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1 Abstract

It is shown moreover that the crude method of matching the UXO against

templates is more reliable than a Bayesian appraoch, but that a Bayesian

approach can be used in concert with PCM to modestly improve the already

excellent performance of PCM.

2 Introduction

A key problem in remediation of domestic Department of Defense sites con-

taminated with unexploded ordnance (UXO) is classification of buried anoma-

lies as either UXO or scrap metal. The problem of anomaly detection has

been mostly solved on land through the use of magnetometers and electro-

magnetic induction (EMI) sensors [Nelson et al., 2003] however, detection

methods do not discriminate between dangerous UXO and harmless scrap

metal. The classification problem fractures into several categories, depend-

ing on the type of instrument (time or frequency domain EMI, magnetometer,

GPR etc.), the type of UXO, and the spatial distribution of anