately (see section 3.4.4). Similarly, the 
edges of the graph are annotated with the forces that play a role between a grid cell and its 
neighbors: these are mostly resistive (e.g. root strength, earth pressure), but may include a 
gravitational “push” from upslope neighbors. Hereafter I will refer to all the mobilizing forces 
simply as forces, and to all the resistive forces as resistances. Such forces and resistances can 
also be encoded in two nm by nm matrices F and R. The force matrix F is only associated with 
the vertices of G, and thus will be zero everywhere except for the diagonal: 

 dii iF F         (3.1) 
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where Fdi
 is the force contributed by vertex vi. Being a diagonal matrix, F is symmetric by 

construction (figure 3.5). The resistance matrix R is similarly constructed, but here the 
resistances are associated with both the vertices and the edges of G. The diagonal of R is: 

*m n

bii i ij
i j

R R w


             (3.2) 

where Rbi
 is the basal resistance contributed by vertex vi, and the wij term is the sum of the edge 

weights leaving the given vertex vi (i.e. the sum of all the resistances between vi and its 
neighbors).  It should be pointed out that the diagonal of R differs from that of a general 
Laplacian matrix, as it also encodes the Rb terms. Another difference results from the fact that 
the resistive forces are not symmetrical, as illustrated in figure 3.4. In order to obtain an 
undirected graph, these forces are first symmetrized: the off-diagonals entries of R, visualized in 
figure 3.6, contain the negated average of the weights along a given edge: 
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2

ij ji
ij ji

w w
R R i j


         (3.3) 

In order to verify that the symmetric 
formulation (eq. 3) is correct, let a 
potential landslide S be a subset of V, and 
let x be an indicator vector of length n*m 
(the number of rows and columns of the 
original grid). Each component xk{0,1} 
indicates whether vertex vk is part of Sor 
not: if xk=1 then vkS, and if xk=0 then 
vkS. Note that the index k, where 0  k < 
n*m, corresponds to the position of a grid 
cell in a linearized representation of the 
grid, i.e. k=i*m+j for each cell (i,j). For 
each pair of neighboring vertices vi and vj, 
the lateral resistance should only take the 
values shown in table 1 below, according 
to the values of xi and xj. 

It is easy to verify that equation 3.3 is consistent with table 1, and thus R is a symmetric matrix 
by construction. The reader may notice that R and F are constructed in a way that is similar to 

Figure 3.4. Graph of a discretized landscape, consisting 
of 16 grid cells. The nodes, labeled F1-F16, are 
associated with the mobilizing forces, as well as the 
frictional forces contributed by each grid cell. The edges 
represent the resistive forces between grid cells: the 
edge labeled Ri,j, encodes the resistance that node Fi 
imposes on node Fj. Note that as defined, Ri,j, is not 
necessarily equal to Rj,i. For the blue nodes to form a 
landslide, their mobilizing forces must exceed the 
resistive forces of the red edges combined with their 
frictional forces. Table 3.1:  Possible values of lateral resistance 

between neighboring vertices vi and vj. 
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the affinity and degree matrices of a graph, and that F1/2RF1/2 is thus similar to the normalized 
Laplacian matrix of a weighted graph [Chung, 1997]. G is now fully represented as an 
undirected graph. 

 
Figure 3.5. Discretized landscape graph with 16 nodes and the corresponding 16 by 16 force matrix F. The diagonal 
of F encodes the magnitude of the gravitational mobilizing forces contributed by each grid cell. The blue nodes in 
the graph correspond to the blue entries in the matrix. Note the extreme sparsity of F, which is generally n by n, but 
only has n entries. 

3.4.2 Graph partitioning 

Having defined an indicator vector x which allows labeling a subset SV a landslide or not a 
landslide, we now need to define a general criterion for instability to partition V, the vertices of 
G, into S and its complement, which we will call S’. In all mechanistic slope stability analysis 
methods with a foundation in Coulomb theory [Coulomb, 1773], the limit-equilibrium is 
considered to be moment when the sum of mobilizing forces acting on a mass exactly balances 
the sum of the resistive forces acting on the same mass [Terzaghi, 1950]. Thus, a common 
criterion for instability is if the ratio of resistances over the forces. If this ratio drops below unity, 
then the mass is unstable. This ratio is typically referred to as the factor of safety (FS), and the 
common (although not formal) view is that a lower FS implies a greater probability of failure. 
The FS can be adopted as the similarity measure (also referred to as an objective or cost 
function), noting that up to now nothing more has been specified other than a stability analysis 
will involve forces that aid or resist landslide mobilization, in other words benefits and costs to 
be used in the context of an optimization. The cost function C(x) of any partition S can be 
written as: 

 ( )
T

T

x Rx
C x

x Fx
       (3.4) 

An example of a partition and its factor of safety (FS) is illustrated in figure 3.7. Based on 
these definitions, the optimal partition S* is determined by the indicator vector x* which 
minimizes C(x*). We now have to find x*. Unfortunately, finding x* in the discrete case (i.e. 
x*) is not only intractable, but NP-complete. A formal proof by Christos Papadimitriou is 
presented in appendix 1 of Shi and Malik, [2000]. Fortunately, there exist efficient methods to 
find very good approximations to this class of problems. 
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Figure 3.6. Discretized landscape graph with 16 nodes and the corresponding 16 by 16 resistance matrix  R. The 
diagonal of R includes the frictional resistive forces contributed by each grid cell. The off-diagonal entries of R 
encode the symmetrized resistive forces acting between grid cells.  The blue nodes in the graph correspond to the 
blue entries in the diagonal of R, while the red edges correspond to the red off-diagonal entries of R. Note that R is 
also very sparse, as it is generally n by n, but only has 5*n entries on average. 

3.4.3 Spectral Relaxation 

In order to find the minimizing solution to equation 3.4, we need to relax the condition that x 
is discrete. We thus allow x to take on any real value (i.e. x) and follow an approach 
similar to that adopted by Shi and Malik [2000]. If we let y = F1/2x, the resulting cost function 
becomes:  

 
1 1
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T
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 

      (3.5) 

We note that the cost function defined by equation 3.5 is the Rayleigh quotient: as F and R are 
both symmetric real-valued square matrices, the inner product of F-1/2RF-1/2 is also symmetric 
and thus positive semi-definite.  It is well known that the minimizing solution to the Raleigh 
quotient is the eigenvector pointed to by the smallest nonzero eigenvalue of the linear system 
defined by: 

 
1 1

2 2F RF y y        (3.6) 
This eigenvector, that we call y*, is retained to extract the most salient partition x*, after 
reversing the change of variable used above by letting x* = F-1/2y*. One can think of x* as a 
continuous indicator vector, representing the fraction of each node that contributes to the optimal 
partition S*. In addition, conscious of the fact that x* is only an approximation of the original 
discrete x, we do not limit ourselves to the first eigenvector, rather we take the first k 
eigenvectors, where k can be a function of the eigenvalues of equation 3.6 or, more simply, 
selected by the user on the basis of the computational constraints at hand. 
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Figure 3.7.  Factor of safety of a graph partition. a) Example of a graph partition dividing the graph into a set of blue 
vertices and a set of white vertices. The cost is associated with the red edges (the cut), which model the resistive 
forces acting on the perimeter of a landslide. The benefit is associated with the blue vertices, which model the 
driving gravitational forces acting in the interior of the slide. The blue and white vertices are inside and outside the 
potential landslide, respectively; b) The binary matrix corresponding to the partition where the blue vertices take the 
value of 1 and the white vertices take the value of 0; c) The indicator vector x corresponding to this partition, 
obtained by linearizing the matrix; d) A visual illustration of the objective function corresponding to the factor of 
safety. The best cut is that which has the minimal value for FS. 

3.4.4 Recovering the discrete solution 

An approximation to the discrete solution x can be obtained by thresholding the continuous 
vector x*. As x* is also of length nm, all 2*nm-1 possible interesting threshold values are used. 
All xi’s for which the corresponding xi

* are greater than the candidate threshold ti are set to 1, 
and the rest of x is set to 0. In other words, x* can be visualized as a landscape where each 
threshold is a contour elevation value, and the regions at threshold ti are the projection on the 
Cartesian plane of the points with elevation higher than ti. In general, any threshold ti may give 
rise to disconnected discrete regions. In particular, a region ri at threshold ti must either have not 
existed at threshold ti-1, or be an expansion (or contraction) of a region ri-1’ at threshold ti-1, or be 
the result of the merging of regions ri-1’ and ri-1” at threshold ti-1. At any threshold, regions are 
labeled using a connected-component analysis, as described in Haralick and Shapiro [1992]. 
These connected components represent candidate landslides. The evolution of the regions 
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throughout the thresholding process gives rise to a contour tree. In such a tree Tc, nodes 
represent the events of birth, merge, and death of regions, while edges represent the extension or 
contraction of an individual region, as illustrated in figure 3.8.  

We are interested in finding the minimal values of C(x) (the factor of safety of a collection of 
cells represented by x) of all edges in Tc. The connected components at each threshold can be 
compared with those which were present at the previous threshold. This gives rise to three 
possible outcomes: 

1) A component that was not present at the previous iteration appears in the current 
iteration. This is the case of the leaves of Tc. In this case the component is initialized as a 
new candidate landslide in the active set of components, and its C(x) value is stored, 
along with its bounding box and indicator vector x. 

2) A component is found in the current iteration which overlaps with one active component 
from the previous iteration. This is the case of the edges of Tc. In this case the cost of the 
two components is compared and the active component is updated with the value, 
geometry, and indicator vector of the one with the minimal value of C(x).  

3) A component is found in the current iteration which overlapped with two distinct active 
components in the previous iteration. This is the case of the non-leaf nodes of Tc. We 
consider this as a new component to be initialized as in the first case. At the same time 
the two components from the previous iteration are placed in the inactive list of 
components. 

This process is then repeated for the negative of x*, which is equivalent to inverting the x* 

landscape and generating a new contour tree Tc
’.  At the end of both these passes the active and 

inactive component lists contain all the minimal values along the edges of Tc and Tc
’. These 

connected components represent the candidate landslides, and as these are discrete partitions 
their factor of safety can now be correctly evaluated by taking into account both the magnitude 
and orientation of the gravitationally driven forces, by computing their vector sum. It should be 
noted that taking into account the direction of the gravitational forces addresses the under-
estimation of the factor of safety discussed in section 3.4.1. The subset of this collection of 
regions having the value of FS < 1 represents the potential landslides approximated by the 
continuous solution x*. As x*

  is only one of the many eigenvectors examined, this process is 
repeated. It’s worth noting that since the eigenvectors are independent of each other, the 
thresholding process is trivially parallelized. As individual landslide predictions may be derived 
from different thresholds of a single eigenvector, as well as from a different eigenvector, they 
may very well overlap. When this is not desired (see discussion), a final step is then required to 
prune the overlapping predictions in order to retain only a subset of them. The overlap ratio Or is 
defined for two regions r’ and r”: 

 
' ''

' ''r

r r
O

r r





      (3.7)  

If Or  > l, where l is a dimensionless user-defined threshold, the region with the highest C(r) is 
discarded. Thus, when l = 0, no overlap is allowed, while when l = 1 no regions are discarded. 
The resulting collection of regions constitutes our landslide prediction given the input conditions 
defined for the landscape. Finally, the data abstraction for this collection of regions consists of an 
array of structures (one per predicted landslide) containing a logical mask identifying the 
landslide cells, their factor of safety, as well as their geometric properties such as area, perimeter, 
centroid, major and minor axes of the best fitting ellipse, and their orientation. An ArcGis-
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compatible raster coverage containing all the predicted landslide cells labeled with their factor of 
safety is also output for easy visualization in a GIS environment. 

 
 

 

Figure 3.8.  Contour trees and level sets. a) Clockwise from top left: A dinosaur, its mesh, and its contour tree. 
Births, and deaths are represented in red, and blue, respectively. Edges represent the evolution of the level sets. b) 
Left: slicing the tree at two different thresholds, marked in yellow. Right: the corresponding level sets outlined in 
yellow, illustrating how the thresholding process gives rise to different regions. Source: www.pascucci.org. 

3.4.5 Evaluation of the search procedure 

Generally, there are two types of methods for evaluating clustering results. An internal 
evaluation  usually assigns the best score to the algorithm that produces clusters with high 
similarity within a cluster and low similarity between clusters. In contrast, in an external 
evaluation, clustering results are evaluated based on data that was not used for clustering, such as 
known external benchmarks. I will define here how both approaches will be used for evaluating 
the procedure. In this chapter I will define the methodology while the results of an actual 
evaluation applied a real-world case will be presented in the next chapter. 

3.4.5.1 Internal evaluation 

The search procedure is evaluated internally in a graph-theoretical context by comparing all 
the discrete graph partitions obtained from the thresholding process (the landslide predictions) to 
the real-valued solutions defined by equation 3.5. I have shown that the optimal solution to the 
relaxed factor of safety equation is given by the eigenvector associated with the smallest nonzero 
eigenvalue of the linear system defined by equation 3.6. We also know that that all the other 
distinct sub-optimal solutions to equation 3.5 are given by the other eigenvectors associated with 
the spectrum of equation 3.6. By sorting this spectrum in ascending order one can plot the factor 
of safety of all the real-valued solutions as a function of the eigenvalue number, in ascending 
order.  Each of these eigenvectors will also have generated a set of discrete solutions to equation 
3.4. It cannot be proven that one can ever obtain a complete set of discrete solutions, as 
enumerating all the discrete solutions is not a tractable task. However, we can populate the 
domain of the previous plot with the factor of safety of discrete solutions, and observe the 
behavior of the search procedure. An example of a plot of the discrete and continuous solutions 
is shown in figure 3.9.  
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The expectations of this evaluation are the following: 

1) All the discrete solutions (blue dots in the example of figure 3.9) should plot below the y 
= 1 line, as they are presumed to be unstable configurations. This is guaranteed as the 
procedure does not by default return configurations that are stable. It is noted that the user 
can optionally relax this requirement, should one wish to observe the set of predictions 
with a factor of safety less than k. 

2) All the discrete solutions should plot close to the real-valued solutions (red dots in the 
example of figure 3.9). Because real-valued solutions do not constitute feasible 
landslides, it would be desirable to have the discrete solutions (i.e. the feasible landslides) 
have similar factors of safety.  

3) No discrete solutions should plot below the first real-valued solution (left-most red dots 
in figure 3.9). This would violate the Raleigh quotient principle invoked in solving 
equation 3.6, and would indicate a faulty behavior of the algorithmic implementation. 
Similarly, as the eigenvalue number increases, the real-valued solutions should increase 
in value.  

4) As the eigenvalue number increases, the discrete solutions will approach (and possibly 
surpass) the real-valued solutions as the real-valued solution, a function of the entire 
eigenvector, deteriorates. This is unavoidable: the eigenvectors are all orthogonal to each 
other and they define subspaces that are progressively less “meaningful”, a concept that is 
the basic principle of principal component analysis. In the meantime, the discrete 
solutions are a function of only part of the eigenvector and are thus not subject to the 
orthogonality constraint.  

Figure 3.9.  Continuous and discrete cost values. Example of from a simulation where root strength is held constant: 
low pore pressure (a) and high pore pressure (b). Note that the discrete solution can be lower than the continuous 
solution at high eigenvector numbers. The y-axes do not have the same scale. 

In the next chapter I will apply this evaluation methodology, present the results, and discuss 
their implications. It is also noted that the algorithm has multiple consistency checks embedded 
in the search process. The most notable is that each prediction is subject to an automated back-
analysis in a post-processing step. If the factor of safety, or any of the individual resistive or 
driving forces, do not match those returned by the search procedure, an error is thrown and the 
procedure aborts. 

3.4.5.2 External evaluation 
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For the external evaluation I will exploit two unique datasets collected on and in the vicinity 
of the Mettman Ridge field research site in the Oregon Coast Range, near Coos Bay, OR, which 
will be described in detail in the next chapter. As for the internal evaluation case, the results and 
their implications will also be discussed in the next chapter; here I will focus solely on the 
methodology. 

The first dataset consists of an instrumental record of a rainfall-triggered shallow landslide 
that occurred at the research site [Montgomery et al., 2009]. Here all the physical parameters 
such as hydrological conditions, soil depth, and root strength were measured. In particular, the 
rainfall intensity and duration, as well as the pore pressure field were being monitored in situ 
when the event occurred, and the landslide was mapped onto high-resolution topographical data. 
This dataset allows for testing the slope stability model and the search procedure without using a 
hydrological or a soil depth model. Moreover, there are precise constraints on how to 
characterize the effect of root strength as a function of soil depth. This allows using the input 
data to make a prediction, and verifying that the output of the procedure matches the dimensions 
and the location of the observed landslide. Furthermore, by varying the treatment of earth 
pressure and root strength in the slope stability model their effects on the accuracy of the 
prediction can be quantified. I shall refer to this dataset and its location as CB-1. 

The second dataset consists of repeat mapping of a 0.5 km2 area surrounding the Mettman 
Ridge site, which documents all the shallow landslides that occurred over a 10-year period 
[Montgomery, et al., 2000]. As for the Mettman Ridge landslide, these maps have been 
registered onto high-resolution LiDAR-derived topographical data. While the precise local 
characteristics of soil, vegetation, and hydrology, at the time and location of these events is 
unknown, subsequent research in the area constrained parameters governing the rate at which 
bedrock is converted into soil [Heimsath et al., 2001], the rate at which soil is transported 
downslope [Roering et al., 1999]; similarly, the characterization of root strength was extensively 
studied [Schmidt et al., 2001; Roering et al., 2003], and the hydrological and material properties 
of the soils were also extensively documented [Montgomery, 1991; Torres et al., 1998; Ebel et. 
al, 2007a, 2007b; Montgomery et al., 2009]. The entire procedure can thus be applied, and 
results can be compared with observations under a variety of possible conditions determined by 
parameters q/K (the effective precipitation divided by the hydraulic conductivity, defined in 
chapter 2), and C0 (the intercept of the root strength vs. soil depth function, also defined in 
chapter 2). I shall refer to this dataset and its location as CB-MR. 

But how do we compare the predictions with observations? The challenge is that we have a 
dataset of observations spanning a ten-year period, while the recurrence interval of an individual 
shallow landslide at a specific location is much greater. This is mostly controlled by the time 
required for a failed location to infill with soils, which is in the order of thousands of years 
[Reneau et al., 1986]. Should we thus be quantitative or qualitative? A quantitative approach 
would take into consideration the hits and misses, while a qualitative approach would take into 
consideration whether what is returned by the search procedure looks like a landslide, meaning it 
has the right size, the right shape, and is in a reasonable location. I will define metrics for both 
approaches in this section.  

Rating the effectiveness of the landslide search procedure is very similar to rating a search 
engine’s ability to find documents which are relevant to a query. The relevant documents are in 
our case the grid cells which are labeled as “landslide”, the irrelevant documents are those 
which are labeled “non-landslide”, and the query corresponds to the conditions under which we 
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ask the procedure to return a set of grid cells. We can thus apply concepts from information 
retrieval theory, of which we will provide only essential elements, derived from the information 
retrieval textbook by Van Rijsbergen, [1979]. For further details and definitions about the 
materials covered in this section, we refer the reader to this text. A true positive (TP) is defined 
as a grid cell which is labeled “landslide” in both the predicted and observed data sets, a false 
positive (FP) is a cell which is labeled “landslide” in the predicted but not in the observed data 
set, a true negative (TN) is a cell which is labeled “non-landslide” in both the predicted and 
observed data sets, and a false negative (FN) is a cell which is labeled “not landslide” in the 
predicted but is labeled “landslide” in the observed data set. The accuracy of a prediction can 
thus defined to be:  

TP TN
accuracy

TP TN FP FN




               
    (3.8) 

This is very intuitive, as we want to maximize the amount of correctly labeled cells TP+TN. 
However, suppose that in the observed dataset only 5% of the cells were labeled as “landslide”. 
A procedure that always returned all cells as labeled “non-landslide” would paradoxically have 
95% accuracy. One thus needs to consider the number of predicted “landslide” cells which are 
actually landslides in the observations, and the number of landslide cells in the observations 
which are in turn predicted. In information retrieval, precision is defined to be the fraction of 
retrieved instances that are relevant to a query, while recall is the fraction of relevant instances 
that are in fact retrieved. They are defined as: 

TP
precision

TP FP


  
, and

 

TP
recall

TP FN


    
       (3.9) 

where TP, FP, and FN, are defined as above. Precision and recall have a straight-forward 
probabilistic interpretation: if l is the instance label (i.e. the observation), z the instance 
assignment (i.e. the prediction), and + means that the instance is relevant (i.e. a landslide cell), 
then: 

( | )precision P l z     , and ( | )recall P z l    
   

      (3.10) 
It’s important to notice that in order to have 100% precision, it would be sufficient to just return 
one cell which was correctly labeled “landslide”. Similarly, 100% recall could be obtained by 
returning all the landscape labeled as “landslide”. A good procedure thus should maximize both 
precision and recall, although which is more important will depend on the application. For 
example, in military applications precision may be favored in order to limit civilian casualties, 
while in diagnostic medical applications recall may be favored in order to screen a greater 
number of potential cancer patients. Regardless, precision and recall must be considered 
together, and they typically form the bases of a 2-dimensional precision/recall curve (PR), in 
which each data point is a query, the y-axis represents precision and the x-axis represents recall. 
Ideally to maximize both precision and recall, a procedure should plot close to the upper right 
corner of such a plot, although empirically precision tends to diminish as recall increases.  A 
commonly used alternative to precision and recall is called a receiver operating characteristic 
(ROC) curve, a legacy term from World War II radar engineers. In an ROC curve, the true 
positive rate (TPR) is plotted against the false positive rate (FPR):  

TP
TPR

TP FN



, and 

FP
FPR

FP TN


    
       (3.11) 

where the TPR measures the fraction of “landslide” cells which are correctly labeled (exactly as 
recall), and the FPR measures the of “non-landslide” cells which are misclassified as 
“landslide”. A good score in ROC space should be close to the upper-left corner. While there is a 
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one-to-one correspondence between the two curves [Davis and Goadrich, 2006], ROC curves 
have the property that they are insensitive to changes in class distribution, such as when the 
number of negative instances is increased by orders of magnitude [Fawcett, 2006]. They also can 
be easily used to compare the performance of a classifier to a random classifier (represented by 
the 1:1 line in the ROC space). In contrast, PR curves can better discriminate between classifiers 
when changes in class distribution are small. Examples of ROC and PR curves are shown in 
figure 3.10.  

Often it is desired to compare the performance of a classifier against some parameter used in 
generating the data distribution. For example, one may wish to compare precision and recall as a 
function of the amount of precipitation. A common way to perform such an evaluation is to 
encode precision and recall into a single number Fβ: 

2
2

*
(1 )

( * )

precision recall
F

precision recall 


 
    

        (3.12) 

where β is a positive real number which represents the relative importance of recall to precision 
[Van Rijsbergen, 1979]. As β is generally not known, it is common practice to assume that it is 
equal to 1, in which case equation 3.12 reduces to: 
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*
2

precision recall
F

precision recall


    
         (3.13) 

where F1 is the harmonic mean of precision and recall, ranging between 0 and 1, with the latter 
representing a perfect prediction. While widely used, this measure does not take into account the 
true negatives, as the term TN does not appear in either precision or recall. An alternative 
measure, often used to evaluate binary classifiers in machine learning, is the Matthews 
correlation coefficient [Matthews, 1975] which is defined as: 

* *

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN




              
    (3.14) 

The MCC is essentially a correlation coefficient between the observed and predicted binary 
classifications, ranging from −1 to +1. A MCC of +1 represents a perfect prediction, a MCC of 0 
is equal to a random prediction, and a MCC of −1 indicates complete disagreement between 
predictions and observations. Like accuracy, it encodes all the TP, FP, TN, FN, terms into a 
single number, and like F1 it is balanced. As there is no absolute agreement on the effectiveness 
of all these measures, in chapter 4 I will present ROC, PR, F1, and MCC plots for a variety of 
simulations performed under diverse assumed conditions on the CB-MR site. 

An important and objective test is to compare the predicted results, as expressed by these 
metrics, to a random model. At the single grid cell or pixel scale this can be done in ROC space. 
The null hypothesis in this case is that the classifier labels each pixel at random, in which case its 
ROC curve will follow the 1:1 line in ROC space [Fawcett, 2006]. If instead the classifier 
produces ROC curves which consistently fall above the 1:1 line, this hypothesis can be rejected. 
A slightly different approach to a random model comparison is the feature-based method 
suggested by Dietrich et al., [2001]. As a null hypothesis they propose that shallow landslides 
(and not just individual landslide pixels!) do not obey their proposed mechanistic criteria. To test 
this hypothesis, they compare the performance of their model (Shalstab) applied to an observed 
landslide catalog to the performance on an equivalent but randomly distributed catalog. They 
found that the Shalstab model outperforms the random model, rejecting the null hypothesis, but 
that once recall is increased to capture all the landslides the results don’t differ greatly from the 
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random model. I will also test this second null hypothesis by replacing the observed landslides 
with an analogous but randomly positioned datasets. These random datasets will have constraints 
on number, size and shape, all derived from the observed landslide distribution, but none on their 
position other than that they must be distinct. Specifically, random landslides will be represented 
as ellipses having the ratio of major and minor axes equal to the ratio of the average axes of the 
observed landslides. In a fashion similar to the method presented by Spowart et al., [2001], their 
size will be sampled from a normal distribution with mean and standard deviation obtained from 
the observed dataset, while their position and orientation will be sampled from the uniform 
distribution.  In order not to introduce biases, the number of random landslides will reflect the 
ratio of observed landslide area to the size of the study area. In this random test a true positive is 
obtained when there is overlap between the predicted and the observed/random sets, while a false 
positive is obtained when there is no overlap.  It should be noted that true negatives and false 
negatives are undefined, thus with the exception of precision the above-discussed information 
retrieval measures cannot be used. The comparison indicated by Dietrich et al. [2001] is adopted 
instead. They plot the cumulative percent of observed landslides captured as a function of steady 
state precipitation, and compare to a random dataset. They also plot the cumulative percent of the 
landscape area comprised in the predictions. The results of these tests applied to the CB-MR site 
will be presented in chapter 4. 

For a more qualitative assessment of the procedure, I will compare the predictions to the 
observations using probability density functions (PDF), cumulative distribution functions 
(CDF). For a continuous random variable X, fx is the PDF of X when: 

  ( )
b

x

a

P a X b f x dx             (3.15) 

where P is the probability function, and a and b represent an interval in which fx is evaluated. 
This function describes the relative likelihood that fx falls in the interval defined by a and b.   
The CDF in turn describes the probability that X will have a value less or equal to x: 

 XF P X x           (3.16) 

The PDF and the CDF are intimately related as: 

( ) ( )
x

X xF x f t dt


           (3.17) 

I select three random variables Xi which capture the essence of size, shape, and location of 
the predicted and the observed landslides. As a proxy for size I will use planimetric area, the 
area of each landslide in the x-y coordinate plane; as proxy for shape I will use the aspect ratio, 
defined as the ratio of the major and minor axes of the best-fitting ellipse for each landslide; as a 
proxy for location I will use the median topographic index, of each landslide: 

sin( )T

A
I

b 
          (3.18) 

where A is the drainage area (m2), b is the grid cell size (m), and θ is the slope angle [Dietrich et 
al., 1992]. This index increases when the area term dominates, and decreases when the slope 
term dominates. In essence, the median topographic index records whether landslides occurred 
preferably in convergent hollows or in less convergent but steeper parts of the landscape. Each 
simulation will result in three PDF and three CDF curves which will be compared the respective 
curves derived from the observed dataset. To assess the similarity of the predicted and observed 
distributions I will employ the widely-used Kolmogorov-Smirnov test, commonly referred to as 
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the K-S test [e.g., Conover, 1971; Borradaile, 2003; Corder, 2009]. The K-S test is a 
nonparametric test for the equality of continuous, one-dimensional probability distributions. It 
can be used to compare a sample with a reference probability distribution (one-sample K-S test), 
or to compare two samples to each other (two-sample K-S test). I will use the two-sample K-S 
test to pairwise examine each predicted and observed CDF type (size, shape, location), and 
determine the likelihood that they come from the same underlying distribution. The K-S test 
statistic is the maximum difference between the two cumulative distribution curves: 

, 1, 2,sup ( ) ( )n m n mKS F x F x          (3.19) 

where KSn,m is the test statistic, F1,n and F2,m are the two normalized cumulative distributions, 
with n and m observations, respectively, and sup designates the supremum. The null hypothesis 
is that F1,n and F2,m come from the same distribution. This hypothesis is rejected at a significance 
level α if: 

,n m

nm
KS KS

n m 


                     (3.20) 

where KSα, the critical values for level α, can be extracted from published tables [e.g. Pearson 
and Hartley, 1972]. In chapter 4 I will present PDF’s, CDF’s, as well as their KS statistics, 
derived from a variety of simulations performed on the CB-MR site. 

 
Figure 3.10.  Examples of ROC curves and PR curves. a) Comparison of two binary classifiers in ROC space; the 
red dotted line is a random classifier for comparison. b) Comparison of two binary classifiers in PR space; the 
performance of the two algorithms is more distinguishable. Adapted from [Davis and Goadrich, 2006]. 

3.4.6 Implementation 

The search procedure has been implemented and tested on a 64-bit Dell Precision T5500 
Workstation with two quad-core Intel Xeon E5620 processors, equipped with 24 Mb of cache, 
and running at a clock speed of 2.40 GHz. System random access memory (RAM) consists of 24 
Gb, with a maximum bandwidth of 25 Gb/s. In order to test under different operating systems, 
the system was configured in dual-boot mode, running 64-bit CentOs Linux (v. 2.6.18-
308.1.1.e15), as well as 64-bit Windows 7 Ultimate (Service Pack 1). The software is written in 
Matlab R2012a (v. 7.14.0.739), and runs indifferently under both operating platforms. Two 
versions have been developed and tested: a standard serial version, and a parallel 
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implementation. The latter version uses the Matlab Parallel Computing toolbox, and can take 
advantage of up to twelve processor cores, with a nearly-linear speedup. 

Input spatial layers are read from disk, and are expected to be in ArcGis ASCII Raster 
format. The output consists of an ArcGis ASCII raster containing a layer with all the predicted 
shallow landslides encoded with their factor of safety value. Individual landslide information is 
summarized in a comma-separated ASCII text file (CSV) containing the following fields: id, x-
centroid, y-centroid, factor of safety, volume, surface area, area, perimeter, major axis length, 
minor axis length, eccentricity, orientation of major axis, topographic index. Supplemental 
landslide information including a bit-map and bounding box of each prediction is enclosed in a 
Matlab data file (.mat). Optional output includes individual ArcGis ASCII rasters for each 
landslide, mapped to the input reference frame.  

3.4.7 Complexity 

The complexity of the search algorithm will vary with the iterative method used to extract the 
eigenvectors and eigenvalues of the above-defined linear system. In our case, this is determined 
by the Matlab implementation of the function eigs which in turn relies on the software package 
ARPACK [Lehoucq et al., 1998]. We have bounds on these methods, as they won’t be faster than 
linear and are cubic in the worst case (for dense matrices). Typically though they are of sub-
quadratic complexity, ~O(d3/2), where d is the dimension of the Laplacian-like matrix.  

Connected component analysis has logarithmic complexity O(|V|log|V|), where |V| is the 
number of vertices in the graph (i.e., the number of grid cells). The union-find algorithm instead 
has complexity O(rlog(r)), where r is the number of regions contributed by each eigenvector (|V| 
in the worst case). Pruning overlapping regions is quadratic in the naïve case, although a more 
appropriate data structure (such as a quad-tree) could reduce the cost to O(llog(l)), where l is the 
total number of regions having FS < 1 (note that l << kr in practice).  

In order to keep the problem size small, the procedure is windowed over the input layers. Let 
N be the number of windows necessary to cover the landscape, and n the number of cells in each 
window. It should be noted that in order to avoid edge effects the windows must have significant 
overlap in both the x and y directions. Thus n*N is in practice approximately 25% greater than 
the number of cells of the landscape grid. Let k be the number of eigenvectors to extract per 
window, r the maximum number of regions allowed to be contributed by each eigenvector, and l 
the total number of regions having FS < 1. The total complexity is then approximately: 

 3 2( ( *log( ) *log( )) )complexity O N n k n n r l        (3.21) 
The n3 term arises from the fact that for n grid cells, the Laplacian-like matrix is of size n2. This 
term dominates, although in practice for small sparse matrices such as in our application this 
should be considered a worst case scenario. Regardless, this results in a huge reduction from the 
intractable O(N2n) complexity of a brute force method. To allow the procedure to run even on 
modest hardware, an optional limit to the maximum number of connected components r and the 
maximum number of eigenvectors k can be set by the user. 

3.5 A synthetic example 
The procedure can be better illustrated with simple examples involving two synthetic 

landscapes. Figure 3.11 shows the first synthetic landscape, consisting of a simple 20 m by 20 m 
planar surface with a 75% slope (36.9°). On this surface (discretized into 1 m2 grid cells), a group 
of 16 grid cells is assigned a soil depth of 1.5 m, while another group of 16 grid cells is assigned 
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a soil depth of 1 m. Water saturation levels for these two groups are set to 100% and 75%, 
respectively. The rest of the cells are assigned 0.5 m of unsaturated soil. At the two 16-cell 
locations lateral cohesion values are lowered from 4600 Pa to 100 Pa, and basal cohesion values 
are lowered from 1000 Pa to 100 Pa, simulating local gaps in the root strength field. The soil 
friction angle is set to a value just below the slope angle on the entire hillslope, namely 35°. Soil 
and water bulk densities are set to 1600 kg m-3, and 1000 kg m-3, respectively. In essence, an 
artificial hillslope is created in which sharply contrasting local conditions are imposed such that 
the slope stability model would predict that the two 16-cell blocks should fail while the rest of 
the hillslope would not. Furthermore, the local conditions are such that one of the 16-cell blocks 
will have a lower factor of safety than the other due to increased soil mass and saturation ratio. 

 
Figure 3.11. Synthetic landscape 1. A planar 75% slope (a) in which two groups of 16 grid cells are assigned a soil 
depth of 1.5 m and 1 m, respectively, while the soil in remaining cells is 0.5 m thick (b); the saturation ratio (h/z) is 
set to 1 and 0.75 for the two groups of cells, respectively, while the rest are unsaturated (c); cohesion values are 
lowered for the same group of cells, simulating a gap in the root strength field.  

The procedure is then applied to this synthetic hillslope. The force matrix F and Laplacian-
like resistance matrix R are assembled, as defined by equations 3.1 and 3.2-3.3, respectively, and 
the cost function of equation 3.5 gives rise to the linear system defined by equation 3.6. Figure 
3.11 (a and b) shows the eigenvectors associated with the two smallest eigenvalues of this linear 
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system, reshaped to the size of the original 20 by 20 grid. The thresholding process is analogous 
to taking 399 slices (parallel to the x-y plane) of these curved surfaces, and setting the discrete 
values of each cell to be one if the eigensurface is above the slice at that cell or zero if not. The 
factor of safety of the resulting discrete shapes is evaluated using the slope stability model, and 
the shapes having the minimal factor of safety are retained. As shown in figure 3.11 (c and d), 
these shapes correspond exactly to the locations of the perturbed 16-cell blocks, with the thicker, 
more saturated block resulting in a lower factor of safety than the other block. 

Figure 3.12. Synthetic landscape 1: continuous vs. discrete solutions. The first (a) and second (b) eigenvectors 
associated with the two smallest eigenvalues of the linear system defined by equation 3.6; the discrete landslide 
predictions resulting from thresholding the first (c) and second (d) eigenvectors. The predicted landslides correspond 
exactly to the 16-cell blocks of figure 3.11, with the first predicted landslide having a lower factor of safety than the 
second, as would be expected. 

This synthetic experiment illustrates the workings of the landslide prediction procedure, and 
supports the hypothesis formulated in chapter one that a physically-based model coupled with an 
efficient search procedure can be used to predict shallow landslides. A similar experiment can be 
performed to illustrate the other hypothesis put forth in chapter one, namely that the 
heterogeneity of parameters such as root strength and pore pressure controls the size of shallow 
landslides. On a second synthetic landscape consisting of a larger but similarly critically-inclined 
surface, the procedure is applied first with uniform conditions, then with conditions varying 
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downslope, and finally with conditions varying both downslope and cross-slope. In all cases a 
100 m by 100 m planar surface is inclined at 45° with uniform soil depth (0.5 m), friction angle 
(35°), and soil and water densities (1600 kg m-3, and 1000 kg m-3, respectively). The boundary of 
the surface is fixed to a no-failure condition (figure 13.3 a). 

The first case is shown in figure 3.13: the saturation ratio h/z is uniformly set to 0.75, and 
root strength is uniformly set to 4600 Pa. The procedure is applied and, not surprisingly, the least 
stable shape found encompasses the whole surface (excluding the boundary). If any group of 
cells can fail (and they can under the specified conditions), then adding more cells which have 
identical properties can only increase instability. This is intuitive as the driving forces increase 
with volume while the resistive forces increase with surface area.  

 
Figure 3.13. Synthetic landscape 2: uniform conditions. (a) 100 m by 100 m planar surface with 45° slope, 0.5 m soil 
depth, 35° friction angle, 1600 kg m-3 soil densitiy, and 1000 kg m-3 water density. (b) Overlapping unstable shapes 
with FS < 1 recovered by the landslide prediction procedure, extending to the fixed boundary. Overlapping shapes 
are distinguished by a change of color. 

In the second case, shown in figure 3.14, the setup is exactly the same, except for the 
saturation ratio. Here h/z increases downslope according to equation 2.12 (with log(q/T) = -2), 
simulating the application of rainfall (figure 3.14 a). This implies that with all other conditions 
remaining constant, the factor of safety of individual cells decreases downslope. The procedure 
is applied and the least stable shape no longer encompasses the whole surface, rather it has a 
discrete length (figure 3.14 b). Even though the grid cells in the downslope row are the least 
stable, there is a benefit to “growing” larger. However, once the saturation ratio drops 
significantly this benefit is lost, resulting in a discrete least-stable shape which extends only half 
way upslope. 

In the third case, shown in figure 3.15, the setup is the same as in the previous example, but 
now instead of root strength being uniform the surface is assigned two patches of high root 
strength and two of low root strength (figure 3.15 a). The high strength patches are assigned a 
value of 10,000 Pa, while the low-strength ones are assigned a value of 100 Pa, simulating the 
patchiness vegetation. Thus conditions vary both downslope and cross-slope, and the least stable 
shape found by the procedure is constrained in both directions (figure 3.15 a). As in the previous 
case the landslide “grows” while h/z is sufficiently high, but only in areas of low root strength. 
As a result only a quarter of the inclined surface can fail. 

slope 
direction
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Figure 3.14. Synthetic landscape 2: variable saturation ratio. (a) The saturation ratio h/z as determined by equation 
2.12 applied to the surface of figure 3.13a for log(q/T) = -2, simulating rainfall conditions. (b) Discrete overlapping 
(as distinguishable by their color) unstable shapes with FS < 1 recovered by the landslide prediction procedure, 
extending only part way upslope. 

This second synthetic experiment further illustrates the behavior of the landslide prediction 
procedure under several very simple cases. In these extremely simplified scenarios the procedure 
behaves sensibly, and lends support to the hypothesis formulated in chapter one that 
heterogeneity of parameters such as root strength and pore pressure control landslide size. What 
occurs in more complex situations will be explored in the following chapters. 

 
Figure 3.15. Synthetic landscape 2: variable saturation ratio and root strength. (a) Two high-strength (10,000 Pa), 
and two low-strength (100 Pa) patches applied to the scenario of figures 3.13a and 3.14a, simulating varying 
vegetation conditions. (b) Discrete overlapping (as distinguishable by their color) unstable shapes with FS < 1 
recovered by the landslide prediction procedure, extending only part way upslope and part way cross-slope. 

3.6 Discussion 
The problem of searching for least-stable shallow landslides among a potential exponential 

number of them requires finding a suitable and efficient approximation. This is because all the 
possible unstable regions in a landscape cannot be enumerated unless strict limits are imposed to 

slope 
direction

slope 
direction
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both the size of examined landscapes and potential landslide shapes. The nature of 
approximating such complex searches implies limiting the searchable space in a way that does 
not greatly reduce the likelyhood of finding the optimal (or near-optimal) solution. This goal is 
achieved by accepting the “guidance” of the continuous solution of equation 3.5.  
Notwidthstanding the lack of guarantees of such an approach, the goal was to make minimal 
assumptions in order to keep the search as general as possible, and for the search to be 
independent from the slope stability model and all the sub-models. This is mostly motivated by 
the fact that not only do we expect models and data to improve in the coming years, but we 
believe that the ability to predict discrete landslides will play a fundamental role in indicating 
what models should be explored in greater depth, and what data is opportune to collect in order 
to make predictions more accurate. Ultimately, only one fundamental assumption was made, 
namely that the landscape and the forces acting on it can be represented using an undirected 
graph. This choice was made because we know how to find good approximate solutions to a 
linear eigenvector/eigenvalue problem, while an unconstrained nonlinear problem presents many 
more difficulties.  

A spectral graph partitioning method defines potential landslides on the basis of a global 
optimization (i.e. the optimization is performed on the matrix containing information about all 
nodes and edges).  This means that the force balance is solved instantaneously and globally. This 
is consistent with the rigid block assumption within the slope stability model introduced in 
chapter two, but does not allow modeling progressive failure in the current form of the 
algorithm. Representing progressive failure would require an iterative approach in which the 
least stable shapes defined by our method are removed (and possibly re-distributed) across the 
landscape. 

The transformation between directed and undirected graph occurred both in the 
representation of the edges and of the nodes. I have demostrated that the symmetrization of the 
edges does not misrepresent the boundary between a potential landslide and its surroundings. We 
have noted that encoding in the nodes the magnitude of the force rather than the force vectors 
results in an over-estimation of the forces and thus a lower factor of safety (section 3.4.1). This 
will result in more candidate landslides found during the discretization process. The factor of 
safety of this over-populated candidate landslide set is in turn examined with a correct force 
formulation (see section 3.4.4), and those regions which as a result of using force vectors instead 
of magnitudes become stable are pruned from the list. We have not, however, demonstrated that 
encoding the magnitude of the forces instead of the force vector does not result in differently 
shaped eigenvectors which, when thresholded, may give rise to entirely different regions which 
may not overlap with those currently produced. Unfortunately this is not demonstrable, as it 
cannot even be shown that with any formulation some unstable regions will not be missed. In 
practice though, we can say that that this is extremely unlikely because of the following reasons: 

a) An over-estimation of the forces results in a lower value for the continuous solution C(y), 
defined in equation 3.5. The eigenvector surfaces will thus have either “fatter” peaks, or 
fatter valleys, or both. We threshold each eigenvector and its complement, which is 
equivalent to starting from single pixels corresponding to the peaks and “growing” the 
regions while the threshold decreases, then starting from the valley single pixels and growing 
the regions while the threshold increases. This implies that in one direction or the other we 
will likely end up examining more areas than we would with “skinnier” peaks or valleys.  
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b) We examine a large number of eigenvectors over a small window that is moved over the 
landscape. As the eigenvector number increases the continuous solution deteriorates, 
resulting in progressively “bumpier” surfaces. Thus the number of peaks and valleys also 
quickly increases, generating a larger distribution of “seeds” from which regions are grown 

Where we run into problems is that it is not hard to imagine that there may exist cases where, 
in a topographic setting in which valleys are longer than they are wide, the hypothetically correct 
eigenvectors are not only skinnier, but as also more “oblung”. This is because the forces along 
the valley axis are much less likely to cancel each other out than those perpendicular to the 
valley axis. This means that when using our “rounder” eigenvector surfaces, while it is true that 
we start looking at single pixels and grow to regions that necessarily have to be larger than the 
theoretically most unstable region, it is also possible that there are some skinny shapes that may 
never be seen in the process. While we can remind ourselves that we may never see all unstable 
shapes, as there are too many of them, it is important to consider that in some topographic 
settings there could be a bias toward rounder shapes. 

The issue of overlapping landslide predictions (i.e. different discrete predicted landslide 
shapes which have grid cells in common) is dealt by the procedure with the parameter defined by 
equation 3.7 which can be set by the user. The reason for this approach is that whether overlap 
should be allowed depends on the application. If the goal is to inform the user of all possible 
landslides for a type of event, then no unstable shape should be discarded. In contrast, if the user 
is interested in the most likely landslide (likely here is synonimous with the least stable), then for 
two virtually identical shapes are predicted, it is intuitive to discard the most stable of the two. 
While these are clear end-member examples, the question of what is a sensible amount of 
overlap to permit is a difficult one to answer: a significant amount of overlap may result in over-
prediction, while insufficient overlap may result in under-prediction. Generally, all overlapping 
landslides will be reported in this study. However, when the objective is to match a single 
specific event, the least stable of the overlapping landslides is retained. The influence of  
overlapping landslide predictions will be further examined in the next chapter in the context of a 
specific application. 

The order in which the eigenvectors are examined is irrelevant to the final outcome. This is 
what is commonly referred to as an embarassingly parallel problem in the parallel computing 
literature: this phase of processing can be run in parallel as there are no dependencies between 
these tasks. As a result, practically linear speed up can be obtained with minimal communication. 
In a very similar way, the processing order of the windows is not important for the results. This 
suggests a dual level of parallelization, appropriate for today’s typical high-performance 
computing (HPC) hardware. Typical HPC systems have a distributed architecture in which a 
system has many nodes, each with multiple many-core processors and shared memory. The 
natural way for the application to exploit this architecture is to parse out windows to each node, 
and have the many cores in each node take on the eigenvector thresholding process. This can be 
achieved with minimal modifications to the current code, but it would require the use of the 
Matlab Distributed Computing Toolbox.  

We defined metrics that can be used to evaluate the performance of our procedure, but we 
did not explicitly state how we plan to demonstrate that this performance is satisfactory. In many 
areas of computer science (e.g. computer vision, machine learning, information retrieval, etc.) a 
plethora of benchmark datasets are available to the entire community so that improvement in 
algorithm development can be more precicely quantified; unfortunately, no such things exist for 
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shallow landslide prediction. Furthermore, while it would be essential to have publicly available 
databases of accurately mapped shallow landslides, it also critical to understand the conditions 
under which they occurred. I will thus present mostly an evaluation of the procedure as a 
function of condition of occurrence, with a particular focus on those which can change more 
rapidly. The intent is not solely to gage under what scenarios do we have a greater 
precision/recall, rather also that of understanding of what conditions can create a particular 
shallow landslide response. 

In the first synthetic experiment presented here, the procedure recovered exactly the 
landslides which were “planted” on an artificial surface with very sharp contrasting conditions. 
This was expected, as in such cases the cost of the optimal graph partition is significantly lower 
than when using alternative graph cuts. In other words, in this example adding or removing even 
a single cell to the predicted shape will drastically change its factor of safety. In more complex 
scenarios exact performance cannot be expected, as parameters will vary quite differently, 
particularly in a real topographic setting. As already discussed, in such cases we must accept the 
approximation provided by the continuous solution which by definition cannot provide all 
possible results, including at times the optimal one.  

In the second synthetic experiment, we observed that on a critically-inclined surface under 
uniform conditions the largest possible landslide is predicted to be the least stable. As soon as a 
single parameter (the saturation ratio) is allowed to vary, the emergence of discrete landslide 
sizes is observed.  This observation is further reinforced when variation of a second parameter 
(root strength) is introduced. This illustrates how growing or shrinking relates to cost and benefit, 
as defined by the search algorithm. Figures 3.14b and 3.15b also illustrate the distinction (and 
size difference) between a critical size and an optimal size: the former is the size at which the 
factor of safety falls below 1, while the latter is the size resulting in the minimal factor of safety. 
Furthermore, this example shows that even in extremely simple scenarios many different 
outcomes are possible. 

3.7 Conclusion 
 In this chapter I have presented a procedure that can for the first time predict discrete 
landslides. Its foundation is a search algorithm based on spectral graph theory that can efficiently 
provide a good approximation for an otherwise intractable problem. This procedure relies on a 
slope stability model, as well as sub-models and data for, among others, topography, soil depth, 
and root strength, discussed in the previous chapter. However, the procedure is general, and is 
not confined by their choice: as better models and data emerge, the procedure can be easily 
modified to take advantage of such improvements.  

I presented two simple synthetic examples which illustrate how the procedure searches for 
landslides, and how their size can be affected by the hetereogeneity of parameters such as root 
strength and pore pressure. I laid the groundwork for a more complex real-world application, 
which will be presented in chapter four of this dissertation, in which the metrics defined here will 
be used to assess the procedure’s performance. I hypothesize that the ability to predict discrete 
landslides can play a fundamental role in understanding the response of the shallow landslide 
regime to heterogeneous conditions, a topic that will be explored in chapter five. It will also help 
us understand the response of the shallow landslide regime to the type of changes which we can 
expect in the not too distant future, a topic that will be examined in chapter six. 
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Chapter 4 

Evaluating the procedure: a case study in the Oregon Coast 
Range 
4.1 Introduction 

The initial working hypothesis of this research was that we could build a model which 
captures the basic physics of shallow landsliding across landscapes and couple it with an 
efficient search algorithm to improve our prediction capability and advance our understanding of 
shallow landsliding controls. In chapter two I introduced a mechanistic framework that computes 
the stability of discrete elements of a landscape using field-measured or modeled data, which is 
mechanistic in its definition but not so mechanistic that it cannot be applied to landscapes. In 
chapter three I defined an efficient search algorithm which can select least stable combinations of 
these elements to produce discrete shallow landslide predictions. To test the first part of the 
initial hypothesis, namely the ability of the new model to improve predictions, the procedure will 
be applied in this chapter to a landslide-prone study area in the Oregon Coast Range. Our site 
was selected because of two unique datasets deriving from over a decade of research at this site. 
First, an instrumental record of a rainfall-triggered shallow landslide that occurred in a small 
catchment at the research site [Montgomery et al., 2009] allows for the application of the slope 
stability model and the search algorithm using field-measured physical parameters  such as 
hydrological conditions, soil depth, and root strength. Second, across a larger area (0.5 km2) 
repeat field mapping provides an inventory of all the shallow landslides that occurred over a 10-
year period [Montgomery, et al., 2000]. Also during this 10-year period intensive research was 
conducted in the area, providing detailed information on soil, vegetation, hydrological, and 
rainfall characteristics. This dataset thus presents a unique opportunity to apply all the sub-
models which estimate the local characteristics of soil, vegetation, and hydrology (see review in 
Ebel et al., 2007a and 2007b). Given the volume and quality of the data from this site, it has been 
a benchmark for many landslide models [e.g. Montgomery and Dietrich, 1994; Rosso et al. 2006; 
Borja and White, 2010]. The procedure will be applied to both datasets, and the resulting shallow 
landslide predictions will be compared to the mapped observations, with particular emphasis on 
the size and location of failures. In this chapter, the performance of the procedure will be 
evaluated both qualitatively and quantitatively using the methods described in chapter three. 

4.2 Study area 
The study area is located on the Mettman Ridge, about 15 km north of Coos Bay, Oregon 

(figure 4.1a). It consists of steep, highly dissected soil-mantled hillslopes and steep channels 
typical of the Oregon Coast Range where the maritime climate delivers approximately 1500 mm 
of annual precipitation [Montgomery and Dietrich, 1994]. The study area burned in the late 
nineteenth century, was clear-cut logged in 1987, and was replanted in 1988 with Douglas fir 
seedlings [Montgomery and Dietrich, 1994; Montgomery et al., 2009]. The Mettman Ridge is 
mostly underlain by Eocene sandstone and the resulting colluvial soils are well-mixed, gravelly 
sands with sandstone clasts [Montgomery et al., 2000; Schmidt et al., 2001]. Soils thickness 
ranges from roughly 0.1 m to 0.5 m on topographic noses to greater than 2 m in topographic 
hollows, with bedrock outcrops in many areas where the slope exceeds 45° [Montgomery and 
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Dietrich, 1994]. The colluvium has a friction angle of 40°, and is essentially cohesionless 
[Schmidt et al., 2001]. Roots produce an apparent cohesion via root fiber reinforcement (referred 
to as root cohesion or root reinforcement) promoting slope stability in shallow soils [Schmidt et 
al., 2001]. Many channels begin at small landslide scars [Montgomery and Dietrich, 1998], and 
shallow debris flows periodically deliver the colluvial soils to the downslope channel system. 
The average slope is of the study area is 36°, with maximum slopes exceeding 60° in many 
locations. 

 

To investigate the mechanisms responsible for pore-water pressure development and shallow 
subsurface runoff generation, an experimental monitoring site (CB-1) was setup in a small north-
facing catchment of the Mettman Ridge study area (figure 4.3 a). CB-1 was selected because it 
was small enough to enable detailed monitoring of hydrologic response, yet large enough to 
include the entire source area of a small first-order stream. Recent logging infrastructure 
provided access and allowed for water storage for use in artificial sprinkling experiments. Most 
importantly, unlike many similar sites it had not experienced landsliding after being clear-cut. 
The experimental site was equipped with rain gages, piezometers, sprinklers, wells, tensiometers, 
weirs, lysimeters, and a weather station (figure 4.2). The CB-1 catchment area is 860 m2, and the 
average slope is 43°. Soil depths measured throughout the catchment range from a few 
centimeters on the divergent side slopes to a little less than 2 m in the thicker part of the hollow 
(figure 4.4 a).  

Landslides are common in the steep Coast Range terrain, are usually triggered by intense 
rainfall events, and are typically found on steep slopes (> 35°) in areas which can focus storm 
runoff such as topographic hollows and roads. Non-road associated failures are typically 7 m 
wide, 13 m long, and less than 1 m deep, while road associated failures can be four times larger 
in volume [Robison et al., 1999]. Their occurrence increased dramatically following widespread 

Figure 4.1. The Coos Bay, OR, 
study site. a) Location map 
showing location of the Mettman 
Ridge study area near Coos Bay, 
Oregon [Montgomery and Dietrich, 
2002]. b) LiDAR-derived shaded 
relief map of the Mettman Ridge 
study area, overlaid with 5 m 
contours, the channel network, and 
the landslides mapped by 
Montgomery et al. [2000]. The 
green outline shows the location of 
the experimental CB-1 site.
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timber harvesting and road construction [Montgomery et al., 2000], with the most significant 
incidence found in areas where disturbance is less than 10 years old [Robison et al., 1999]. Many 
channels begin at small landslide scars [Montgomery and Dietrich, 1988], and these landslides 
commonly mobilize as debris flows which cut the channel network draining the landscape, 
suggesting the fundamental role played by landslides in shaping the landscape. 

As in the surrounding Coast Range, 
landslides are ubiquitous in the 
Mettman Ridge area. All shallow 
landslides which occurred there during 
the decade of research at the CB-1 site 
were mapped by Montgomery et al. 
[2000]. Of the 34 scars shown in 
figure 4.1b, nearly all were mapped by 
walking the study area and a few were 
mapped from low-altitude aerial 
imagery. Of these landslides 16 
occurred in the first two years after the 
1987 clear-cutting of the area, 30 
occurred in topographic hollows that 
define the axis of unchanneled valleys, 
and 10 were also associated with 
drainage from a logging road 
[Montgomery et al. 2000]. 

In November 1996 a rainstorm 
delivered the largest recorded 24-hour 
rainfall to the Oregon Coast Range, 
triggering widespread landsliding in 
many areas and causing extensive 
damage and loss of lives [Robison et al., 1999]. Over the period of November 16–18, the CB-1 
rain gauges measured 225 mm of rain with a maximum daily intensity of 145 mm/day and a 48-
hour average intensity of 85 mm/day [Montgomery et al., 2009]. The 24-hour total of 160 mm of 
rainfall recorded at the North Bend, OR, airport was 27 mm greater than the previous daily 
maximum recorded since 1931. Five landslides occurred in the Mettman Ridge study area during 
this storm. Most significantly, during the evening of November 18th, about one hour after the 
peak rainfall, the slope failed at the CB-1 site. The colluvium from the CB-1 hollow mobilized as 
a debris flow, destroying most of the infrastructure at the experimental site (figure 4.3). The 
debris flow left a 156 m2 scar that was on average 5 m wide and 26 m long, with depths ranging 
from 0.3 to 1 m. A detailed forensic investigation led to the conclusion that the initial landslide 
only comprised the upper part of the scar, with an area of approximately 58 m2 [Montgomery et 
al. 2009]. In the upper part of the scar, the colluvial soil was excavated to the bedrock, and root 
exposed in the headscarp and lateral margins were uniformly snapped, suggesting full 
engagement of their tensile strength during initial failure [Montgomery et al., 2009]. Figure 4.4b 
shows the debris flow scar, the initiation area, and the pore pressure field measured by the 
installed piezometers. While this event effectively shut down research operations at the site, the 
CB-1 measurements possibly represent the most complete data set available for any catchment 
that underwent slope failure [Ebel et al., 2007a]. 

Figure 4.2. Location of the CB-1 
instrumentation. From Ebel et al., [2007a]. 
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Figure 4.3. The north-facing CB-1 experimental catchment. (a) before and (b) after the November 1996 storm. 
Photos courtesy of William E. Dietrich. 

4.3 Application to a single catchment with field-measured data 
Here we apply the shallow landslide prediction procedure to the 860 m2 CB-1 experimental 

catchment. The data used for this application consists of spatial 1 m resolution grids containing 
elevation, soil depth, and pore pressure values used in the re-analysis of the failure performed by 
Montgomery et al., [2009]. The fundamental difference between the Montgomery et al., [2009] 
re-analysis and this application is that no failure shape is prescribed here, allowing the search 
algorithm to find the least stable failure configuration. Another difference between this 
application and the 2009 re-analysis consists of the treatment of root strength which is assumed 
here to be exponentially decaying with depth (rather than uniform). Root reinforcement values 
are obtained by fitting an exponential function to the published data, as described in chapter two. 
Thus average root strength values vary spatially with soil depth, although they are constrained to 
reflect the average values reported by Montgomery et al. [2009]. Finally, the treatment of pore 
pressure values differs slightly in that no adjustment was made to the original data (rather than a 
10 cm adjustment to some of the grid cells, reported by Montgomery et al. [2009]). Table 4.1 
lists the parameters used for this simulation. 
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Table 4.1. Parameters used for the application of the procedure to the CB-1 site. 

 

 
Figure 4.4. CB-1 field measurements. a) Map of the CB-1 catchment showing the locations of soil depth 
measurements collected by [Schmidt, 1999] and the resulting 0.25 m soil depth contours. b) Map of the pore 
pressure ratio. Circles indicate the locations of the piezometer nests used, and the resulting h/z values; the red outline 
indicates the initial failure area, while the black outline indicates the subsequent debris flow. Adapted from 
Montgomery et al., [2009]. 

The continuous and discrete solutions resulting from the application of the procedure to the 
CB-1 site are shown in figure 4.5, while a topographic map with the predicted landslide is shown 
in figure 4.6. Under the conditions measured during the November 1996 storm event, the 
procedure predicts failure at the same location and of similar size as the actual landslide which 
occurred at the CB-1 site. The predicted landslide differs from the observed landslide only in that 
it extends a couple of meters further upslope, resulting in an area 9 m2 larger than the observed 
failure. The factor of safety of the predicted landslide is 0.89, a value very close to that of 1.0 
computed with the slope stability model CLARA-W [Hungr et al., 1989] by Montgomery et al., 
[2009].  
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Figure 4.5. Continuous and discrete solutions at CB-1. a) The continuous indicator vector x*, representing the 
fraction of each node that contributes to the optimal partition S* (see section 3.4.3), found by applying the procedure 
to the CB-1 site. b) The discrete indicator vector x obtained from thresholding x*(see section 3.4.4), resulting in the 
partition having the minimum FS. 

4.4 Application to a landscape with modeled data 
Here we apply the shallow landslide prediction procedure to the 0.5 km2 Mettman Ridge 

study area (CB-MR). Topographic data used for this application consists of a 2 m resolution grid 
containing LiDAR-derived elevations with an original average data point spacing of 2.3 m 
[Roering et al., 1999]. In contrast with the CB-1 application, soil depth, water table height, and 
values for the lateral and basal root strength fields will be modeled here using the methods 
described in chapter two. The aim is to demonstrate the applicability of the procedure, and 
evaluate its performance. This does not involve an exhaustive search of the best-performing 
parameters, rather a suite of scenarios is selected. In steep upland topography, and in the Oregon 
Coast Range in particular, field investigation suggests that “slowly-changing” variables such as 
soil depth, root strength, and soil friction angle can be crudely estimated [e.g. Dietrich et al., 
1995, Montgomery et al, 2000, Schmidt et al., 2001]. In contrast, hydrologic conditions are far 
from continuously varying and are not due to a single event. In the context of demonstrating the 
procedure, here soil depth and root strength parameters will be held constant, while several 
hydrologic scenarios will be investigated. In the following chapter a full suite of simulations 
involving all the principal variables will be presented. Two different approaches will be used for 
performance evaluation. First, the properties (i.e. size, shape, location) of predicted landslide 
populations will be compared to the observed dataset. In terms of size, this form of validation has 
been used, among many others, by Stark and Guzzetti [2009], where the general power-law 
characteristics of an observed landslide dataset were reproduced. Here, I will statistically 
compare predicted and observed distributions, using the methods defined in section 3.4.5.2. 
Second, the observed dataset will also be used to test the procedure’s ability to capture individual 
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observed landslides. A similar comparison has been suggested by Dietrich et al. [2001], who 
compare the percent of observed landslides captured with the percent of the landscape predicted 
to be unstable. Here this comparison will also be evaluated using information-retrieval measures, 
described in section 3.4.5.2. 

 

4.4.1 Parameters and simulations 

The soil depth model parameters will be fixed to the calibrated parameters published by 
Roering et al., [1999], and Heimsath et al., [2001], listed in table 4.2. Initial soil thickness was 
set to a uniform low value of 10 cm and the model was run for 6,000 years. Under the 
assumption that rivers efficiently transport away any material that is delivered, soil was not 
allowed to accumulate in channel locations. Figure 4.7 shows the predicted soil depth values for 
CB-MR, illustrating the pattern of thicker soils in convergent hollows and thinner soils in 

Figure 4.6. Single discrete landslide resulting from the 
application of the shallow landslide prediction 
procedure to CB-1. Shown are 1 m elevation contours, 
0.25 m pore pressure (h/z) contours, over a map of soil 
depth (m). Lateral root strength reflects the spatially 
weighted average of 4600 Pa measured at the CB-1 
landslide scar. No adjustments are made to pore 
pressure and soil depth values. The black outline is the 
actual failure, digitized from [Montgomery et al., 
2009]. The red outline is the least-stable failure shape 
found by the search algorithm. It has an area of 70 m2, 
a perimeter of 38 m, and a factor of safety of 0.89, as 
computed by the slope stability model. The mapped 
failure has an area of 61 m2, and a perimeter of 28.5 m. 
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divergent slopes. The spatial pattern of water table height is similar, as it is a function of slope 
and contributing area (i.e. a linear function of the topographic index) which tends to be high in 
hollows. This results in interplay between soil depth (z), water table height (h), and relative 
saturation (h/z). Figure 4.8 shows the relationship between soil depth and the topographic index 
(equation 3.18), which will be used in this study as a proxy for location in the landscape. Figure 
4.8 shows that soil depth increases with the topographic index, as does its variance. This 
illustrates the covariance of soil depth and water table height. As discussed in chapter two, actual 
soil depths likely express a greater degree of local variability than those adopted here. However, 
the degree of variability is not expected to change over the ten years of landsliding data 
examined at CB-MR. Thus, as a first approximation, we hold the soil depth pattern constant over 
time. As pointed out in chapter two, no mechanism that explicitly accounts for prior shallow 
landsliding is included in the soil depth model. Each location in which one would expect 
landsliding to play a role is fully-loaded with soil. Thus the soil depth realization shown in figure 
4.7 should be considered an upper bound, as at any moment in time some areas which 
experienced recent landsliding may be considerably thinner. 

 

Also as a first approximation the root strength field parameters (Cr0 and j) will be held 
constant in this application, using the values measured at the CB-1 site listed in table 4.2. The 
resulting spatially varying lateral and basal root reinforcement values are shown in figure 4.9. 
The Mettman Ridge area was clear-cut at the same time, and thus spatially averaged root strength 
values are not expected to vary significantly across the site. In contrast to soil depth, root 
strength can vary over a ten-year interval [Schmidt et al., 2001], and these effects will be 
explored in the next chapter. Local (meter-scale) variations can be very significant, but to be 
captured detailed information of vegetation type, age, and location is required. The alternative 
probabilistic approach outlined in section 2.2.5 will also be explored in the following chapters.  

Figure 4.7. Predicted soil 
depth for CB-MR, resulting 
from the application of the 
coupled soil production and 
soil transport sub-model. 
Soils are generally thicker in 
the hollows, were most of the 
mapped landslides (black 
outlines) are also located. 
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Figure 4.8. Soil depth and topographic index. Predicted soil 
depth for CB-MR, plotted against the topographic index 
a/bsinθ (equation 3.18). As topographic index increases soil 
depth also increases, and the variance becomes much larger. 
This illustrates the covariance of soil depth with the water 
table height, a linear function of the topographic index.

The treatment of the hydrologic 
response to rainfall events is perhaps the 
most problematic of the modeling 
efforts. For example, hydraulic 
conductivity at the CB-1 site can vary 
significantly [Ebel et al., 2007b]. 
Furthermore, evidence of fracture flow 
at CB-1 [Torres et al., 1998; Ebel et al., 
2007b, Montgomery et al., 2009] 
suggests an extremely complex 
hydrological response that is unlikely to 
be captured by any hydrological model. 
Moreover, the exact rainfall conditions 
and the timing of failure are only known 
for the CB-1 landslide. For the purpose 
of demonstrating an application of the 
shallow landslide prediction procedure, a 
much simpler approach is taken. The 
instantaneous hydrological models 
described in section 2.2.4 are applied 
using a wide range of effective 
precipitation values (representing cases 
for low, moderate, high, and extreme 
precipitation), and the procedure will be applied using the resulting spatial fields of water table 
heights. These models represent the two end-member scenarios of shallow sub-surface flow, 
namely the purely lateral (topographically-steered, slope-parallel) and purely vertical 
(infiltration-dominated, no topographic control) cases. The former model can be viewed as 
representative of long-duration, low-intensity rainfall, while the latter can be viewed as 
representative of high-intensity, short-duration bursts of rain. The two models will also be 
combined; this is mostly for illustrative purposes (i.e. no extensive search for the best 
combination of the two will be performed). Combining shallow subsurface and vertical flows can 
be viewed as representing short, intense burst of rain over wet antecedent conditions. Table 4.1 
lists the parameters used for all the simulations presented in this section.  

First the topographically-steered (also referred to as lateral hereafter) model (equation 2.13) 
is be applied in simulations 1-4 with values of log(q/K) ranging of -3.1, -2.8, -2.5, and -2.2, 
respectively. Assuming the average value of k = 67 m/day reported for the CB-1 site by Ebel et 
al. [2007b], these values correspond approximately to effective steady-state precipitation of 50 
100, 200, and 400 mm/day, respectively. These values should not be compared to real 
precipitation values as they reflect steady-state precipitation rarely attainable during actual 
storms. Rather, they should be considered indicative of a relative change in precipitation rates.  
Figure 4.10 (a-d) illustrates the expansion of the “wetness” (h/z) predicted by this model for 
these log(q/K) values. It can be observed that saturated areas expand outwards from 
topographically convergent areas, and that at the value of log(q/K) of -2.2 almost all of the 
observed landslides overlap with some fully-saturated grid cells. 
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 The purely vertical model (equation 2.14) will be applied with a similar range of instantaneous 
precipitation values in simulations 5-8, assuming the average soil porosity value of η = 0.50 
measured by Montgomery et al., [1997] at the CB-1 site. Figure 4.11 (a-d) illustrates the 
expansion of the “wetness” predicted by this model for values of p of 50, 100, 200, and 400 mm, 
respectively. As in the lateral model, these values represent an instantaneous addition of water to 
the water table, and thus are not comparable to actual precipitation rates. In contrast to the purely 
lateral model, here we see the expansion of the saturated areas initiating from topographically 
divergent areas, due to thinner soils present in these locations.  

Table 4.2. Parameters used in the simulations performed on the CB-MR site (described in section 4.3). 

To compare the relative performance of these end-member hydrological models, the mixture 
model of equation 2.15 is also tested. In this case, the water table height is fixed at average value 
measured at CB-1 (figure 4.4), which for the assumed porosity η = 0.50 is equivalent to an 
instantaneous addition of 125 mm of water.  For simulations 9-10, two combinations of p and q 
are then chosen to match this total. In the first case (simulation 9) the vertical contribution (100 
mm) is four times the lateral, while in the second case (simulation 10) the vertical contribution 
(25 mm) is a fourth of the lateral (figure 4.12). While p and q are not intended to represent actual 

Figure 4.9. Predicted root reinforcement values for 
CB-MR, resulting from the application of equations 
2.18-2.20. Parameters used derive from spatially-
weighted values measured at the CB-1 landslide scar: 
Cr0 = 21666 Pa, and j = 4.96 m-1. Shown are the basal 
(a) and lateral (b) cohesion fields. The observed 
landslides (black outline) generally occur in areas of 
low predicted root cohesion. 
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precipitation values, this exercise allows the exploration of simultaneous vertical and lateral 
contributions to the water table height. In both cases the fully saturated areas develop in the most 
convergent parts of the landscape, but the resulting spatial distribution of h/z differs significantly, 
particularly in thin-mantled divergent areas. This is because vertical flow increases the water 
table height in a spatially uniform manner, while the lateral flow is topographically steered. 

 

Under the scenarios described, the procedure is applied on the 350 by 427 2-meter resolution 
CB-MR DEM. As described in section 3.4.7, several options are available to reduce the problem 
size and thus increase computational performance. For the hardware described in section 3.4.6 a 
moving window size of 125 by 125 cell is used, and after each iteration the window is shifted in 
the x or y direction by 100 cells, resulting in a 25-cell overlap and a total of 20 iterations. At each 
iteration the number of eigenvectors examined is set to 128, and thresholding is performed for 
each distinct eigenvector value. In each thresholding step a maximum of 25 regions are retained, 
resulting in a theoretical maximum number of examined regions of 1,000,000,000 

Figure 4.10. Predicted values of the saturation ratio 
h/z, for log(q/K) values of -3.1 (a), -2.8 (b), -2.5 (c), 
and -2.2 (d), respectively. Each increment represents 
a doubling of effective steady-state precipitation, 
resulting in the expansion of the saturated field 
outward from convergent areas. k is set to 67 m/day. 
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(20*128*125*125*25). While this appears to be a large number, it should be pointed out that it is 
less than 230, thus a critical reduction from the 2350*427 possible cell combinations. 

 

4.4.2 Simulation results 

In this section the results of simulations 1-10 are presented, separated according to the 
hydrologic model used. 

4.4.2.1 Shallow sub-surface (lateral) flow simulations 

Figure 4.13 (a-d) shows a map of shallow landslide predictions produced by the procedure in 
four steady-state shallow subsurface flow scenarios (simulations 1-4 in table 4.2). A few 
important observations can be made just from these maps. The first striking observation is that 
these predictions consist of discrete landslides having size, shape, and location comparable to the 
observations. As commonly observed, they are generally longer than they are wide, and their 

Figure 4.11. Predicted values of the saturation ratio 
h/z, for p  values of 50 mm (a), 100 mm (b), 200 mm 
(c), and 400 mm (d), respectively. Each increment 
represents a doubling of instantaneous precipitation, 
resulting in the expansion of the saturated field from 
thinner to thicker soils.  
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number increases with increasing precipitation. More specifically, two things happen as 
precipitation increases: existing landslides become less stable, and new ones appear. The second 
observation is that a large number of landslides are predicted, and that many outcomes (i.e. 
overlapping predictions) are possible in all scenarios. The number of observed landslides 
captured by each simulation (hits or true positives) also increases with precipitation: some of the 
observed landslides are captured with a modest steady-state precipitation of 50 mm/day, many 
are captured with 100 mm/day, most are captured with 200 mm/day, and virtually all are captured 
with 400 mm/day. With the number of hits, the number of predicted landslides which are not 
supported by the 10-year record of observations also increases (false positives). We note that 
during the ten years of record it is unlikely that the soil was ever fully loaded or that precipitation 
was in fact in steady state. However, it can be remarked that the location and size of the false 
positives is consistent with the pattern of the true positives. Notwithstanding, for lack of better 
information all predictions which do not overlap with observations will be considered as false 
positives when assessing the performance of the procedure. The third observation is that 
landslides are predicted almost exclusively in convergent areas, where both soil and water tend 
to accumulate. In fact, predicted landslides rarely extend out of the thickest parts of the hollows, 
as would be suggested by the ten-year records for this location. These observations also suggest 
that the sub-models used in these simulations (and their parameterization) capture the essential 
characteristics of this landscape. 

 

When specifically comparing the predicted size distributions (probability density functions or 
PDF’s) to the observed size distribution (figure 4.14a), the results indicate that while the 
predicted PDF’s resemble the observed, predicted size appears smaller than observed for these 
four steady-state precipitation scenarios. In fact, the Kolmogorov-Smirnov (K-S) test, which uses 
a measure of distance between the empirical cumulative distribution functions (CDF’s, shown in 
figure 4.28 for all the simulations in this section) to determine if they may derive from the same 
distribution, confirms that only the PDF of the results of simulation 4 (log(q/K) = -2.2) belongs 

Figure 4.12. Predicted values h/z calculated using 
equation 2.15, for log(q/K) = -3.4 and p = 100 mm 
(a), and for log(q/K) = -2.8 and p = 25 mm (b). Total 
precipitation is the same in both panels but vertical 
contribution is four times the lateral in (a) and one 
fourth of the lateral in (b) resulting in different spatial 
distribution of h/z. K is set to 67 m/day. 
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to the same distribution as the observations (table 4.3). In similar experiments (presented in the 
next chapter), simulations with log(q/K) =-1.9 to  -2.3 also produced size distributions which did 
not fail the K-S test. Figure 4.14a also shows that the PDF’s shift to the right (towards larger 
sizes) with increasing precipitation, a topic that will be discussed in the next chapter. 

 
 

The median topographic index IT (equation 3.18) of a landslide is used in this study as a 
proxy for location. This index is essentially the ratio of drainage area and slope, thus a low index 
indicates landslide location to be in steep non-convergent areas, while a higher index places them 
further down the valley axis where drainage area increases and slope decreases. Figure 4.14b 
shows the PDF’s of the median topographic index of landslides predicted in simulations 1-4 as 
well as of the observed distribution.  

Figure 4.13. Simulations 1 - 4. Landslides predicted by 
the procedure for log(q/K) values of -3.1 (a), -2.8 (b), -
2.5 (c), and -2.2 (d), respectively. Overlap threshold 
(eq. 3.7): l = 1. Colors indicate the factor of safety. 
Predicted landslides are mostly found in convergent 
areas, where soil and water are preferentially 
concentrated, matching the observations. Predicted 
size is generally smaller than observed. 
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Figure 4.14. Simulations 1 - 4 distributions, for log(q/K) = -3.1 to -2.2, equivalent to q = 50-400 mm/day. a) 
Predicted size distributions resulting from the application of the procedure using the lateral hydrological model: as 
precipitation increases, the size distribution shifts to the right (larger size), until it matches the observations when 
log(q/K) = -2.2. b) Predicted topographic index distributions resulting from the application of the procedure using 
the lateral hydrological model: as precipitation increases, the size distribution goes from bi-modal (high slope or 
high area) to uni-modal, matching the observations when log(q/K) = -2.2. 

As with size, the K-S test indicates that only the distribution resulting from simulation 4 
belongs to the same distribution as the observations (table 4.3). This value is not unique, as in 
similar experiments (presented in the next chapter), simulations in which log(q/K) = -2.1 to -2.3 

a. 

b. 
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also produced distributions which did not fail the K-S test. Figure 4.14b also reveals that with 
moderate precipitation, the distribution is bi-modal: landslides can either occur on steep slopes or 
in highly convergent areas. As precipitation increases the distribution tightens to match the 
observations with a single mode. These results will be discussed in greater detail in the following 
chapter. 

 
Figure 4.15. Simulations 1 - 4 performance measures. As precipitation increases, recall (dark blue) increases much 
faster than the percent landscape predicted unstable (light blue); at the same time accuracy (green) decreases, and 
after an initial slight increase precision (magenta) follows; the F-score (the harmonic mean of precision and recall, 
red) reaches a peak when log(q/K) = -2.8, at which point the MCC (the correlation between predicted and observed, 
black) only  slightly continues to improve. 

As a proxy for landslide shape, the aspect ratio is used here. It is defined as the ratio of the 
major and minor axes of the ellipse which best fits the shape of the landslide. For example,  
landslide which is twice as long as it is wide will have an aspect ratio of two, while a circular 
landslide will have an aspect ratio of 1. Figure 4.29 shows the PDF’s and CDF’s of aspect ratio 
for all the simulations presented in this chapter. The observed distribution has mean and median 
aspect ratios of 2.8 and 2.5, respectively. The mean aspect ratios for simulations 1-4 range from 
1.9 to 2, while the median values range from 1.7 to 1.8. No discernible trends emerge, and no 
predicted distribution passes the K-S test. This signifies that while predicted landslides are 
indeed significantly longer than wide, they do not belong to the same statistical distribution. The 
distributions vary little with varying precipitation, and in fact they vary little in any of the 
simulations presented in this chapter, as shown in figure 4.29. 
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Figure 4.16. Simulations 1 - 4 ROC curve. A sharp contrast can be observed between modeled and random 
performance; peak true positive rates (TPR) of 86% are obtained in correspondence of a false positive rate (FPR) of 
22% when log(q/K) = -2.2 (and recall is highest); in contrast the ratio of TPR to FPR is maximal when log(q/K) = -
2.8 (not the lowest recall rate). 

In order to evaluate performance, several measured were defined in chapter 3, both at the 
grid cell (or pixel) scale as well as at the landslide scale. Figure 4.15 summarizes the pixel-scale 
measures for simulations 1-4. One can observe that recall (the probability that an observed 
landslide is predicted, equations 3.9 and 3.10) increases with increasing precipitation. After an 
initial increase, precision (the probability that a predicted landslide is observed, equations 3.9 
and 3.10) decreases with increased precipitation. This is to be expected, as there is generally an 
inverse relationship between precision and recall [Van Rijsbergen, 1979]. However, the actual 
value of precision is never high. The probability of predicting an observed landslide cell never 
surpasses 10%. While certainly not a good result, this is somewhat misleading as the ratio of 
observed landslide cells to the entire landscape is extremely low. This effect is even more 
apparent with accuracy (the probability of a cell being correctly labeled, equations 3.8): with the 
least precipitation, very few landslides are predicted and thus accuracy is almost 100%. The F-
score, the harmonic mean of precision and recall (equation 3.13) reaches its peak of 15% (of the 
maximum possible value of 1) at a log(q/K) value of -2.8. The MCC measure (the correlation 
between observed and predicted classification values, equation 3.14) also has a sharp inflection 
at the same log(q/K) value, after which it stays stable around a value of 17% (of the maximum 
possible value of 1), i.e. the degree of correlation no longer improves, but neither declines. It 
should be noted that the MCC value never approaches zero nor it is ever negative, values typical 
for random predictions or anti-correlated predictions, respectively. It should also be noticed that 
with increasing precipitation the percentage of the landscape predicted to be unstable (labeled 
simply as percent in figure 4.15) increases. However, this increase is considerably slower than 
the increase in recall, suggesting the procedure can indeed discriminate between landslide pixels 
and non-landslide pixels. A summary of the results shown in figure 4.15 is given in table 4.4. 
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Figure 4.17. Simulations 1 - 4, comparison with random model and with percent landscape predicted unstable. The 
percent of captured observations (red) increases steadily and much faster than the percent of the landscape predicted 
as unstable (green); the ratio between the two is maximal when log(q/K) = -2.8; generally the random (non-
mechanistic) blue curve increases at the same rate as the percent unstable green curve, illustrating the discriminatory 
capability of the mechanistic model. 

The receiver operating characteristic (ROC) curve (the true positive rate plotted against the 
false positive rate, equation 3.11) is shown in figure 4.16. For these four simulations the 
procedures reaches a maximal true positive rate (TPR) of 86%, at the price of a false positive rate 
(FPR) of 22% (the theoretical optimum is a 100% percent true positive rate with a 0% false 
positive rate). A four-fold to almost seven-fold increase of TPR to FPR could be considered to be 
an excellent result, but as with the previous measures caution should be used because of the skew 
between landslide pixels and non-landslide pixels present in this dataset. Regardless, the sharp 
contrast between the predictions and random results (represented by the 1:1 line in figure 4.16) 
leave little doubt about the discriminatory power of the procedure. A summary of the results 
shown in figure 4.16 is given in table 4.4. 

At the landslide scale (i.e. considering landslide predictions as a whole and not just landslide 
pixels), the null hypothesis that landslides do not behave according to the proposed mechanistic 
criteria defined in the previous chapters is tested (see section 3.4.5.2 for details). Figure 4.17 
shows the percent of the observed landslides captured versus the percent of randomly distributed 
landslides sampled from the same size distribution, for simulations 1-4. There is a macroscopic 
divergence between the two plots, which allows the null hypothesis to be rejected. One can 
observe that while the two plots keep diverging, the divergence rate (the ratio of the slopes of the 
lines) reaches a peak at a log(q/K) value of -2.8. Very different trends can also be observed in the 
comparison to the percent of the landscape predicted to be unstable, also shown in figure 4.17. 



74 
 

This result also suggests the discriminatory power of the mechanistic assumptions adopted here. 
A summary of the results shown in figure 4.17 is given in table 4.4.  

4.4.2.2 Vertical (non-topographically steered) flow simulations 

Figure 4.18 (a-d) shows a map of shallow landslide predictions produced by the procedure in 
four instantaneous vertical flow scenarios (simulations 5-8 in table 4.2). Again, one can observe 
discrete predicted landslides having size and shape comparable to the observations, albeit 
somewhat larger. As in the previous set of simulations, they are generally longer than they are 
wide; their number increases with increasing precipitation, with landslides becoming less stable 
as new ones appear. A large number of landslides are predicted (with many overlapping 
predictions), indicating the many possible outcomes. The number of observed landslides 
captured by each simulation (hits or true positives) also increases with precipitation, but 
considerably fewer are hit for low and moderate precipitation values (50 mm, and 100 mm), as 
compared to the lateral simulations. With the number of hits, the number of false positives also 
increases. Another important difference from the lateral simulations can be observed in the 
location of the predictions: while the majority predicted landslides are still in areas with some 
convergence (often aligned with the valley axes), they are located much further upslope. This is 
an intuitively satisfying finding, as upslope in the hollows the soils are thinner and thus 
preferentially saturated by the uniformly-distributed water table, yet thick enough to overcome 
the effects of cohesion and friction. Only when the precipitation becomes extreme (400 mm) 
does one observe a significant prediction population in more divergent areas where soils are 
generally extremely thin, resulting in a considerable increase of false positives. Although many 
observed landslides are captured with high precipitation (and all are captured with extreme 
precipitation), the spatial pattern of the predictions would suggest that vertically-dominated flow 
is less suited to capture the essential hydrologic characteristics of this landscape. 

Figure 4.19a shows the size distributions resulting from these simulations. At low and 
moderate precipitation values the size is shifted to the left (smaller) than the observed 
distribution, while at high and extreme values it is shifted to the right (larger). None of the 
corresponding CDF’s (shown in figure 4.28 for all the simulations in this section) come from the 
same distribution as the observed landslides, according to the K-S test (table 4.3). This does not 
imply that purely vertical flow never results in correct size predictions. In fact, in similar 
experiments (shown in the next chapter), simulations in which p = 15 and 17.5 mm (i.e. h = 30 
and 35 mm) produced a size distribution which did not fail the K-S test. However, the observed 
topographic index distribution associated with landsliding was never reproduced using solely 
vertical flow.  

Figure 4.19b shows the PDF’s of the median topographic index of landslides predicted in 
simulations 5-8 as well as of the observed distribution. As with size, the K-S test indicates that 
none of these distributions belong to the same distribution as the observations (table 4.3). 
Furthermore, in similar experiments with a wider range of p values than those presented in this 
chapter, no topographic index distribution was produced which passed the K-S test. The 
tightness of the distributions shown in figure 4.19b also supports the expectation that with a 
uniformly-distributed water table the range of locations where soils are thick enough to 
overcome cohesion and friction, yet thin enough to be highly saturated imposes a control on 
location. These controls will be explored in greater detail in the following chapter. 
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Figure 4.20 summarizes the pixel-scale measures for simulations 5-8. As in the lateral 
simulations, recall increases with increasing precipitation, and after an initial increase, precision 
decreases with increased precipitation. However, the precision value is always lower than in the 
previous simulations, reaching a maximum of 6%. Similarly, the decline in accuracy with 
increased precipitation is considerably faster than in simulations 1-4. The maximum F-score and 
MCC values are also lower, at 8% and 12%, respectively. It should be noted that these two peaks 
occur at very different h values, suggesting that the MCC value is less sensitive to false positives 
than the F-score. The percentage of the landscape predicted to be unstable increases with 
precipitation, but reaches a much higher value than with the lateral model. Comparing this 
increase with the increase in recall suggesting the using this hydrological model the procedure 

Figure 4.18. Simulations 5 - 8. Landslides predicted by 
the procedure for p values of 50 mm (a), 100 mm (b), 
200 mm (c), and 400 mm (d), respectively. Overlap 
threshold (eq. 3.7): l = 1 (100% overlap allowed). 
Colors indicate the factor of safety. Although 
landslides mostly remain in hollows, they are 
preferentially found where soils are thinner. Predicted 
locations often extend further upslope than observed 
and predicted size is at times larger than observations. 
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has more limited discriminatory capability, particularly with values of p greater than 200 mm (h 
> 400 mm). A summary of the results shown in figure 4.20 is given in table 4.4. 

 

 
Figure 4.19. Simulations 5 - 8 distributions, for h = 0.1 to 0.8 m, equivalent to p = 50 to 400 mm. a) Predicted size 
distributions resulting from the application of the procedure using the vertical hydrological model: as precipitation 
increases, the size distribution shifts to the right (larger size), until it reaches a maximum when h = 0.8 m; size is at 
first smaller, then larger than observations; intermediate distributions with h = 0.3 m and h = 0.35 m (shown in 
chapter 5) do match the observations. b) Predicted topographic index distributions resulting from the application of 
the procedure using the vertical hydrological model: as precipitation increases, the topographic index distribution 
slightly shifts to the right (less slope, more area), until it reaches a maximum when h = 0.8 m, well to the left of 
observations which are never reproduced. 

a. 

b. 
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Figure 4.20. Simulations 5 - 8 performance measures. As precipitation increases, recall (dark blue) increases much 
faster than the percent landscape predicted unstable (light blue) until h = 0.4 m, then increases at a similar rate; at 
the same time accuracy (green) decreases, and after an initial increase precision (magenta) follows; the F-score (red) 
reaches a peak when h = 0.2 m, while the MCC (black) is maximal when h = 0.4 m. 

The receiver operating characteristic (ROC) curve for simulations 5-8 is shown in figure 
4.21. The maximum true positive rate is just higher than for simulations 1-4 (87%), but at the 
cost of a much higher false positive rate (41%). All four simulations produce ROC values that 
are closer to the 1:1 line. A similar performance decrease with respect to simulations 1-4 can be 
observed at the landslide scale in figure 4.22: while the percent of the observations captured can 
be higher (and reach 100% in the extreme precipitation case), this is at the cost of a much higher 
percent of the landscape being predicted as unstable. In fact the percent captured and percent 
unstable lines no longer diverge when p is greater than 200 mm. Classification is better than if 
the null hypothesis were adopted, but direct comparison between the two simulation groups 
using the randomly generated datasets is less meaningful, as a new random dataset is generated 
for each simulation. A summary of the results shown in figure 4.21 and 4.22 is given in table 4.4. 

4.4.2.3 Mixed topographically steered (lateral) and vertical flow simulations 

Figure 4.23 (a-b) shows a map of shallow landslide predictions produced by the procedure using 
two different combinations of both hydrologic models (simulations 9-10 in table 4.2). The total 
effective precipitation is held constant but in 4.23a vertical contribution is four times the lateral, 
while in 4.23b the vertical contribution is a fourth of the lateral. No attempt was made to find 
optimal combinations of the two models, nor should the chosen precipitation rates be compared 
to actual storm scenarios. 
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Figure 4.21. Simulations 5 - 8 ROC curve. A contrast can be observed between modeled and random performance, 
although significantly less than for simulations 1-4 (figure 4.16); peak true positive rates (TPR) of 86.8% are 
obtained in correspondence of a false positive rate (FPR) of 41% when h = 0.8 (and recall is highest); in contrast the 
ratio of TPR to FPR is maximal when h = 0.1 (and recall is lowest). 

 
Figure 4.22. Simulations 5-8, comparison with random model and with percent landscape predicted unstable: the 
percent of captured observations (red) increases most rapidly and much faster than the percent of the landscape 
predicted as unstable (green) until h = 0.4 m, then increases at a lesser rate; the ratio between the two is maximal 
when h = 0.1 m (and recall is lowest); generally the random (non-mechanistic) blue curve increases at a rate 
consistent with percent predicted unstable green curve, illustrating the discriminatory capability of the mechanistic 
model even in decreased performance scenarios. 
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The results shown here are meant to be merely an indication of how performance may vary 
with different characterizations of the hydrology where both simultaneous vertical and lateral 
additions contribute to the water table height. In both panels the discrete predicted landslides 
have size and shape comparable to the observations, capturing many of the observed landslides. 
There are many similarities between the two maps, but there are also a few noticeable 
differences. When vertical flow dominates and thus the water table is more spatially uniform, 
predicted landslides are located further upslope, often appearing disconnected from the channel 
network. This is rarely the case when the subsurface flow is mostly topographically steered, as in 
the case where the lateral model dominates. In this case a greater number of overlapping 
predictions is also observed, illustrating the wider range of convergent locations where 
landsliding is likely to happen. Principally as a result of this difference in preferred predicted 
locations, more observed landslides are captured when using the topographically-steered model.  

The size distributions resulting from these simulations are shown in figure 4.24a. While the 
two distributions are not strikingly different, the vertically-dominated simulation exhibits in 
slightly “fatter” distribution with wider tails and a larger mean than the laterally-dominated one. 
In contrast, the topographic index distributions shown in figure 4.24b are almost symmetrical 
(with the vertically-dominated being centered upslope and the topographically-steered being 
focused in higher drainage areas), suggesting that a different mixture of vertical and lateral 
contributions. None of the distributions resulting from the two mixtures pass the K-S test (table 
4.3), and the difference in the CDF’s is illustrated in figure 4.28.  

Figure 4.23. Simulations 9 – 10. Landslides predicted 
by the procedure for log(q/K) = -3.4 and p = 100 mm 
(a), and for log(q/K) = -2.8 and p = 25 mm (b). Total 
precipitation is the same in both panels. Many 
observed landslides are captured in both cases, 
although predicted locations extend further upslope 
in (a) and more into convergent areas in (b). More 
observed landslides are captured in (b). 
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Figure 4.24. Simulations 9 - 10 distributions for log(q/K) = -3.4 and p = 100 mm, and for log(q/K) = -2.8 and p = 25 
mm, resulting in similar total precipitation (~125 mm) from a different combination of the lateral and vertical 
hydrological models. a) Size distribution: increased relative vertical contribution slightly increases size and 
similarity to observations. b) Topographic index distribution: increased relative vertical contribution shifts location 
towards steep areas while increased relative lateral contribution shifts locations towards higher drainage areas. 
Observed landslide distribution lies in between the two distributions. 

b. 

a. 
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Figure 4.25. Simulations 9 - 10 performance measures. As relative lateral contribution increases, recall (dark blue) 
increases significantly and much faster than the percent landscape predicted unstable (light blue); at the same time 
accuracy (green) decreases, but precision (magenta) slightly increases; both the F-score (red) and the MCC (black) 
improve with increased relative lateral contribution. 

 
Figure 4.26. Simulations 9 - 10 ROC curve. A clear distinction can be observed between modeled and random 
performance; peak true positive rates (TPR) of 43.7% are obtained in correspondence of a false positive rate (FPR) 
of 6.4% when log(q/K) = -2.8 and p = 25 mm (when the relative lateral contribution is greater); the ratio of TPR to 
FPR is also maximal in this case, indicating a better performance with respect to the vertically-dominated case. 
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Figure 4.27. Simulations 9 - 10, comparison with random model and with percent landscape predicted unstable: the 
percent of captured observations (red) is significantly higher when the relative lateral contribution is greater 
(log(q/K) = -2.8 and p = 25 mm); while in this case the percent of the landscape predicted as unstable (green) is 
slightly higher, the ratio between the two is maximal; the improvement of the laterally-dominated case when 
compared to the random (non-mechanistic) blue curve is also apparent, illustrating the improved performance with 
respect to the vertically-dominated case. 

 
Table 4.3. Kolmogorov-Smirnov (K-S) test results for simulations 1-10. Only the size and topographic index 
distributions resulting from the application of the shallow sub-surface flow hydrologic model (with log(q/K) = -2.2) 
pass the K-S test. Among results that will be shown in chapter 5, simulations using the lateral hydrologic model with 
log(q/K) = -2.1 to -2.3 result in size and topographic index distributions which pass the K-S test, while simulations 
with log(q/K) = -1.9 only pass the test for the size distribution. Similarly, simulations using the vertical hydrologic 
model with p = 15 and 17.5 mm result in size (but not topographic index) distributions which pass the K-S test. This 
indicates that several different parameterizations can reproduce observed size and location distributions. However, 
the aspect ratio is never reproduced.  
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Table 4.4. Summary of performance measures for simulations 1 to 10.  

In terms of performance, the topographically-dominated simulations surpass the vertically-
dominated in every measure (figure 4.25) with the exception of accuracy which shows a slight 
decrease possibly due to the increased recall (accuracy decreases with increased recall in every 
simulation shown in this chapter). The performance advantages of the topographically-
dominated case are also visible in the ROC statistic, in which the increase of the TPR is not 
matched by a similar increase of the FPR (figure 4.26). An even greater difference is evident in 
the landslide-scale comparison, in which a significantly greater percent of observations are 
captured by the topographically-dominated simulation with only a slight increase of the percent 
of unstable landscape being predicted (figure 4.27). The topographically-dominated model also 
shows a much better performance when compared to the random null hypothesis. A summary of 
all the performance measures is given in table 4.4. 

It is not clear, based on the results summarized in table 4.4, whether for this type of 
landscape a mixed model dominated by topographically-steered hydrology but with an added 
vertical component (simulation 10) performs better than a pure shallow subsurface flow (with 
simulation 2 being the most similar in terms of total precipitation). In contrast adding some 
topographically-steered flow to a vertically dominated hydrology (simulation 9) does show a 
clear improvement over the purely vertical case (here simulation 6 is the closest analogue in 
terms of total precipitation). While only two mixtures of relative lateral and vertical contributions 
were presented here, a continuum of mixtures will be explored in the next chapter. 

4.4.3 Internal validation 

Shown in figure 4.30 are the discrete and the continuous cost function values for simulation 
2. The former, shown in blue, are the result of evaluating equation 3.4 using the predicted 
landslides as the indicator vector x. The latter, shown in red, are the result of evaluating equation 
3.4 using the transformed eigenvector x* for the first 128 eigenvalues of equation 3.6. The 
discrete indicator vector x is a binary representation of the unstable shapes, while the continuous 
indicator vector x* could be thought of as the fractional contribution of each grid cell to the 
theoretical unstable shapes (see section 3.4.3). As discussed in sections 3.4.1 and 3.4.4, to make 
the search problem tractable only the magnitude is encoded in the matrix representation of the 
driving forces. While the values plotted in figure 4.30 are closely related to the factor of safety, 
in fact they will always be slight under-estimates. This is corrected during the thresholding 
process (section 3.4.4) by individually evaluating the true factor of safety for each of the 



84 
 

predicted shapes. Here we wish to compare the discrete and continuous solutions of equations 
3.4 and 3.5 in a consistent manner, and thus the values resulting from the matrix product are 
used.  

One can observe that all the requirements outlined in section 3.4.5.1 are met: 

 All the discrete solutions plot below the y = 1 line (in fact they plot slightly lower as 
they are under-estimates). 

 All discrete solutions plot close to the real-valued solutions. The difference between 
the two is largest for the first (optimal) eigenvector number, and it reduces as the 
eigenvector number increases. 

 No discrete solution plots below the first (left-most) real-valued solution. In fact, no 
solution plots below the first real-valued solution, supporting its optimality. 

 As the eigenvector number increases, the discrete solutions approach, and often 
surpass, the real-valued solutions. As discussed in section 3.4.5.1, the discrete 
solutions are not subject to the same orthogonality constraints as the eigenvectors 
defined by a linear system. 

The same observations have been made for all the simulations presented in this chapter, but are 
not shown here for succinctness. As part of model development and testing similar plots have 
been generated for a diverse range of conditions, and violations to the above requirements have 
never been encountered. The software implementing the procedure contains many consistency 
checks throughout the code (e.g. alerts are generated for non-symmetric matrices, division by 
zero, complex numbers, etc.). In particular, all the final (matrix-derived) results are re-computed 
by an independent module on a pixel by pixel basis, and the results are both written to file and 
output to screen. This guarantees error-free operation in a manner equivalent to “hand-checking” 
the results.  

4.5 Discussion 
The application of the procedure under the conditions measured during the November 1996 

storm event, resulted in a predicted failure at the same location and of similar size as landslide 
which occurred at the site during the storm. While this is an excellent result, it should be noted 
that topographic constraints of the site imply that if something can fail, it will be inevitably 
centered on or around the maximal values of pore pressure and soil depth. In other words, 
location alone is not a very strict test. More telling is perhaps the combination of size and factor 
of safety results. There were no free parameters in this application, as soil depth, pore pressure, 
root strength, and soil friction angle were measured. However, a choice was made to model the 
decline of root strength with depth, rather than to treat the measured value as uniform. While this 
treatment resulted directly from the published data, one could imagine that uniform values would 
lead to higher strength of the material and thus a higher factor of safety. Consequently, either a 
much larger size would fail, or none at all, highlighting the good performance of the procedure. 

The predicted landslide has an area that is 9 m2 larger than the observed failure, extending a 
couple of meters further upslope. This is likely due to the small-scale parameter variations that 
exist in natural landscapes which cannot be captured even in a site as well studied as CB-1. In 
particular, we note that the spatial arrangement of the piezometer nests used to measure the pore 
pressure values (figure 4.4) will inevitably result in the extension upslope of the highest values 
(the peak measurement is straddling the upslope border of the landslide and no other piezometers 
are in the immediate vicinity to constrain the pore pressure field). Notwithstanding, the reader is 
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again reminded that the procedure involves a variety of simplifications and relies on an 
approximation method, and thus can never guarantee a perfect result. It should also be remarked 
that the CB-1 landslide (both observed and predicted) precisely straddles the area of high pore 
pressure and thicker soils. This lends support to the hypothesis that the co-organization of these 
parameters controls the size of shallow landslides, and suggests that our procedure localizes 
favorable areas well. 

 
Figure 4.28. Simulations 1 - 10 CDF’s. Size and topographic index distributions for all ten simulations. The 
distributions for  log(q/K) = -2.2 (top row, red lines) appear visually similar to the observations and in fact pass the 
K-S test. All other distributions appear visually dissimilar to the observations and in fact fail the K-S test. 
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Figure 4.29. Simulations 1 - 10 aspect ratio distributions. PDF’s (left) and CDF’s (right) of the aspect ratio 
distributions for all ten simulations. Notwithstanding the different hydrological models and their parameters, no 
discernible trend emerges from these distributions. The difference between predicted and observed distributions is 
particularly evident in the CDF’s. 

When the model is applied to the CB-MR site, discrete landslide predictions emerge, often 
with comparable sizes and locations as the observations. Many, if not most, of the predictions are 
in areas where landslides have not been observed. The mapped landslide dataset was adopted 
because it is useful to compare predictions with observations, however it must be noted that the 
observations were collected in a ten-year period. Over a longer period, landslides should appear 
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in many other locations, as is suggested by the dissected landscape. Furthermore, we know that 
these landscapes experience cycles of soil infilling due to creep, and soil evacuation due to 
landsliding. The soil depth sub-model adopted here does not account for landsliding, with the 
result that all the hollows are fully-loaded. The combination of these two factors will inevitably 
result in over-prediction. However, it should be remarked that predicted landslide (whether or 
not observed) coincide with areas of high pore pressure and thicker soils (where the effect of root 
strength is less significant). Again, this gives confidence in the ability of procedure to accurately 
localize favorable areas. 

In the application of the model to CB-MR, many overlapping landslides are observed. This 
indicates that many outcomes are possible for any scenario, suggesting that subtle variations in 
local conditions could determine which outcome will ultimately be realized. As discussed in 
section 3.6, by varying the parameter l (equation 3.7) the user has a choice on how much overlap 
to allow. However, this choice is arbitrary and thus here it was chosen not to limit overlap in any 
way (l = 1). The result is that many locations are predicted as being part of more than one 
landslide, which does not happen in reality. While generally one can assume that the least-stable 
prediction is the most likely, this is not always the case: for example, a rapid rise in pore pressure 
may result in the theoretically least-stable shape to be “skipped” in favor of a larger one. It 
should be noted that overlap restrictions (using equation 3.7) will inevitably affect the size and 
location distributions. While the bias introduced by varying the parameter l was not explored, 
close examination of the spatial maps resulting from simulations 1-10 (figures 4.13, 4.18, 4.23) 
suggests that selecting only the least-stable shape among overlapping ones would bias the size 
distribution towards smaller sizes. 

The focus of this chapter is on evaluating the performance of the procedure under a suite of 
selected scenarios. For this purpose, two different approaches were taken, namely comparing the 
properties (i.e. size, shape, location) of predicted landslide populations and testing the 
procedure’s ability to capture individual observed landslides.  

When comparing predicted and observed distributions we can capture size and location. 
However, in this application this requires a high steady-state precipitation rate. This rate should 
not be compared to actual precipitation rates as steady-state conditions are rarely attained in 
reality. This is because the time scale necessary for establishment of steady state conditions may 
be significantly larger than the duration of most rainstorms [Iverson 2000]. Nonetheless, the 
unrealistic rates used in the best-performing simulations may be pointing to (and compensating 
for) deficiencies in the overly-simplified hydrological models. For example, as precipitation is 
varied through the ratio of the effective precipitation to the saturated conductivity q/K, high 
values of q may be a result of an over-estimation of K. Measurements of hydraulic conductivity 
vary significantly at the CB-1 location [Ebel et al., 2007b], thus a spatially uniform treatment of 
K may be too simplistic. Perhaps more significantly, it has been observed that a large fraction of 
the flow is not confined to soils but involves the underlying bedrock [Torres et al., 1998; Ebel et 
al., 2007b, Montgomery et al., 2009]. It could thus be argued that a value of K based entirely on 
soil measurements may in fact be inappropriate. The over-prediction of shallow landslides 
observed in several of the simulations presented here may in part due to the unrealistic steady-
state precipitation rates. A dynamic hydrological model that captures the transient response of 
the landscape to rainfall may produce more realistic results and reduce over-prediction. One such 
model will be explored in the final chapter of this dissertation. 
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Figure 4.30. Internal validation 
example. Comparison of discrete 
and continuous solutions for 
simulation 2. The first (left-most) 
continuous solution is always 
minimal. The discrete solutions can 
be lower than the continuous 
solutions at high eigenvector 
numbers. 
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In most cases, the predicted size distribution is smaller than observed. A mechanistic 
explanation whereby size is rarely captured could derive from the imprecision of attributing 
correct parameter values throughout the site: for example one could expect that with higher root 
cohesion a larger size would be needed to overcome increased resistance on the margins. 
Similarly, the fact that the observed aspect ratio distribution is never captured might also be 
explained mechanistically: for example, a different distribution of the lateral forces (i.e. a 
stronger downslope boundary, or a weaker cross-slope boundary) should result in larger aspect 
ratios, all else being constant. Another potential explanation for the mismatch in size and shape 
could be due to the difficulty of establishing the true initial geometry of landslides in the field. 
For example, in the base map (fig 4.1), the CB-1 landslide is mapped as having a considerably 
larger size and longer shape than subsequently estimated through forensic post-failure 
investigation. The same may be true at other locations, resulting in observations having a bias 
towards larger sizes and longer shapes. 

When testing the procedure’s ability to capture individual observed landslides, the 
performance is significantly better than that of a random classifier. This can be observed from 
both pixel-based and feature-based comparisons (described in section 3.4.5.2), as shown in the 
ROC and MCC results and in the null-hypothesis test (e.g. figures 4.15 - 4.17). These results 
give some degree of confidence in the model’s prediction, and the performance measures defined 
here provide a mean to tune or constrain model parameters. In other fields such as image 
classification or information retrieval, the scores obtained in this study from these performance 
measures (e.g. precision/recall, F-score) would be considered low. These fields have benefited 
from decades of research and development and in particular from the widespread availability of 
well-designed training datasets (e.g. www.vision.caltech.edu/Image_Datasets/Caltech256/). Such 
benchmarks provide opportunities for newly-developed algorithms to be applied, tested, and 
compared, resulting in the incremental but continuous advancement of the field. Viewed in this 
light, the results presented here are a very good initial step, but landslide identification could 
greatly benefit from similar community-based research efforts. 

4.6 Conclusion 
In this chapter I applied the procedure which couples a mechanistic slope stability model that 

computes the stability of discrete elements of a landscape with a search algorithm which can 
select least stable combinations of these elements to produce discrete shallow landslide 
predictions. This procedure was applied to the instrumented CB-1 catchment using field-
measured physical parameters, successfully predicting the size and location of the shallow 
landslide which destroyed the site during the 1996 storm. The procedure was then applied to the 
larger CB-MR study area using modeled physical parameters, under a suite of diverse 
hydrological scenarios.  

First, the discrete landslide predictions were evaluated by comparing the properties of 
predicted landslide populations with a dataset of observed landslides collected over ten years of 
research at the site. The application of the procedure to the larger CB-MR study area resulted in, 
and was able to reproduce the distribution of sizes and locations observed during the ten years of 
research at the site.  

Second, the CB-MR landslide dataset was used to test the procedure’s ability to capture 
individual observed landslides. At the pixel scale, performance was quantified using a set of 
information retrieval measures based on true and false positives and negatives. At the feature 
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scale, the percent of observed landslides captured by the predictions was compared to the percent 
of the landscape predicted as unstable. In both cases the performance is significantly better than a 
random classifier.  

For a simulation that reproduced both the observed size and location (as represented by a 
topographic index) distribution, we captured more than 97% of observed landslides, with less 
than 30% of the landscape being predicted as unstable. The same simulation had a true positive 
rate of almost 86% and a false positive rate of less than 22%. These results demonstrate the 
applicability and give confidence in the shallow landslide prediction procedure. We can now use 
it to ask important questions such as what controls the size and location of shallow landslides. 
These questions will be the focus of the next chapter. 
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Chapter 5 

What controls shallow landslide size and location: experiments 
on Oregon Coast Range topography  

5.1 Introduction 
The size, location, and frequency of shallow landslides define both the hazard potential they 

present and their geomorphic influence on landscape evolution. As reviewed in chapter 1, at 
present there exist mechanistic and empirical methods that can broadly define potentially 
unstable areas. Empirical relationships based on landslide inventories can characterize the 
probability distribution of landslide size in specific areas (e.g. Stark and Hovius, [2001]; Brunetti 
et al., [2009]). Similarly, empirical relationships can characterize the probability of landslide 
occurrence given rainfall characteristics (e.g. Guzzetti et al, [2007, 2008]; Brunetti et al. [2010]). 
Current spatial predictions do not provide information on landslide size, while empirical size 
distributions do not provide information on landslide location. Furthermore, empirical 
relationships do not allow for predictions to be made under changing conditions caused by 
landuse and climate change. 

In the previous chapters I defined a slope stability method and coupled it with an efficient 
search algorithm to select least-stable combinations of grid cells to produce discrete shallow 
landslide predictions across a landscape. This procedure was tested on an instrumented small 
catchment where parameters were well constrained and on a larger landscape where a detailed 
landslide inventory is available. The results of these tests provide confidence that the procedure 
can effectively predict size and location of shallow landslides. We are now able to address 
questions such as what controls how big landslides are, where do they happen, and when (or how 
frequently) do they happen. Of these questions, the one we know least about is what controls 
landslide size. In this chapter, the sensitivity of landslide size to a variety of parameters will be 
explored. In this process the question of location will also be addresses, while in the next chapter 
I will point to a framework that can help address the question of when and how often shallow 
landslides may occur. Addressing these questions may also help with back-analysis of observed 
landsliding events, and identify the signatures of the dominant processes involved. 

As discussed in the previous chapters, the parameters that are most relevant for the 
occurrence of rainfall-triggered shallow landslides are slope, pore pressure, root and soil 
strength, and soil depth. The hypothesis that was formulated in chapter one is that the co-
organization of these parameters, mostly dictated by topography, controls the size and location of 
shallow landslides. This was supported by experiments on a synthetic landscape in which the 
intersection of a high pore pressure and low root strength fields limited the size of landslides 
(section 3.5). In the first application to a real landscape (chapter 4) we also observed the impact 
of the spatial distributions of pore pressure on landslide size: the landslide that occurred at the 
small instrumented catchment (CB-1) straddles the high pore pressure field and on the larger 
study area (CB-MR) predicted landslides grew larger as the pore pressure field expanded.  

Observations also suggest that landslide size and abundance is affected by the root 
reinforcement provided by diverse vegetation cover. In New Zealand, Selby [1976] observed that 
for the same rainfall conditions landslides exhibited a smaller size (but were more numerous) in 
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grasslands than in forested areas, Reneau and Dietrich [1987] compare their data on landslide 
width in hardwood forests with that reported by Lehre [1982a;1982b] for grasslands and brush, 
showing that the forests slides were 1.6 times wider than the grasslands. Similarly, Gabet and 
Dunne [2002] documented that landslides were smaller (and more numerous) in areas where root 
strength decreased as a result of coastal vegetation to grassland pastures. Using a slope stability 
model that accounted for the effect of lateral root reinforcement but not the full three-
dimensional effects in the model presented in chapter two, Reneau and Dietrich [1987] proposed 
that a decline in root strength would lead to failures of lower lengths and widths; in contrast, low 
gradients or high soil friction would require failures to have higher lengths and widths. They 
emphasized the role of colluvium thickness in slope stability:  thick colluvium reduced the effect 
of root strength but could also reduce the likelihood of destabilizing pore pressure. Using a 
similar model, Casadei et al. [2003b] performed a sensitivity analysis in which they showed that 
minimum width for failure increases with root cohesion and friction angle, and decreases 
(nonlinearly) with increasing slope or increasing relative saturation. Both of these studies 
focused on how the theoretical critical width of shallow landslides (i.e. the minimal width 
required for instability) is expected to vary under uniform conditions, and inferred that spatial 
extent of controlling properties (i.e. colluvium thickness, root strength, and local pore pressure) 
set an upper limit on size. These predictions are intriguing, but depend strongly on the 
assumptions in their simple models.  With these assumptions, controls on landslide width were 
proposed, but both width and length, and, hence, size, could not be predicted. 

Table 5.1. Description and parameterization of the experiments presented in chapter 5. In experiments 1-8 
parameters are varied relative to a reference case scenario, which uses the best-performing field-constrained 
parameterization presented in chapter four.  

In a real landscape, critical size for failure and actual size of failure may be rather different, 
as conditions are rarely uniform. With the ability to spatially predict discrete landslides under 
varying conditions on a real landscape, it now becomes possible to explore the controls not just 
on critical size, but on probable landslide size (i.e. the most likely as indicated by a probability 
density function). Spatial discrete landslide prediction capability also allows exploring how 
probable location varies with varying parameters.  The question of what controls landslide size 
and location across a landscape will be the focus of this chapter. 
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Figure 5.1. Landslides predicted by the procedure for the reference case scenario.  The “slow-changing” parameters 
consist of the best field-constrained estimates presented in section 4.4.1. The hydrologic parameter log(q/K) =  -2.8 
used for this scenario reflects the best-performing value from experiments presented in chapter four. Overlap 
threshold (eq. 3.7): l = 1. Root strength parameters are Cr0 = 21,666 Pa, and j = 4.96. Colors indicate the factor of 
safety. Predicted landslides are mostly found in convergent areas, where soil and water are preferentially 
concentrated.  

To explore the controls on landslide size and location, the procedure will be applied to the 
landslide-prone study area in the Oregon Coast Range (CB-MR) presented in chapter four, where 
repeat field mapping provides an inventory of all the shallow landslides that occurred over a 10-
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year period [Montgomery, et al., 2000], and intensive research in the area provide constraints on 
soil, vegetation, hydrological, and rainfall characteristics. A sensitivity analysis will be 
performed by which these characteristics will be systematically varied, and the resulting 
probability density functions of predicted landslide size and location (as represented by a 
topographic index) will be examined. As topography plays an important role on the spatial 
organization of these parameters, the effect of smoothing the landscape on landslide distributions 
will also be explored. Finally, I will summarize general trends such as increase or decrease in 
number or size of predicted landslides as the parameters are systematically varied, and comment 
on which parameter sets result in best performance. 

5.2 Methods 
The shallow landslide prediction procedure will be applied to the 0.5 km2 Mettman Ridge 

study area (CB-MR), where 2 meter LiDAR-derived topographic data is available. Similarly to 
the approach taken in chapter four, a wide range of hydrological scenarios will be explored. The 
two end-member (laterally and vertically dominated) steady-state hydrological models 
introduced in chapter two will be adopted, and as hydrological conditions are the least 
constrained, an extreme range of precipitation values will be used. Within a range of realistic 
precipitation values, a mixture of the two models will also be explored. In contrast to chapter 
four, the “slowly-changing” variables such as soil depth, root strength, and soil friction angle 
will be varied. As the magnitude of these variables is more constrained, only the range of 
realistic values will be explored. It is important to note that these characteristics are varied on the 
entire landscape. As a result, the spatial distribution of areas favorable for landsliding which can 
be exploited by storms (or in this case by applied steady-state precipitation) changes with each 
parameterization, resulting in a difference in characteristic landslide size and/or location. 

 

  

 

Figure 5.2. Shallow landslide predictions in two steep hollows of the CB-MR 
study area under increasing steady-state precipitation rates, varied through the 
ratio q/K: a) log(q/K) = -3.4; b) log(q/K) = -3.1; c) log(q/K) = -2.8; d) 
log(q/K) = -2.5; e) log(q/K) = -2.2; f) log(q/K) = -1.9. Increments represent 
doubling of q. Landslides begin upslope in the hollow, and as these expand 
with relative saturation new landslides emerge downslope. Final extent of 
landsliding is limited by the topographic characteristics of the hollows. 
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While many of these parameters co-vary in actuality, here they will be treated as 
independent. In each experiment one parameter will be allowed to vary, and the others will be 
assigned the most likely value based on field studies. When the hydrological characterization is 
held constant, the precipitation value which gave the best performance score in the simulations 
of chapter four will be adopted. Two parameters that are included in the slope stability 
framework will be held constant in this study: the saturated hydraulic conductivity k (m/day) and 
the soil density s (kg/m3); uniformly varying the former is equivalent to varying the effective 
precipitation q (m/day), while the latter (which varies little in the relatively thin colluvial mantle) 
is considered to have little impact on slope stability [Borga et al., 2002]. It is also assumed that 
the CB-MR soils are essentially cohesionless [Schmidt et al., 2001] with a roughly constant 
porosity of 50% [Montgomery et al, 1997]. The parameters used in all the experiments presented 
in this chapter are summarized in table 5.1. It should be noted that experiments 1 to 8 vary 
parameters relative to a reference case scenario, which uses the best-performing field-
constrained parameterization presented in chapter four. As in the experiments presented in 
chapter four, no restrictions on overlapping predictions will be applied here (i.e. all predicted 
unstable outcomes will be presented). Throughout the experiments, the water table height h is not 
allowed to exceed the soil thickness z. Probability density functions (PDF’s) of predicted 
landslide size and of predicted median topographic index (a proxy for location, equation 3.18) 
will be generated from each parameterization and these PDF’s will be compared to each other 
and to the observed distributions. Aspect ratio distributions will not be examined here, as they 
were found to be invariant under the range of parameter choices presented in this chapter, and 
essentially unchanged from those presented in chapter four of this dissertation.  

 
Figure 5.3. Size distributions predicted using the lateral hydrological model. As precipitation increases, the size 
distribution shifts to the right (larger size) until it matches the observations when log(q/K) = -2.3 to -1.9. 
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In experiment 1 to 3, the hydrological parameters are varied while root strength, friction 
angle, and soil depth are held constant. In experiment 1 the steady-state shallow subsurface flow 
hydrologic model (equation 2.13) is used with a ratio of effective precipitation to saturated 
conductivity log(q/K) varying from -5.5 to -1.9. For a value of k = 67 m/day [Ebel et al., 2007b], 
this is equivalent to steady-state precipitation ranging from approximately 0.2 mm/day to 843 
mm/day. In experiment 2, the purely vertical hydrologic model (equation 2.14) is used instead, 
with a range of uniformly applied instantaneous pressure addition p ranging from 0 to 500 mm. 
In experiment 3 the mixture model (equation 2.15) is adopted and the relative contribution of the 
lateral and vertical components is varied while the total amount of precipitation (i.e. the sum of p 
and q) is held constant. The chosen value of 117 mm represents the precipitation depth (p) 
necessary to reproduce the average saturation levels measured at CB-1 during the landslide-
causing storm of November 1996. The ratio of vertical to lateral contribution is then varied from 
0.1 to 10. 

 
Figure 5.4. Topographic index distributions predicted resulting using the lateral hydrological model. Initially the 
distribution is skewed to the left (high slope); as precipitation increases, the size distribution becomes bi-modal 
(high slope or high drainage area); as precipitation further increases the distribution is uni-modal again, matching the 
observations when log(q/K) = -2.3 to -2.1. 

In experiments 4 to 6, the hydrological parameters are held constant while root strength, 
friction angle, and soil depth are individually varied. In experiment 4 both parameters defining 
root strength (equations 2.19 and 2.20) are varied from half to twice the base values measured at 
the CB-1 landslide where lateral and basal root strength were estimated to be 4,600 and 100 Pa, 
respectively. For the CB-1 landslide, which has an average depth of almost 1 m, this range 
corresponds to lateral root strength values of 1,100 Pa to 16,500 Pa and basal root strength 
values of 1 Pa to 4,000 Pa. In experiment 5 the friction angle is varied from 35° to 45°. In 
experiment 6 the soil depth is varied proportionally to the modeled CB-MR values (which range 
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from 0 to 540 cm with a mean of 70 cm, figure 4.7), resulting in spatially variable soil depths. 
Here values are multiplied by a factor of 0.25 to 2. In experiment 7 the soil depth is varied 
uniformly (soil is spatially invariant) with a range from 25 to 800 cm. 

Finally, the effect of varying the degree of roughness and dissection of the landscape is 
explored in experiment 8. The original LiDAR-derived topography is progressively smoothed 
using a Gaussian filter of size varying from 0 to 110 m. After each level of smoothing the soil 
depth is re-calculated using the model described in sections 2.2.3 and 4.41. While average soil 
depth remains roughly constant throughout this exercise, the spatial distribution of soil thickness 
becomes progressively more uniform as filter size increases. Also as a result of smoothing, the 
mean slope of the landscape progressively declines while the mean drainage area progressively 
increases.  

 
Figure 5.5. Number of shallow landslide predictions and their mean size under increasing steady-state precipitation 
rates, varied through the ratio q/K: mean predicted size generally increases, and a more rapid increase in number of 
predicted landslides is observed when log(q/K) exceeds -3.2. 

5.3 Results 
We have observed in chapter four that failures can only occur in locations where there is 

sufficient soil to overcome the resistive forces provided by root strength. The spatial pattern of 
soil thickness is determined by the divergence of the soil flux with convergent areas generally 
exhibiting thicker soil cover than divergent areas. Thus in general hollows have thicker soils than 
noses, and soil thickness increases down a hollow axis. The soil mass contributes to both the 
driving (slope-parallel) and normal forces, proportionally to the slope angle. An increase in soil 
mass will increase the factor of safety when the slope angle is low, as the normal component of 
the gravitational force (and thus the frictional force acting on the base) increases faster than the 
shear component. In contrast, when the slope angle is high an increase in soil mass will decrease 



98 
 

the factor of safety as the shear component of the gravitational force (and thus the slope-parallel 
driving forces) increases faster than the normal component. In other words, an increase of the 
soil mass will make a sub-critical slope (i.e. a slope such that the driving forces are less than the 
resistive forces) less critical and a critical slope more critical. The cohesive component of these 
soils is principally due to the effects of root reinforcement which decreases exponentially with 
soil depth. Thus increasing soil depth diminishes the root strength contribution, also resulting in 
decreased stability. In contrast, shallow soils offer a lower driving force contribution and much 
higher root strength, resulting in increased stability. As a result, landslides should occur 
preferentially in deeper soils.  

 

 

 

The spatial pattern of relative saturation is both a function of water table height and soil 
depth. In the absence of spatial variability of the water table height (e.g the case of purely 
vertical infiltration-dominated flow), relative saturation decreases with soil depth, increasing 
stability. When instead the subsurface flow is topographically steered (e.g the case of shallow 
subsurface flow), relative saturation increases in convergent areas, resulting in decreased 
stability. In other words, under the vertically-dominated scenario, soil depth increases in hollows 
(due to transport convergence) but relative saturation decreases (h/z decreases as z increases), 
while under the laterally-dominated scenario both soil depth and relative saturation increase 

Figure 5.6. Shallow landslide predictions in two steep hollows of the CB-MR 
study area under increasing instantaneous vertical addition to the water table 
height h, varied through the parameter p: a) p = 2.5 cm; b) p = 5 cm; c) p = 10 
cm; d) p = 15 cm; e) p = 20 cm; f) p = 25 cm; g) p = 30 cm; h) p = 35 cm; i) p 
= 40 cm. Landslides begin upslope in the hollow, and as relative saturation is 
higher in thinner soils they generally expand upslope only when p becomes 
very large. New landslides emerge downslope. Final extent of landsliding is 
limited by the topographic characteristics of the hollows. 
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(both h and z increase due to transport convergence). Thus the spatial pattern of relative 
saturation and the water pathways leading to elevated pore pressure should control where 
landslides occur along the hollow axis. In the absence of any other control, larger landslides are 
expected to be less stable (see section 3.5). However, as landslides get larger the spatial 
variability in the parameters (particularly slope, soil depth and relative saturation) should 
constrain the area over which landslides may occur (as inferred by Reneau and Dietrich [1987] 
and Casadei et al. [2003b]). This section presents the results of experiments in which landscape 
characteristics drive spatial differences in relative saturation, root strength, soil friction, soil 
depth, and topographic roughness across the CB-MR study area.  

 
Figure 5.7. Size distributions predicted using the vertical hydrological model. As precipitation increases (and the 
water table height h increases), the size distribution shifts to the right (larger size), until it reaches a maximum when 
h = 0.55 m, after which only smaller landslides are added to the distribution; size is at first smaller, then larger than 
observations; intermediate distributions with h = 0.3 m and h = 0.35 m do match the observations. Note that h = p/η 
when h < z, and h = z otherwise. 

Results will be presented as spatial maps of shallow landslide predictions for the CB-MR 
study site, as well as for a small portion of the map area to show the details of changing size, 
location and numbers with changes in driving variables. These will followed probability density 
functions of predicted landslide size and location (using the median topographic index as a proxy 
for location) ), and by plots of size and number as a function of driving variables for the entire 
map. The aspect ratio of predicted landslides was essentially invariant in almost all the 
experiments, and thus will generally not be discussed. In section 5.3.1, I will first present the 
results of the application of the procedure under variable hydrologic controls. This will be 
followed by the effects of variable root and soil strength (sections 5.3.2, and 5.3.3, respectively). 
Results of varying the soil depth will be presented in section 5.3.4, while the impact of 
smoothing the topography will be shown in section 5.3.5. In a separate section (5.3.6) general 
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trends emerging from the experiments, as well as the influence of parameter choices on 
performance, will be presented. As there is much uncertainty around the parameter choices 
(particularly the hydrological parameters), it is perhaps more useful to view the results presented 
here as changes relative to a reference case scenario.. In this scenario, the steady-state shallow 
subsurface flow hydrological model is used with an effective precipitation to saturated 
conductivity ratio log(q/K) = -2.8, together with the best estimates (field-constrained) of 
parameters for root strength, friction angle, and soil depth (see section 4.41). This scenario was 
chosen because in the experiments of chapter four it produced the best compromise between 
precision and recall, as defined by the F-score. A spatial map of shallow landslide predictions 
resulting from this parameterization is shown in figure 5.1.  

5.3.1 Hydrological controls  

5.3.1.1 Experiment 1: varying q/K in steady state runoff 

Figure 5.2 illustrates the development of potential shallow landsliding in two steep hollows 
of the CB-MR study area as effective steady-state precipitation increases, under the shallow 
subsurface flow (lateral) hydrological model. The number of predicted landslides increases with 
increasing precipitation, but their size and location also change. With very little precipitation, 
failures can only occur in steep locations where there is sufficient soil to overcome the resistive 
forces provided by root strength, but not so thick that the saturation ratio becomes too low. Such 
areas are of limited extent, and as a result landslide size is very small (figure 5.2a). As 
precipitation increases and the relatively saturated field expands, the extent of favorable areas 
also increases and landslides can become larger in size (figure 5.2b). As already seen in the 
artificial experiments of chapter three, in the absence of heterogeneities limiting areas favorable 
to landsliding, a larger size generally results in a decrease of the factor of safety. While favorable 
areas expand upslope in the hollow, new unstable areas develop down the hollow axis where 
relative saturation is higher (figure 5.2c). These trends continue as the saturation field continues 
to expand with increasing precipitation (figures 5.2d-e), greatly augmenting the number of 
overlapping predictions. While landslides become more unstable with increasing precipitation, 
there is an upper limit to their size set by the characteristics of the hollow: landslides cannot 
extend out of the hollow because of insufficient soil depth, and they cannot extend down the 
hollow due to insufficient slope (figure 5.2f). 

The probability density functions of predicted landslide size for the entire map area (figure 
5.3), show that landslide size increases with precipitation (the mode of the PDF shifts to the 
right). The results also indicate that while the predicted PDF’s resemble the observed with high 
precipitation, predicted size appears smaller than observed for most precipitation scenarios. In 
fact, the Kolmogorov-Smirnov (K-S) test, which uses a measure of distance between the 
empirical cumulative distribution functions to determine if they may derive from the same 
distribution, confirms that only the PDF of the results of simulations having log(q/K) = -1.9 to -
2.3 belong to the same distribution as the observations. 

The probability density functions of predicted landslide topographic index (figure 5.4) 
illustrate the trends observed in the hollows of figure 5.2. The topographic index is essentially 
the ratio of drainage area and slope, thus a low index indicates landslide location to be in steep 
non-convergent areas, while a higher index places them further down the valley axis where 
drainage area increases and slope decreases. 



101 
 

 
Figure 5.8. Topographic index distributions predicted using the vertical hydrological model. As precipitation 
increases (and the water table height h increases), the topographic index distribution shifts to the right (less slope, 
higher drainage area), but without ever reaching the distribution of the observed landslides. 

Initially, with low precipitation landslides can only occur on high slopes. With moderate 
precipitation, the distribution is bi-modal: landslides can either occur on steep slopes or in highly 
convergent areas downslope. As precipitation further increases the distribution returns to a single 
mode centered on the observations. This is because as favorable locations become exploited and 
landslides expand, they become limited by the topographic setting. The landslides farthest 
upslope can only expand downslope and vice versa, and inevitably the topographic index shifts 
towards the middle range. Distributions arising from log(q/K) values of  -1.9 to -2.3 belong to the 
same distribution as the observations, based on the K-S test. 

The number of predicted landslides and their mean size as the ratio q/K is increased are 
shown in figure 5.5. Initially landslide number and mean size do not increase significantly, as the 
number and size of the landslides mostly reflects those areas of the landscape which are unstable 
independent of precipitation. When precipitation increases, number and size increase at a similar 
rate until precipitation exceeds a threshold, after which the number increases more rapidly. The 
threshold coincides with the value at which the distribution of locations becomes bi-modal 
(figure 5.4). This suggests that as favorable locations have been exploited and the extent of 
favorable areas increases due to the expansion of the high pore pressure field, a greater number 
of landslides (many of which overlapping) can be accomodated. This increase in the number of 
predictions is likely to be less rapid if restrictions on landslide overlap are imposed by increasing 
the parameter l of equation 3.7 (see discussion in section 4.3).   
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Figure 5.9. Number of shallow landslide predictions and their mean size under increasing instantaneous vertical 
additions to the water table height h. Number and size increase rapidly until h = 0.55 m, after which the number 
increases less rapidly and the mean size decreases slightly. 

5.3.1.2 Experiment 2: varying p, the uniformly applied instantaneous pressure addition 

Figure 5.6 illustrates the development of potential shallow landsliding in the same steep 
hollows of the CB-MR study area (shown in the previous experiment) as effective instantaneous 
precipitation increases, under the purely vertical hydrological model. Under this model, 
topography does not control the spatial distribution of the water table heights (they are uniform, 
and uniformly increased during the experiment), but still exerts a control on the saturation ratio 
h/z due the spatially varying soil depth. With very little precipitation, failures can only occur in 
steep locations where there is sufficient soil to overcome the resistive forces provided by root 
strength, but not so thick that the saturation ratio becomes too low. These areas are of limited 
extent, and as a result landslide size is very small (figure 5.6a). As precipitation increases the 
extent of these areas also increases and landslides can become larger in size (figure 5.6b-c). In 
contrast to the laterally-dominated scenario, they extend up and out of the hollow axis (figure 
5.6d), where relative saturation is highest because of the thinner soils. At the same time new 
unstable areas develop where relative saturation is high but soils are sufficiently thick to 
overcome cohesive forces (figure 5.6e). In contrast to the topographically steered experiment, 
these new areas are out of the hollow axis and not in the thickest parts of the hollow as there h/z 
is too low. These trends continue as the saturation field expands with increasing precipitation 
(figures 5.6f), but in figure 5.6g size generally reaches a limit due to the characteristics of the 
hollow (e.g. soil thickness and slope), after which only smaller (and often overlapping) 
landslides are added (figure 5.6h-i). Only at these later stages does the significant increase of 
water table height allow for landslides to develop in thicker parts of the hollows. As in the 



103 
 

laterally-dominated case, landslides become more unstable with increasing precipitation, but are 
less numerous and generally exhibit a larger size than with the lateral model. 

Figure 5.10. Shallow landslide predictions in two steep hollows of the CB-MR study area under increasing relative 
instantaneous vertical to lateral water addition, varied through the parameter p/q: a) log(q/K) = -2.8, p = 27 mm, p/q 
= 0.1; b) log(q/K) = -2.9, p = 50 mm, p/q = 0.39; c) log(q/K) = -3.0, p = 67 mm, p/q = 0.75; d) log(q/K) = -3.1, p = 
81 mm, p/q = 1.2;  e) log(q/K) = -3.2, p = 92 mm, p/q = 1.77; f) log(q/K) = -3.3, p = 100 mm, p/q = 2.48 ; g) 
log(q/K) = -3.4, p = 107 mm, p/q = 3.39;  h) log(q/K) = -3.5, p = 113 mm, p/q = 4.52; i) log(q/K) = -3.6, p = 117 
mm, p/q = 5.95; j) log(q/K) = -3.7, p = 121 mm, p/q = 7.75; k) log(q/K) = -3.8, p = 123 mm, p/q = 10.02. When 
lateral contribution dominates landslides are predicted both upslope and downslope in the hollow; when vertical 
contribution dominates landslides are only predicted upslope in the hollow and exhibit a generally larger size. 

The size distributions shown in figure 5.7 confirm the previous observations: after an initial 
moderate increase in size, increasing addition of water table height dramatically shifts the 
distributions to the right (larger size). However, a size limit is reached when h = 0.55 m, after 
which the addition of smaller landslides to the distributions results in a slight left shift. 
Intermediate distributions (h = 0.3 and 0.35 m) are statistically similar (i.e. they pass the K-S 
test) to the observed distribution.  
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Figure 5.11. Size distributions predicted under increasing relative instantaneous vertical to lateral addition of water, 
varied through the parameter p/q. The increase of relative vertical contribution results in a slight size increase, 
mostly through a fatter tail on the right end of the distribution. 

The topographic index distributions, shown in figure 5.8, confirm that as the water table is 
uniformly raised, there is a slight right shift (towards greater drainage area). This shift is 
however very small and the topographic index values remain in the range < 100 m. Figure 5.9 
shows the number and mean sizeof shallow landslide predictions under increasing instantaneous 
vertical additions to the water table height h. Both number and size increase rapidly until h = 
0.55 m, after which the number increases less rapidly and the mean size decreases slightly. 

5.3.1.3 Experiment 3: lateral and vertical flow pore pressure generation 

Figure 5.10 illustrates the development of potential shallow landsliding in the same steep 
hollows of the CB-MR study area as total precipitation (i.e. the sum of p and q) is held constant, 
but the relative contribution of vertical to lateral flow increases, under the mixed hydrological 
model. As the vertical contribution increases, the number of landslides decreases; they get larger, 
and move up the hollow axis (figures 5.10df), where slopes are higher and the soils are a little 
thinner and have higher relative saturation.  This is consistent with the observations from the 
previous two end-member scenarios. An interesting effect can be seen in the northern most 
hollow: under laterally-dominated conditions a landslide is predicted in the same location as the 
observed landslide; as the vertical contribution increases (and the lateral decreases), the predicted 
landslide becomes more stable until it is no longer predicted to fail; as the vertical contribution 
becomes dominant, a landslide of bigger size and extending further upslope reappears. Similar 
behavior can be observed in other locations. This interpreted to be a result of the interplay of the 
soil depth and the changing relative saturation. 
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The size and topographic index distributions, shown in figure 5.11 and 5.12, respectively, 
confirm these trends: as the relative vertical contribution increases the size distribution has a 
modest increase (although the mode stays essentially constant, while the tails extend), and the 
topographic index distribution shifts from high area to high slope. The size increase and 
reduction in number of predicted landslides as the relative vertical contribution is increased can 
be also seen in figure 5.13.  

 
Figure 5.12. Topographic index distributions predicted under increasing relative vertical to lateral instantaneous 
addition of water, varied through the parameter p/q: the relative vertical contribution increase shifts the distributions 
from locations with high drainage area to locations with high slope. 

5.3.2 Vegetation controls: Experiment 4 

In all the experiments presented in this chapter, the root strength field parameters (Cr0 and j, 
equations 2.18 – 2.20) are held spatially constant. In the reference case scenario, the values 
measured at the CB-1 were adopted (table 4.2). The resulting spatially varying lateral and basal 
root reinforcement values are shown in figure 4.9. In this experiment the effect of increased or 
decreased root strength on the characteristic size and location of shallow landslides at CB-MR is 
examined. Here root cohesion values ranging from half to double those used the reference case 
scenario (Cr0 = 21,666 Pa, and j = 4.96 m-1) are explored. For the CB-1 landslide, which has an 
average depth of almost 1 m, this range corresponds to lateral root strength values of 1,100 Pa to 
16,500 Pa and basal root strength values of 1 Pa to 4,000 Pa. This range was chosen to reflect 
the values reported by [Schmidt et al., 2001] for industrial forests in the Oregon Coast Range.  

Because of the exponential decay function used to represent the decay of root strength with 
depth, the total root cohesion acting on some soil depth can be changed by varying the initial 
value Cr0, or by changing the shape factor j which controls the rate of decay with depth. Figure 
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5.14 illustrates how both approaches produce fundamentally similar results. In figures 5.14 (a-b), 
j is held constant (at the reference case value), while Cr0 is halved and doubled, respectively. In 
figures 5.14 (c-d), Cr0 is held constant (at the reference case value), while j is doubled and halved 
(doubling j reduces cohesion), respectively. In both approaches one can observe that reducing 
root cohesion (figures 5.14a and 5.14c) generally results in an increased number of landslides, 
and a general reduction of their size. Conversely, an increase in root cohesion (figures 5.14 b and 
d) generally results in decreased number of landslides, and a general increase of their size. The 
same trends can be observed in the detail of figure 5.15. Here root cohesion is increased from left 
to right via the parameter Cr0, and from top to bottom via the parameter j (no landslides were 
predicted in this location when j was halved). One can also observe a greater abundance of 
landslides upslope in the hollows when root cohesion is reduced.  

 
Figure 5.13. Number of shallow landslide predictions and their mean size under increasing relative vertical to lateral 
instantaneous addition of water, varied through the parameter p/q: the relative vertical contribution increase results 
in a slight size increase and a decline in the number of predicted landslides. 

Changes in characteristic location and size are evident in the PDF’s of distributions resulting 
from this experiment.  Figures 5.16, 5.18, and 5.21 show size distributions resulting from varying 
Cr0, for j = 9.92, 4.96, and 2.48 m-1, respectively. We can observe that sizes are generally larger 
with increased root strength (higher Cr0 or lower j), and that this effect is more prominent with a 
lower value of j (the size distribution becomes tighter).  The topographic index distributions, 
shown in figures 5.17, 5.20, and 5.22, illustrate that as root strength increases predicted locations 
are preferentially shifted to higher topographic index values (more prominently when j is lower). 
The general trend of increased size and decreased abundance with increased root strength is 
summarized in figure 5.23, where it is also observed that size increase is most significant with 
higher values of j and reduction in number is most significant with lower values of j. 
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5.3.3 Material properties controls: Experiment 5 

In this experiment the effect of increased or decreased shear strength of the soil on the 
characteristic size and location of shallow landslides at CB-MR is examined. This is performed 
by varying the friction angle parameter φ from 35° to 45°. Figure 5.24 shows the effect of the 
increase in friction angle, with all other parameters being held constant, on predicted landslides. 
It can be observed that as friction is increased, the number of predicted landslides is reduced; 
their size tends to decrease, and the pattern of stabilization seems to initiate upslope, with 
predictions preferentially found downslope in the case of high friction. 

Figure 5.14. Shallow landslide predictions resulting 
from changes in the root strength parameters, Cr0 and 
j, relative to the reference case: a) Cr0 = 10,833 Pa, j 
= 4.96 m-1; b) Cr0 = 43,332 Pa, j = 4.96 m-1; c) Cr0 = 
21,666 Pa, j = 9.92 m-1; d) Cr0 = 21,666 Pa, j = 2.48 
m-1. Root cohesion can be diminished by reducing Cr0 

or by increasing j (a and c) and augmented by 
increasing Cr0 or by reducing j (b and d). Reduced 
cohesion generally results in more, smaller predicted 
landslides. 
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Figure 5.16. Size distributions resulting from increasing Cr0 from 10,833 Pa to 43,332 Pa, for a fixed value of j = 
9.92 m-1. The distribution shifts to the right (larger size) with increasing root strength. 

Figure 5.15. Shallow landslide predictions for the previously shown CB-MR 
hollows under increasing root strength. Root cohesion is increasing from left to 
right and from top to bottom: a) Cr0 = 10,833 Pa, j = 9.92 m-1; b) Cr0 = 21,666 
Pa, j = 9.92  m-1; c) Cr0 = 43,332 Pa, j = 9.92 m-1; d) Cr0 = 10,833 Pa, j = 4.96 
m-1; e) Cr0 = 21,666 Pa, j = 4.96   m-1; f) Cr0 = 43,332 Pa, j = 4.96 m-1; no 
landslides were predicted in this area when  j = 2.48 m-1. Increasing cohesion 
results in fewer and generally larger predicted landslides. 
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Figure 5.17. Topographic index distributions resulting from increasing Cr0 from 10,833 Pa to 43,332 Pa, for a fixed 
value of j = 9.92 m-1. The distribution shifts to the right (higher drainage area) with increasing root strength. 

 
Figure 5.18. Size distributions resulting from increasing Cr0 from 10,833 Pa to 43,332 Pa, for a fixed value of j = 
4.96 m-1. The distribution shifts to the right (larger size) with increasing root strength. 
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Figure 5.19. Shallow landslide pattern 
illustrating the variability of location and size 
emerging from an anthropometric landscape. 
Image: “Monique”, Y. Klein, 1960, 
www.yveskleinarchives.org 
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Figure 5.20. Topographic index distributions resulting from increasing Cr0 from 10,833 Pa to 43,332 Pa, for a fixed 
value of j = 4.96 m-1. The distribution shifts to the right (higher drainage area) with increasing root strength. 

 
Figure 5.21. Size distributions resulting from increasing Cr0 from 10,833 Pa to 43,332 Pa, for a fixed value of j = 
2.48 m-1. The distribution shifts to the right (larger size) with increasing root strength. Only two landslides are 
predicted for the entire CB-MR study area in the case with highest root strength (Cr0 = 43,332 Pa,  j = 2.48 m-1). 
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Figure 5.22. Topographic index distributions resulting from increasing Cr0 from 10,833 Pa to 43,332 Pa, for a fixed 
value of j = 2.48 m-1. The distribution shifts to the right (higher drainage area) with increasing root strength, with the 
exception of the case with highest root strength (Cr0 = 43,332 Pa,  j = 2.48 m-1), in which only 2 landslides are 
predicted for the entire CB-MR study area. 

 
Figure 5.23. Number of shallow landslides and their mean size under increasing root strength, varied through the 
parameter Cr0, for three values of the parameter j. Increasing root strength results in a landslide size increase and a 
reduction in the number of predicted landslides. Size increase is most significant when root cohesion declines more 
rapidly with depth (j = 9.92 m-1). Reduction in number is most significant when root cohesion declines less rapidly 
with depth (j = 2.48 m-1). 
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These observations are confirmed by the trends emerging from the PDF’s of distributions 
resulting from this experiment.  Figure 5.25 shows the size distributions obtained over a range of 
φ values. The distributions exhibit a moderate shift to the left (towards smaller size) when 
friction is increased. The topographic index distributions, shown in figure 5.26 illustrate that 
when friction increases predicted locations are preferentially shifted to higher topographic index 
values, as in the root strength experiments. The general trend of slightly decreased size and 
increased abundance with increased friction is summarized in figure 5.27. 

5.3.4 Soil depth controls: Experiments 6 - 7 

Soil depth has an important role in the stability of hillslopes as the soil mass contributes to 
both the driving and normal forces, and influences the effective magnitude of root cohesion, 
friction, and earth pressure. In this group of experiments the effect of increased or decreased soil 
depth on the characteristic size and location of shallow landslides at CB-MR is examined.  

Figure 5.24. Shallow landslide predictions resulting 
from changes in the friction angle relative to the 
reference case. a) φ = 35°; b) φ = 38°; c) φ = 42°; d) φ 
= 45°. Increased friction angle generally results in less 
and smaller predicted landslides. Upslope areas are 
preferentially stabilized. 
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Figure 5.25. Size distributions resulting from increasing φ from 35° to 45°. The distribution shifts to the left (smaller 
size) with increasing friction. 

 
Figure 5.26. Topographic index distributions resulting from increasing φ from 35° to 45°. The distribution shifts to 
the right (higher drainage area) with increasing friction. 
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Figure 5.27. Number of shallow landslides and their mean size under increasing friction angle φ. The increase 
results in a slight size decrease and a decline in the number of predicted landslides. 

The results of the first experiment, in which soil depth is varied proportionally relative to the 
reference case modeled values (see sections 2.2.3 and 4.4.1), are shown in figure 5.28. Almost no 
landslides are predicted when soil depth is greatly reduced. Hence, even though h/z is increased 
the dominant contribution of root strength leads to increased stability. As soil depth is increased, 
the number of predicted landslides and their size increases (figures 5.28a-b). As soil depth is 
further increased, the number of landslides remains roughly constant, and their size generally 
decreases (figures 5.28c-d). The size distributions resulting from this experiment are shown in 
figure 5.29, illustrating the increase in predicted landslide size followed by a decrease once soil 
depth surpasses the reference case modeled values. As soil depth is increased a shift of predicted 
preferential landslide locations can also be observed: when soil depth is reduced landslides are 
preferentially in locations with high topographic index and when soil depth is increased the 
moved to locations with low topographic index (figure 5.30). Figure 5.31 shows how the number 
and the size of predicted landslides peaks, perhaps not coincidentally, when soil thickness is the 
same as the values predicted by the soil depth model. 

In the second experiment (experiment 7) soil depth is varied uniformly across the CB-MR 
study area. It is important to note that for the reference case values of root strength, friction angle 
and log(q/K) no landslides are predicted over the entire area when soil depths of 0.25 m and 0.5 
m (figure 5.35), due to the strong effect of root cohesion in thin soils. Figure 5.32 (a-c) shows the 
landslide predictions for uniform soil depth values of 1, 2, and 3m, respectively. There one can 
observe an opposite trend from the previous experiment as the number of predicted landslides 
initially decreases and then increases. In fact, figure 5.35 reveals a more complex pattern: after 
soils are thick enough for landslides to occur (more than 0. 5 m in this experiment, after which 
basal cohesion drops below 1 kPa) there is an increase of predicted landslides; this is followed 
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by a decrease when depths are between 1.25 and 2.25 m; as soil depths continue to increase, 
predicted landslides become more abundant but the trend ceases when soils exceed 6 m. The 
average size generally decreases, but does so more rapidly after soil depths of 2.25 m; however, 
this trend is reversed once depths exceed 5 m (figure 5.35). This complex trend (quite different 
from the proportional soil depth experiment) is also observed in the size distributions, shown in 
figure 5.33.  

 

The topographic index distribution instead shows a similar trend as in the proportional soil 
depth experiment: when soils are thin landslides are preferentially predicted in locations with 
high topographic index and when soils are thick they are preferentially predicted in low 
topographic index locations (figure 5.34). There is a slight difference however: this trend stops 
when soils exceed 3.5 m, in which case a very slight increase in the topographic index is 
observed (figure 5.34). 

Figure 5.28. Shallow landslide predictions resulting 
from changing the soil depth proportionately from the 
reference case. a) z = 1/4 reference case; b) z = 1/2 
reference case; c) z = 3/2 reference case; d) z = 2 
reference case. The increase initially results in more 
and larger predicted landslides (a-b); then the number 
remains constant and size decreases (c-d). 
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Figure 5.29. Size distributions resulting from proportionally varying soil depth from ¼ to twice the reference case 
modeled values. Predicted size increases until depths reach the reference case modeled values, then decreases. 

5.3.5 Topographic controls: Experiment 8 

In the final experiment of this chapter, the effect of varying the degree of roughness and 
dissection of the landscape is explored. The topography is smoothed using a Gaussian filter of 
size varying from 0 to 110 m. Soil depth is re-calculated after each smoothing iteration as a 
different surface is produced by each filter size. Gaussian smoothing reduces both noise and 
detail, as can be seen in figure 5.36. Initially the structure of the topography is maintained but the 
fine-scale variations are removed (figure 5.36b). As the filter size is increased, adjacent hollows 
merge, and the topography becomes less dissected (figure 5.36c). With large filter size, the ridge 
and valley topography is progressively erased, resulting in a very smooth landscape with few 
large valleys, and generally lower slopes (figure 5.36d).  

Figure 5.36 shows the effect of smoothing the landscape on predicted landslides. As the fine-
scale variations are removed, predicted landslides become larger and more abundant (figure 
5.36b). This trend can still be observed in figure 5.36c, but after the topography becomes less 
dissected and slopes decrease the number of landslides diminishes (figure 5.36d). Predicted 
landslide size continues to increase throughout the experiment as the landscape becomes 
progressively more uniform (figure 5.36a-d). 

The increase of predicted landslide size is evident in the PDF’s shown in figure 5.37: as the 
filter size increases and the landscape becomes more uniform the distributions shift to the right 
(larger size). The PDF’s of the predicted topographic index are shown in figure 5.38. The mode 
of the distributions remains essentially constant but the range diminishes significantly: very few 
high-slope, low-area locations exist in the smoothed landscape, and locations with high drainage 
area are too flat to fail. Figure 5.39 shows how the average predicted landslide size increases 
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throughout the experiment, but also illustrates a more complex trend in landslide abundance: 
predicted landslides increase in number until the filter size reaches 30 m, illustrating the effect of 
removing only the fine-scale variations from the landscape; with larger filter sizes landslide 
number generally decreases although a slight increase is observed when the filter size is between 
70 and 90 m.  

 
Figure 5.30. Topographic index distributions resulting from proportionally varying soil depth from ¼ to twice the 
reference case modeled values. As soil depth is increased, more favorable upslope areas (higher slope, lower 
drainage area) develop. 

5.3.6 Summary of results  

Table 5.2 summarizes the general trends in characteristic size, location, and abundance of 
predicted shallow landslides resulting from the experiments presented in this chapter. Size 
increases with precipitation (both p and q), root strength, and landscape smoothness increase; it 
decreases when friction angle or uniform soil depth increase. Location shifts towards higher 
drainage area when root strength or friction angle are increased, and towards higher slopes when 
soil depth is increased. Landslides are generally more abundant when precipitation or soil depth 
is increased and less abundant when root strength or friction is increased. More complex trends 
emerge in the other experiments: landslide size first increases then decreases as soil depth are 
proportionately varied (with the peak in size corresponding to the values produced by the soil 
depth model); with increasing precipitation, under the shallow subsurface steady-state model, 
landslides are initially found in locations with greater slopes, then in locations with high drainage 
area, and as both upslope and downslope locations expand towards each other topographic 
indices in the middle of the range are preferred; increasingly sooth realizations of the landscape 
initially lead to an increase of the number of predicted landslides, followed by a general decline.  
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Figure 5.31. Number of shallow landslides and their mean size resulting from proportionally varying soil depth from 
¼ to twice the reference case modeled values. The increase results first in a size increase (soil depth less than 
reference case), then decrease (soil depth greater than reference case); the number of predicted landslides increases 
until depths reach the reference case values, then remains roughly constant.  

These results illustrate some opposing trends: as would be expected, increasing precipitation 
or decreasing root strength result in a greater number of predicted landslides. However in the 
former case an increase in characteristic size is observed, while in the latter characteristic size is 
reduced. This is not the case, however, if strength is decreased by reducing friction: in this case 
predicted landslides are more abundant, but also exhibit a larger characteristic size. 

 

Landslides mapped during the ten year of research at CB-MR, are used to evaluate the 
performance of the procedure in the experiments presented in this chapter. Table 5.3 presents the 
parameter choices resulting in the highest F-score and MCC measures (see section 3.4.5.2 for 
definitions). For the parameters that were best constrained in the field (root strength, and friction 
angle), the field measurements result in the best performance with respect to the observations. 
This suggests that field data can be used to calibrate less constrained parameters. 

Figure 5.32. Shallow landslide predictions resulting from uniformly increasing soil 
depth. a) z = 1 m; b) z = 2 m; c) z = 3m. In these examples the increase generally 
results in smaller predicted landslides. Their number first decreases then increases. 
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Figure 5.33. Size distributions resulting uniformly from uniformly increasing soil depth from 0.25 m to 8 m. 
Predicted size decreases drastically once soil is thicker than the rooting depth assumed by the exponential root 
strength decay function. When soils are extremely thick, strength is added by earth pressure and size can increase 
again. 

5.4 Discussion 
In this chapter we performed eight experiments in which properties controlling slope stability 

were systematically varied. Topographic induced variation in soil depth and pore pressure leads 
to the constant slope stability properties producing spatial structure in instability. As these 
properties vary across the landscape, the spatial distribution of areas favorable to landsliding 
changes in the landscape. This in turn affects characteristic size and location of discrete shallow 
landslides predicted by our procedure (represented by a PDF of size and topographic index, 
respectively). Varying the controlling stability properties caused landslide distributions to sample 
different parts of the landscape and thus to shift the PDF systematically. Four groups of 
experiments were performed with a focus on hydrological inputs, soil strength (through friction 
and root cohesion), soil depth, and topographic roughness. The parameters used for these 
experiments are listed in table 5.1, and a brief summary of results is given in table 5.2.  

In the first group of experiments (experiments 1-3), hydrological “quickly-changing” 
parameters are varied while the other “slowly-changing” characteristics of the landscape (root 
strength, material strength, friction angle, soil depth) are held constant. In the first experiment it 
was assumed that the development of water table heights across the landscape is the result of 
topographically steered subsurface flow, resulting in higher water levels in convergent areas. 
Such a model is intended to represent impact of precipitation on landsliding over the long time 
scale (days to weeks). In the second experiment it was instead assumed that no lateral 
redistribution of water occurs, resulting in uniform water table heights. This model is chosen as 
an example of short time scale (minutes to days) effects. In the third experiment the sum of the 
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effective steady-state precipitation q and the uniformly applied instantaneous pressure addition p 
was held constant, and the relative contribution of vertical to lateral contributions to the water 
table was explored. 

 
Figure 5.34. Topographic index distributions resulting uniformly from uniformly increasing soil depth from 0.25 m 
to 8 m. As soil depth is increased, more favorable upslope areas (higher slope, lower drainage area) develop. 

 
Figure 5.35. Number of shallow landslides and their mean size resulting from uniformly increasing soil depth from 
0.25 m to 8 m. No landslides are predicted for depth less than 0.75 m; a complex pattern emerges: the number of 
predicted landslides increases until z = 1.25 m, then decreases until z = 2.25 m; at this point the number increases 
again until z = 6 m, after which a slight decrease is observed. Predicted landslide size decreases as soil depth 
increases to 5 m (and does so more rapidly when 2 m < z > 2.75 m), then increases again at a moderate rate. 
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As would be expected, increasing precipitation results in an increased number of predicted 
landslides, regardless of the hydrological model adopted (figures 5.5 and 5.9). More locations 
having a higher relative saturation ratio (h/z) results in more predicted landslides. Preferential 
location of landslides is affected by the different (and over-simplified) hydrological processes: 
while with low precipitation landslides can only occur in steep areas, with increasing 
precipitation the topographic index distributions take a very different form depending on whether 
lateral redistribution or vertical delivery of water dominate.  In the former case, the saturated 
field expands outward from convergent areas where subsurface flow concentrates (figure 4.10), 
while in the latter case it expands outward from steep divergent areas where soils are thinnest 
(figure 4.11). 

 

Figure 5.36. Shallow landslide predictions resulting 
from smoothing the landscape with a Gaussian filter 
of varying size. a) filter size = 0 m; b) filter size = 10 
m; c) filter size = 30 m; d) filter size = 90 m. The 
increase initially results in more and larger predicted 
landslides (a-b); then the number decreases while size 
increases (c-d). 
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Figure 5.37. Size distributions resulting from progressive smoothing of the landscape using a Gaussian filter of size 
from 0 m to 110 m. As the landscape is smoothed (and slopes decrease) the distribution shifts to the right (larger 
size). 

Under the lateral model and with relatively moderate precipitation (q), the distribution is bi-
modal with landslides occurring in areas of high slope or high drainage area (figure 5.4). As 
precipitation further increases the landslides farthest upslope can only expand down the hollow 
axis where subsurface flow concentrates and relative saturation is higher, and the landslides 
farthest down the hollow axis can only expand upslope as slope is insufficient below. As a result, 
in the limit the topographic index assumes a mode which is in the middle of the range (figure 
5.4). Perhaps not coincidentally, this limit case coincides with the topographic index distribution 
derived from the observed landslide dataset. In contrast, when vertical delivery of precipitation 
(p) to the water table dominates, the downslope expansion of landslides is strongly limited by 
thickening soils which decrease relative saturation. As a result the topographic index distribution 
changes less than in the case of lateral redistribution with increasing precipitation (figure 5.8). As 
with the number of predicted landslides, their size also increases independently of the 
hydrological model used in the experiments (figures 5.3 and 5.7). This is because as the 
relatively saturated field expands the extent of areas favorable to landsliding also expands, and in 
the absence of other limiting factors a larger size generally results in increased instability. Larger 
sizes are generally produced in the vertically-dominated experiments than in the latererally-
dominated ones, as in this landscape the relative saturation patterns driven by p extend farther up 
and outside the hollow axis, resulting in a wider unstable area, particularly at the heads of the 
hollows (figure 5.6). 
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Figure 5.38. Topographic index distributions resulting from progressive smoothing of the landscape using a 
Gaussian filter of size from 0 m to 110 m. As the landscape is smoothed (and slopes decrease) the distribution 
tightens. 

The increase in predicted landslide size resulting from an increase in precipitation (p or q) in 
these experiments may seem inconsistent with the results reported by Casadei et al. [2003b] who 
concluded that as the soil gets wetter, critical landslide size decreases. In fact, the synthetic 
experiments presented in chapter three show a very similar result: the wetter landslides in figures 
3.14 and 3.15 are indeed the smallest. The difference lies in the fact that Casadei et al. [2003b] 
focus on the critical size (defined as the minimum size needed for the factor of safety to go 
below a value of 1), and do not consider that there could be a larger size with an even lower 
factor of safety. In contrast, here the most probable size (defined as the most likely as indicated 
by a probability density function) is reported. Although the non-homogeneous landscape 
properties of these experiments do not allow a direct comparison with the results of Casadei et al. 
[2003b], the fact that an expanded high-pore pressure field can cause landslides that are larger 
than the critical size (but less stable) is not inconsistent with their results.  

In the next set of experiments (experiments 4-5), the effect of increased strength of the soils 
was explored. In experiment 4 the increased strength derives from root reinforcement, while in 
experiment 5 it derives from the shear strength of the soils (as expressed through the friction 
angle). Root reinforcement is modeled here by an exponential function representing the decay of 
root strength with depth in the soil profile (equations 2.18 – 2.20). Thus, root strength can be 
increased by increasing the initial value Cr0 or by decreasing the shape factor j which controls 
how quickly the strength declines with depth. In both cases the number of predicted landslides 
decreases with increased root strength, although the reduction is most significant when root 
cohesion declines less rapidly with depth (figure 5.23). This result is consistent with the Reneau 
and Dietrich [1987] and Casadei et al. [2003] predictions that critical width increases with root 
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strength (they could not estimate size because they could not compute both width and length). In 
this case the distinction between critical and probable size is unnecessary: if the critical size 
increases, the probable size must increase as well.  

 
Figure 5.39. Number of shallow landslides and their mean size resulting from progressive smoothing of the 

landscape using a Gaussian filter of size from 0 m to 110 m. While the predicted size increases continuously, the 
number of predicted landslides reaches a peak when the filter size reaches 30 m, then decreases. 

The number of landslides is also reduced when the friction angle of the soil is increased 
(figure 5.27). When there is lower strength, locally favorable conditions are more numerous, 
resulting in an increase in the number of landslides. In general, when strength is increased (i.e. 
increased root strength or shear strength), landslides are preferentially found in locations having 
a higher topographic index (figures 5.17, 5.20, 5.22, 5.26) where higher saturation ratios but also 
thicker soils are found. However, the size distributions show opposite trends: increased root 
strength produces larger landslides (figures 5.16, 5.18, 5.20), with the size increase being most 
significant when root cohesion declines more rapidly with depth (figure 5.23), while increased 
friction angle produces slightly smaller landslides (figure 5.25). This is somewhat counter-
intuitive, as the expectation is that increased strength can only be overcome by increased driving 
force (i.e. larger size). The difference is perhaps due to the fact that while friction always acts on 
all the boundaries, root strength does not contribute to the basal resistance  once soils are 
sufficiently thick (i.e. > 1 m). As the ratio of volume to perimeter area grows faster than the ratio 
of volume to surface area (i.e. perimeter area plus basal area), a larger landslide size is more 
beneficial when increased strength is a result of increased root reinforcement (acting mainly on 
the perimeter) rather than increased friction angle (acting on all the margins). In contrast, if root 
strength were significantly reduced, increasing the friction angle should result in larger landslide 
size.  While the size of landslides is influenced by the friction angle, the size is still set by the 
extent of areas that with sufficient pore pressure and soil depth (for a given root strength) to 



126 
 

favor instability.  The predicted decrease in landslide size with increasing friction angle shows 
that with increasing friction angle the areas of sufficiently high pore pressure and reduced root 
strength due to thick soils becomes progressively more restricted to smaller areas on the 
landscape.  Hence, the root strength value mediated by soil depth and pore pressure strongly 
controls the potential extent of instability, while the friction angle sets the extent to which the 
potential instability is sampled.   

 
Table 5.2. General trends in the size, location, and abundance of shallow landslides predicted in the experiments 
presented in chapter 5. Size increases when precipitation, root strength, and landscape smoothness increase; it 
decreases when friction angle or uniform soil depth increase. Location shifts towards higher drainage area when root 
strength or friction angle is increased and towards higher slopes when soil depth is increased. Landslides are 
generally more abundant when precipitation or soil depth is increased and less abundant when root strength or 
friction is increased. See text for a description of the other (more complex) trends. 

In the third group of experiments (experiments 6-7), soil depth is varied across the landscape. 
In experiment 6, this is done by taking the spatially varying soil depth produced by the model 
described in section 2.2.3 and multiplying them by a coefficient ranging from 0.25 to 2 (soil 
depths thus increasing from ¼ of the modeled values to twice the model values). Instead in 
experiment 7, the soil is increased uniformly in space from 0.25 m to 8 m. In both cases the 
number of predicted landslides generally increases with increased soil depth (figures 5.31 and 
5.35). In general this is because locations with sufficiently high slope but initially thin soil 
(where the effect of root cohesion is strong), become progressively less stable as soils are 
thickened (driving force increases and root strength is diminished). However, close observation 
reveals that this trend is more complex across a natural landscape with varying topogrpahy. In 
the proportional case, the number increases rapidly until soil depths reach the modeled values, 
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after which it essentially stays constant (figure 5.31). This implies that as new favorable 
locations are added due to thickening, other previously unstable regions are stabilized. The two 
mechanisms responsible for stabilizing these locations are earth pressure (which increases as soil 
thicken), and relative saturation (which decreases with soil thickness because the water table 
height is unchanged). These results support the concept of a “window of opportunity” for failure, 
suggested by Dietrich et al., [2008]: soils are stabilized by root cohesion when thin, and if they 
become too thick earth pressure forces can also prevent failure.  

 
Table 5.3. Best-performing parameters for the experiments presented in chapter 5. Performance is assessed using the 
F-score and MCC precision/recall measures in comparison to the observed landslide dataset. 

In the experiment in which soil is instead increased uniformly across the landscape, no 
landslides are predicted until a minimum depth is reached (figure 5.35). For the chosen 
parameterization this depth (between 0.5 and 0.75 m) corresponds to the depth at which root 
strength contribution to basal resistance is no longer significant (< 1 kPa). Then for intermediate 
depths the competing effect of decreasing root strength effects due to increasing soil depth and 
decreasing relative saturation produce first an increase then a decrease in the number of predicted 
landslides. After soils are thick enough to effectively eliminate root cohesion from the balance of 
forces the decrease in relative saturation dominates and the number of landslides increases. 
When soils are extremely thick, the stabilizing effect of earth pressure becomes important and 
the number of landslides can no longer increase (figure 5.35).  

The preferential location of predicted landslides shifts from high to low topographic index 
locations (from high drainage area to high slope) in both the proportional and the uniform soil 
experiments (figures 5.30 and 5.34). Again this is due to new locations with high slopes 
becoming available when soils are thickened. The difference between the two experiments is that 
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in the case of uniform thick soils unstable locations are almost exclusively in high slope areas, 
while spatially varying soils result in a wider range of locations. The size distributions instead 
display opposite (and complex) trends in the two experiments (figures 5.29 and 5.33). When soil 
is varied proportionally, size and number increase until the depths reach the modeled values 
(figure 5.31), as not only new locations are added but these locations expand. Conversely, further 
thickening of the soils results not only in locations downslope becoming more stable, but they 
also contract in size (as the relative saturation field shrinks and the effect of root strength is 
diminished). When the topographic control on soil depth is removed by the uniform treatment of 
soils (figure 5.35), the trend is reversed: size gets smaller as root cohesion is diminished (and 
does so more rapidly once the basal effects are removed), but strength added by earth pressure 
increases as soils get very thick, forcing size increases again (as with increased root strength, see 
experiment 4). 

In the final group of experiments (experiment 8), the landscape is smoothed with a Gaussian 
filter of increasing size. With no smoothing, topography constrains the number and size of 
locations favorable to landslides.  With modest smoothing (small filter size), only the fine scale 
roughness of the landscape is removed, resulting in an increase in number of predicted landslides 
(figure 5.39). When the filter size becomes sufficiently large, slopes generally decrease in the 
landscape and some hollows are lost entirely, resulting in a reduction in the number of 
predictions (figure 5.39). As slopes decrease and hollows diminish, the topographic index 
distribution tightens: the mode is essentially invariant but fewer locations are available (figure 
5.38). As the landscape is smoothed it also becomes progressively more uniform, and thus more 
similar to the synthetic example presented in section 3.5: under uniform conditions larger size 
means more instability and thus lack of topographically driven constraints results in a larger size 
distribution (figure 5.37). 

Collectively, these experiments illustrate the role of heterogeneity on landslide abundance, 
location, and size. Under uniform conditions larger landslide sizes are favored as they result in 
instability smaller factor of safety. In contrast, when the distributions of properties such as pore 
pressure, root strength, and soil depth vary across the landscape, a richer result is obtained: 
landslides sample different parts of the landscape, exhibiting specific trends in characteristic size, 
location, and abundance as the mean of each of these properties change. As the distribution of 
these landscape properties is mostly determined by topography, it can be concluded that 
topography exerts a first order control on shallow landslides. 

5.5 Conclusion 

To explore the controls on shallow landslide size and location, a sensitivity analysis was 
performed by applying the shallow landslide prediction procedure to the CB-MR study area in 
the Oregon Coast Range to obtain discrete landslide predictions. Rainfall, vegetation, soil, and 
topographic characteristics were systematically varied, resulting in probability density functions 
of predicted landslide size and location (as represented by a topographic index). We find that 
increasing precipitation or soil depth results in an increased number of predicted landslides. In 
contrast, increasing soil strength through root reinforcement or friction angle results in a decrease 
in the number of predicted landslides. Increasing soil depth results in predicted landslides being 
preferentially located in locations with steep slopes, while increasing soil strength results in 
predicted landslides being preferentially located in locations with high drainage area. 
Precipitation affects characteristic landslide location differently: if lateral re-distribution of water 



129 
 

is dominant, landslides are predominantly found in locations with high drainage area; in contrast, 
when vertical infiltration dominates they are predominantly found in areas with steep slopes. 
Predicted characteristic size increases with increased precipitation and with increased root 
strength. However, it decreases when the increased strength results from an increase of the soil 
friction angle. Under uniform soil thickness, characteristic size decreases with increasing soil 
depth. When soil thickness distributions are instead controlled by topography, increasing soil 
depth causes the predicted characteristic landslide size to first increase and then to decrease, after 
a critical value, reflecting the stabilization effect of very thick soils. Our procedure applied to a 
natural landscape demonstrates that as precipitation, root strength, soil depth and friction angle 
are varied, landslides sample different parts of the landscape, producing specific trends in 
characteristic landslide size, location, and abundance. Moreover, as the co-organization of these 
properties is mostly determined by topography, it can be concluded that topography exerts a first 
order control on shallow landslide location and size.  
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Chapter 6 

Future developments and conclusion 
6.1 Introduction 

To address hazards posed by rainfall-triggered shallow landslides, several essential questions 
must be considered. These include questions such as where will landslides occur, when will they 
occur, how big will they be, how fast will they mobilize, and how far will they go [USGS, 2005]. 
The aim of my research has been principally to address the questions of “where” and, most 
importantly, of “how big”. I have presented a slope stability method and an efficient search 
algorithm and combined them to search for least-stable combinations of grid cells, producing 
discrete shallow landslide predictions across a landscape. In order to apply this procedure at the 
regional scale, where required data for the slope stability model are not available, I used sub-
models to estimate their spatial and temporal patterns. These sub-models extract topographic 
attributes, compute the spatial distributions of soils, and estimate the root reinforcement and pore 
pressure fields. A formal framework was defined to evaluate the performance of the procedure, 
based on information retrieval theory. A dataset from a study area in the Oregon Coast Range 
consisting of an instrumental record a rainfall-triggered shallow landslide and a complete 10-year 
inventory of shallow landslides allowed the procedure to be tested using field-measured and 
modeled physical parameters such as hydrological conditions, soil depth, and root strength. This 
procedure was then used in a sensitivity analysis, illustrating the important control of topography 
and the effect of the spatial co-organization of landscape characteristics on shallow landslide size 
and location. We find that the topographically induced structure of properties relevant for 
landsliding (e.g. soil depth and pore pressure) determines the favorable areas that can be 
exploited by rain storms. Varying these controlling properties changes the spatial distribution of 
areas favorable to landsliding in the landscape, resulting in characteristic distributions of 
landslide size and location, as landslides sample different parts of the landscape. For example, 
increased precipitation results in more and bigger landslides, while decreased root strength 
produces more and smaller landslides. 

Many simplifying assumptions were made when modeling the distribution of properties such 
as root strength, soil strength, soil depth, and pore pressure. Although these properties varied 
spatially across the landscape in the experiments performed in this research, the parameters that 
were used in the submodels to predict these properties were spatially and temporally constant. In 
reality few, if any, of these parameters are constant across the landscape. In fact many vary 
significantly both in space and in time. Temporal variations in particular must be captured in 
order to address the question of “when” landslides may occur. Furthermore, it is expected that 
some of these variations may become more significant in the not so distant future, particularly as 
a result of climate and land use changes.  

In this chapter, I will suggest methods to incorporate spatial and temporal variations in 
submodel parameters in the shallow landslide prediction procedure. I will discuss how the 
procedure that has been developed enables us to address questions about the response of the 
landslide regime to climate and land use change and the co-evolution of landslides and the 
landscape. Finally, I will give a summary of the main findings arising from my research 
presented in this dissertation. 
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6.2 Spatial variability of landslide-relevant properties  
Root reinforcement across a landscape is a function of vegetation type, density, and climate 

(e.g. O’Loughlin, [1972]; Hathaway and Penny, [1975]; Burroughs and Thomas, [1977]; 
Schmidt et al., [2001]; Hales et al., [2009]; Roering et al., [2003]; Sidle and Ochiai, [2006]). 
Landslides tend to occur in areas of reduced root strength, at scales ranging from clear-cuts and 
landuse change to localized gaps in forests (e.g. Sidle et al., [1985]; Roering et al., [2003]). In 
order to make site-specific predictions of landslide occurrence the diversity and distribution of 
vegetation in potentially unstable terrain must accounted for [Roering et al., 2003]. Soil and rock 
strength and hydrologic properties, while varying it time much more slowly than vegetation, are 
nonetheless not uniform, affecting slope stability as a result of localized changes in strength (e.g. 
Griffiths and Fenton, [1999]; Ebel et al., [2007a,b]). 

In cases where there is some understanding of the dominant processes causing this 
variability, one can attempt to reproduce the observed spatial variability by modeling those 
processes in a stochastic framework. For example, Dietrich et al. [2008] converted the 
exponential soil production function [Heimsath et al., 2001] to a probability distribution that was 
sampled according to the recurrence interval of biotic disturbances such as animal burrowing or 
tree throw. This resulted in a large local variability of soil depth, even on hillslopes of constant 
curvature.  

Under the assumption that root strength variability over time is principally due to vegetation 
decay and regrowth processes, Sidle [1991; 1992] modeled the effects of this temporal variability 
on slope stability. In this exercise the spatial structure of this variability was not considered. 
Hales et al. [2009] proposed that the spatial variability of tensile strength provided by roots was 
related to topographically controlled differences in soil water potential. They introduced further 
variability by adding random root cohesion values to each pixel from a uniform distribution 
constrained by observed mean root cohesion values. Their method introduced  topographically-
controlled patchiness to the root strength field; however, at the fine-scale root strength variations 
remain uncorrelated. To address the fine-scale structure of the root strength field, Roering et al. 
[2003] proposed a geometrical method to estimate root network contribution from mapping of 
size, species, condition, and spacing of local trees. They suggest that their methodology could be 
combined with remote sensing techniques to quantify the spatial distribution of root strength in 
forested terrain. Techniques exist to determine individual tree locations from LiDAR data (e.g. 
Lee et al., [2010]; Li et al., [2012]), however these are yet to be applied in the context of slope 
stability. 

In absence of such detailed data, regional-scale estimates of the length scale over which 
properties such as root strength are spatially correlated can be used. In section 2.25 I defined a 
framework that accounts for the magnitude of variability and a spatial correlation length. In this 
framework, a random grid is sampled from a Gaussian distribution with mean μ and standard 
deviation σ. A spatial correlation length is obtained by repeatedly convolving the random 
Gaussian field with a two-dimensional symmetric Gaussian low-pass filter for a  number of 
iterations n.  

Figure 6.1 (a-d) shows maps of lateral root strength obtained with a Cr0 (the maximum root 
cohesion value at the surface) mean value of 21,666 Pa, standard deviation equal to the mean, 
and number of iterations 10, 100, 500, and 1000, respectively. The correlation length increases 
with the square root of the number of iterations. For a pixel size of 2 m, these correspond to 
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lengths of approximately 6, 20, 45, and 63 m. These lengths capture the spatial scale of 
variability due to tree spacing, and characteristics, reported in this region [Roering et al., 2003]. 
For simplicity, the shape factor and j (m-1) is held constant in this experiment and only Cr0 is 
varied. In contrast to the example shown in figure 2.7, here the spatial structure of root strength 
is mediated by the topographically controlled soil depth. As a result the pattern remains generally 
similar to that shown in the reference scenario (figure 4.9b). Increasing the correlation length 
(i.e. increasing n) creates slightly larger patches of similar root strength. In the limit, further 
increasing n would ultimately remove the randomized patchiness, resulting in the 
topographically mediated root strength of figure 4.9b.  

Figure 6.2 shows the discrete landslide predictions obtained by applying the landslide 
prediction procedure to these four scenarios. The spatial pattern of predicted landslides is similar 
to those generated in the reference case scenario (figure 5.1), as it is still topographically 
controlled by the spatial distribution of soil depth and pore pressure, but the characteristic 
landslide size decreases. 

The PDFs of size distributions shown in figure 6.3 illustrate how introducing local variations 
significantly reduces landslide size. However, with increasing number of iterations (and thus of 
the correlation length), the size distribution slightly shifts to the right (towards larger size) as 
these variations become more smooth as a result of increased Gaussian filtering. This effect is 
minor, however, as the pattern is mostly controlled by the initial patchiness of root strength. 
Introducing fine scale local variations in root strength increases the probability that a patch of a 
given size will include an area of high root strength. At the same time, areas of continuous low 
root strength susceptible to failure become smaller. As a result, increasing variability reduces 
landslide size. This mechanism is also responsible for the initial reduction in the number of 
landslides caused by introduced variability (figure 6.5). The number of predicted landslides 
marginally increases as the correlation length increases (figure 6.5). 

The introduction of patchiness in the root strength field also causes slight changes in the 
topographic index PDFs (figure 6.4). While the mode of the distributions remains essentially 
unchanged, the distributions become progressively “fatter”. This is because local reductions in 
root strength result in newly available locations in areas with slightly higher slope, where thinner 
soils previously resulted in sufficient root strength to prevent failure. In contrast, areas with deep 
soils are less affected since their depth averaged root cohesion is less sensitive to this variability 
due to the diminished root strength contribution. 

These results illustrate the potential effect of the fine scale variability of root strength on 
slope stability. This method can be generalized to represent the impact of spatial variability of 
landslide-relevant parameters on landslide size, location, and abundance. As discussed above, 
spatial variability in soil depth is also likely to play an important role in defining landslide 
location and size. Here I focused on root strength variability as an example of these effects.  

6.3 Temporal variability of landslide-relevant properties  
In this research we adopted a simple view of landslide-relevant hydrologic processes, 

assuming that the pore pressure field is principally controlled by shallow subsurface saturated 
flow which was modeled under the steady state assumption. Steady state conditions are rarely 
achieved in a natural setting. Sprinkling experiments conducted by Torres et al. [1998] at our 
study site found that the time needed to reach steady state conditions could exceed 30 hours. 
Furthermore, assuming steady state conditions typically results in over-prediction of the area 
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affected by landsliding [Dietrich et al., 2001]. Iverson [2000] suggests that two very different 
timescales are relevant for landsliding: a longer scale (days to weeks) is associated with lateral 
subsurface redistribution of water, while at the individual storm time scale (minutes to hours), 
vertical infiltration is responsible for the landslide-triggering pore pressure rise. While the 
relative importance of these components is subject to debate (e.g. Iverson, [2004]; Montgomery 
and Dietrich, [2004]), it is clear that the transient nature of pore pressure development must be 
captured in order to predict the timing and magnitude of landsliding events. Efforts have been 
made to integrate the two components to account for the different time scales involved (e.g. 
D’Odorico et al., [2005]), but such methods are used to model landslide recurrence and not easily 
applied to a storm rainfall time series.  

 

Figure 6.1. Lateral root strength field obtained by 
varying the reference case scenario by sampling from 
a Gaussian distribution with mean and standard 
deviation equal to 21,666 Pa and repeatedly 
convolving with a Gaussian filter. a) 10 iterations; b) 
100 iterations; c) 500 iterations; d)1000 iterations. The 
resulting pattern is similar to the reference case but 
with increasingly larger patches of similar root 
strength values. 
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Rosso et al.’s [2006] modification of the hydrologic model underlying Shalstab, re-

formulated in equation 2.17 for use in discrete time steps, is used here in combination with ten-
minute rainfall intensity record of the 15–20 November 1996 recorded at CB1 [Montgomery et 
al., 2009]. This model represents a minimal increase of complexity with respect to the steady-
state model used in the previous chapters, requiring only two additional (and easily constrained) 
parameters. We set the void ratio e (the volume of the voids over the volume of the solids) to 0.5 
[Montgomery et al, 1997], and vary the degree of saturation of soils Sr (volume of water over the 
volume of voids) from 0 to 0.5, referred to here as soil moisture. No overlapping landslide 
predictions are allowed (i.e. least-stable predictions are retained), as the objective is to match a 
single specific event. 

Figure 6.2. Predicted landslides obtained by varying 
the root strength of the reference case scenario by 
sampling from a Gaussian distribution with mean and 
standard deviation equal to 21,666 Pa and repeatedly 
convolving with a Gaussian filter: a) 10 iterations; b) 
100 iterations; c) 500 iterations; d)1000 iterations. The 
resulting pattern is similar to the reference case but 
local root strength variations constrain the size of 
landslides resulting in a smaller characteristic size. 
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Figure 6.3. Predicted size distributions of landslides resulting from varying the reference case scenario (figure 5.1) 
by sampling from a Gaussian distribution for Cr0 with mean and standard deviation equal to 21,666 Pa and 
repeatedly convolving with a Gaussian filter. Introducing local variations significantly reduces landslide size; as the 
number of iterations increases (and thus the correlation length), the size distribution slightly shifts to the right (larger 
size) as these variations become more smooth. 

The results of the application of the procedure using the dynamic hydrological model are 
shown in figure 6.6. The number of predicted landslides increases with increasing soil moisture 
(as pore pressures are higher across the landscape), reflecting the importance of antecedent soil 
moisture conditions. In all scenarios, significantly fewer landslides are predicted than in the 
reference case using the steady-state model (figure 5.1). This does not come at the cost of 
performance, as a similar number of observed landslides are captured. The observed size 
distribution is captured (i.e. no statistical difference between predicted and observed distributions 
according to the K-S test) when e = 40%, and the observed topographic index distributions are 
captured when e = 40% to 50%. These values are not unreasonable given that Torres et al. [1998] 
reported that values greater than 35% could be sustained in the presence of an applied flux across 
the ground surface.  

Characteristic landslide size increases with increasing soil moisture, as shown by the PDFs in 
figure 6.7. This is because greater soil moisture causes the water table height h to rise more 
quickly in response to a rainfall rate, resulting in expanded patches of high pore pressure. As soil 
moisture is increased, the mode of the topographic index distribution remains fairly constant, but 
more landslides are predicted down the hollow axis (figure 6.8). The increased pore pressure in  
the convergent areas down the hollow axis enables landslides to occur in areas of lower slope. 
Figure 6.9 illustrates the general increase of both landslide number and average landslide size 
with the increase of antecedent soil moisture. It should be noted that the no-overlap condition 
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allows the number of predictions to temporarily diminish (for example when e varies from 10% 
to 15%). This can happen when a larger, more unstable shape that can result from an expanding 
high pore pressure field overlaps two more stable shapes. The average size also shows small 
decreases (for example when e varies from 45% to 50%): when landslides are added to the 
distribution by the increased pore pressures, they are often smaller than previously existing ones; 
if there is a sufficient number of them this can have the effect of reducing the average size. 

 
Figure 6.4. Predicted topographic index distributions of landslides resulting varying the reference case scenario 
(figure 5.1) by sampling from a Gaussian distribution for Cr0 with mean and standard deviation equal to 21,666 Pa 
and repeatedly convolving with a Gaussian filter. Introducing local variations shifts the location towards the left 
(higher slope); as the number of iterations increases (and thus the correlation length), the trend oscillates around the 
same mode. 

Figure 6.10 shows a map of debris flows that occurred at CB-MR as a result of the November 
1996 storm (figure 6.10). Comparing this figure with the results of the application of the 
dynamic hydrological model shown in figure 6.6, shows that the procedure predicts landslides in 
the observed debris flow source areas. Although over-prediction is greatly reduced, there remain 
a considerable number of predicted landslides in areas which did not fail during this event. There 
are many potential reasons for the remaining over prediction: as discussed in chapter four, the 
soil depth sub-model does not account for prior landsliding, with the result that with the chosen 
parameterization all the hollows are fully-loaded, when in fact hollows will be at various stages 
of infilling. Local variations in root strength or soil depth, not represented in these scenarios may 
also play a role in defining landslide location. Notwithstanding these limitations, the simple, un-
calibrated, dynamic hydrological model predicts the occurrence of landslides in a landslide-
triggering storm, with sizes and locations consistent with observations. This is a promising result, 
particularly since only one storm out of all those which may have occurred during the 10 years of 
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landslide observations was used. This suggests that this procedure is capable of capturing the 
timing of landslides (as well as their size and location), given a sufficiently resolved 
characterization of the hydrology. 

Figure 6.5. Predicted number and mean size of landslides resulting from the application of the procedure varying the 
reference case scenario (figure 5.1) by sampling from a Gaussian distribution for Cr0 with mean and standard 
deviation equal to 21,666 Pa and repeatedly convolving with a Gaussian filter: introducing local variations 
significantly reduces both number and size; as the number of iterations increases (and thus the correlation length), 
variations are smoothed resulting in a minimal increase in both landslide number and size. 

6.4 Future directions 
Over time scales of years to decades, climate change can impact landsliding both through 

changes in the vegetation cover and through changes in the hydrologic conditions. Analyses of 
available precipitation records (e.g. Higgins et al., [2011]) has already documented that the 
frequency of extreme precipitation events has increased in the last 30 years, and this trend is 
expected to continue. As mean annual temperature is expected to increase and to vary 
significantly at the regional scale [Sokolov, et al., 2009], plant types and vegetation patterns on 
the landscape which are under the influence of regional climate are expected to change 
significantly. Furthermore, these ecosystems are likely to experience changes in their disturbance 
regimes, due to changes to the frequency, intensity, and duration of fires, droughts, insect and 
pathogen outbreaks [Dale et al., 2001]. These changes could have a profound impact on the root 
networks and the coupled water dynamics (e.g. ground moisture, evapotranspiration, and 
precipitation interception) on landslide prone hillslopes. Understanding these effects and 
predicting vegetation patterns and their response to climate and other environmental stressors is 
critical for landslide hazard assessment, particularly in light of the increased risk resulting from 
development into landslide-prone areas [Crozier and Glade, 2005]. In some areas, land use 
change may have as much (or more) impact as climate change effects on vegetation patterns 
[Sidle, 1991; 1992]. Climate and vegetation models (e.g. Istanbulluoglu and Bras [2006]; Ivanov 
et al., [2007]; Ivanov et al., [2008]; Crookston et al., [2010]; Dettinger et al., [2012]; Li et al., 
[2012]) can provide input data under a range of scenarios that can be used with our procedure to 
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predict landslide hazard (and therefore risk), and explore the impact of climate and land use 
change on the landsliding regime.  

 
 

 

Over longer time scales, the topography, which has been shown in this research to exert a 
first-order control on landslide location and size, is itself evolving partly as a result of 
landsliding. This motivates the question of how do landslides shape a landscape, and what are 
the signatures of the landsliding regime on the landscape. Hollows in a landscape are sustained 
by a cycle of infilling and evacuation in which landslides play an important role [Dietrich et al., 
1982; Reneau and Dietrich, 1986]. The convergence of shallow groundwater flow in these 
hollows combined with upstream migration of channel heads due to the periodic, small-scale 
landsliding, exerts a control on the fluvial network structure [Montgomery and Dietrich, 1998]. 

Figure 6.6. Predicted landslides resulting from the 
application of the dynamic hydrological model to the 
November 1996 storm rainfall time series and varying 
the antecedent soil moisture e. a) e = 0%; b) e = 10%; 
c) e = 20%; d) e = 40%. Non-hydrologic parameters 
are set to the base case scenario of figure 5.1. As soil 
moisture increases, the number and size of the 
landslides increases due to the expanding pore 
pressure field. 
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The influence of landslides on landscape form has been partly explored by coupling an infinite-
slope stability model to a landscape evolution model (e.g. Tucker and Bras, [1998]; Tucker et al., 
[2001]; Istanbulluoglu, and Bras, [2005]). The effectiveness of these models is limited by their 
inability to predict discrete landslides: infinite slope calculations leads unstable grid cells to be 
treated as individual landslides whose size is set by the grid resolution. The procedure developed 
in this research presents the opportunity to integrate discrete landslide predictions in a landscape 
evolution model. The procedure requires high-resolution spatial data of topography, soil depth, 
pore pressure, and root reinforcement but is largely independent of the models which produce 
them, and thus could feasibly be implemented as a module within a larger framework of 
integrated model components such as the Community Surface Dynamics Modeling System 
[CSDMS, 2011]. 

 
Figure 6.7. Predicted size distributions of landslides resulting from the application of the dynamic hydrological 
model to the November 1996 storm rainfall time series with antecedent soil moisture e varying from 0 to 50%. As 
soil moisture increases, the size distribution shifts to the right (larger size) until it matches the observations when e 
= 40%. Non-hydrologic parameters are set to the base case scenario of figure 5.1. 

Addressing these questions over both short and long time scales remains challenging, 
particularly given the large degree of uncertainty in landslide predictions and in the post-failure 
behavior of material mobilized by landslides. While models exist to predict runoff and pore 
pressures, few models exist to predict colluvium thickness and root strength patterns.  Field 
investigations are needed to map the spatial structure of colluvium thickness and root strength 
contribution in order to test and develop theories. Good landslide inventories, which distinguish 
the initial failure from the subsequent runout, are also needed for a variety of environments. 
These inventories should be mapped onto LiDAR quality topographic data and be as complete as 
possible, ideally (1) covering the entire area affected by landslides, (2) including all landslides 
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down to a size of 1–5 m in length, and (3) depicting landslides as polygons rather than points 
[Harp et al., 2011]. Such mapping efforts should be undertaken after well-documented storm 
events and accompanied by field work to document landslide depth and root strength attributes 
of landslide scars. Post-failure behavior is strongly dependent not only on the topography over 
which it is transported, but also on the initial size [Jakob, 2005]. The constraints on landslide size 
introduced here provide a first step towards these goals, but we still lack a sufficient mechanistic 
understanding of debris flow dynamics to effectively predict mass loss or gain across a 
landscape.  

 
Figure 6.8. Predicted topographic index distributions of landslides resulting from the application of the dynamic 
hydrological model to the November 1996 storm rainfall time series with antecedent soil moisture e varying from 0 
to 50%. As soil moisture increases, the size distribution shifts to the right (higher drainage area) until it matches the 
observations when e = 40% to 50%. Non-hydrologic parameters are set to the base case scenario of figure 5.1. 

Complex modeling endeavors have been traditionally limited by the availability of 
computational resources (e.g. number of floating point operations per second or FLOPS). Recent 
advances in massively-parallel computing hardware now enable quadrillions of calculations per 
second (PetaFLOPS), approximately a million times more than an advanced desktop 
workstation. Similarly recent scalable parallel software frameworks have been developed for the 
solution of large-scale, complex multi-physics engineering and scientific problems [Heroux et 
al., 2005]. For example, complex solid deformation and fluid flow problems under changing 
boundary conditions may be simulated using software that can perform parallel adaptive mesh 
refinement on overlapping grids [Henshaw and Schwendeman, 2008]. These advances can now 
allow landscape evolution models to include more sophisticated modules and to be applied at 
larger scales. Recent geoscience software development paradigms have focused on developing 
standards and protocols for interfacing standalone applications into model components in a plug 
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and play fashion [Peckham et al., 2012]. While such interfaces permit the integration of 
components modeling diverse physical processes, these components are often black boxes which 
operate sequentially. There is thus a need for a scalable development environment in order to 
develop efficient simulation codes for future facilities with O(106) processors as envisioned by 
the National Science Foundation and other organizations [Syvitski et al., 2010]. 

Figure 6.9. Predicted number and mean size of landslides resulting from the application of the dynamic hydrological 
model to the November 1996 storm rainfall time series with antecedent soil moisture e varying from 0 to 50%. As 
soil moisture increases, both the number of landslides and their size generally increase. Non-hydrologic parameters 
are set to the base case scenario of figure 5.1. 

6.5 Conclusions 
In this research I developed a procedure that can for the first time predict discrete landslides. 

Its foundation is a search algorithm based on spectral graph theory that can efficiently provide a 
good approximation for an otherwise intractable problem. This procedure relies on a novel slope 
stability model, also presented here, as well as sub-models that extract topographic attributes, 
compute the spatial distributions of soils, and estimate the root reinforcement and pore pressure 
fields. A formal framework was defined to evaluate the performance of the procedure, based on 
information retrieval theory.  

Only three fundamental assumptions were made in the development of this procedure. The 
first assumption was conceptual in nature: the initial landslide shape is the result of an 
optimization of the driving and resisting forces acting on a cluster of grid cells, locally resulting 
in the minimal factor of safety. This implies that landslide size is determined by the balance of 
the benefits associated with larger size (increased driving forces relative to resistive forces) with 
the costs associated with a larger size (higher probability of including areas that contribute higher 
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resistances). This assumption is supported by the results from the application to the study area 
where the procedure recovered observed landslide locations and sizes. The second assumption 
was algorithmically motivated: the landscape and the forces acting on it can be represented using 
an undirected graph. This allows the search problem to be re-cast as a linear 
eigenvector/eigenvalue problem, for which well-studied methods that provide good approximate 
solutions exist. The third assumption relates to definition of stability of a soil mass: an unstable 
cluster of grid cells fails together as rigid block. This assumption is necessary to resolve the 
balance of forces in a limit-equilibrium analysis and, it is consistent with the graph theoretical 
framework where a global optimization is sought. However, this means that the force balance is 
solved instantaneously and globally, thus not allowing modeling of progressive deformation in 
the current form of the procedure. 

 

Figure 6.10. Map of debris flows observed after the November 1996 storm in the CB-MR study area. Figure 
courtesy of J. Stock. 

The procedure requires high-resolution spatial data of topography, soil depth, pore pressure, 
and root reinforcement, rarely available from direct measurements at the regional scale. The sub-
models used to produce these data are self-standing, and thus can be substituted as better ones 
emerge. Similarly, an improved stability model could be used with the search procedure. As a 
result, the procedure is general as long as its components conform to the assumptions above. 

When the procedure is applied to a uniform synthetic landscape, it predicts that if any part of 
a landscape can fail, all of it can fail. Thus, in the absence of any heterogeneity landslide size and 
location are not very meaningful concepts. In contrast, when the procedure is applied to a natural 
landscape where landslide-relevant properties such as soil depth, pore pressure, and root strength 
vary spatially, specific trends in characteristic landslide size, location, and abundance emerge. 
This spatial variability is a result of the topographic control on shallow subsurface flow and soil 
depth. The spatial structure of these properties determines the areas favorable to landsliding that 
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can be exploited by rain storms, resulting in the characteristic size and location distributions of 
rainfall-triggered landslides. Varying these controlling properties, even uniformly, changes the 
spatial distribution of these areas in the landscape. This results in new characteristic distributions 
of landslide size and location, as landslides sample different parts of the landscape.  

Numerical experiments performed in this research reveal the first-order control exerted by 
topography on shallow landslides. The general spatial pattern of landsliding did not 
fundamentally change with the introduction of stochastic variability in root strength or with 
variations in the mechanism of pore pressure generation. This highlights the fundamental role 
played by the topographically-controlled distribution of soil thickness in defining landslide 
location. Previous work suggested that as hollows fill with soil the influence of basal cohesion is 
diminished, resulting in a cycle of filling and evacuation by landsliding. Including lateral effects 
(root strength and earth pressure) does not alter this theory, although in this research we find that 
if hollows can get sufficiently deep, soil depth can have a stabilizing effect through the role of 
earth pressure, creating a window of opportunity in time for landsliding to occur. 

Understanding hazards posed by rainfall-triggered shallow landslides requires predicting 
where landslides will occur, when they will occur, how big will they be, how fast they will 
mobilize, and how far will they go.  This research constitutes a significant step in this direction 
by providing some of the first coupled predictions of where and how big landslides are, and 
demonstrating that capturing their timing is well within reach. By coupling this procedure with 
climate and vegetation models we can now explore the impact of climate and land use change on 
the landsliding regime. By integrating the procedure into a landscape evolution model we can 
then explore how, over longer time scales, landslides shape a landscape. 
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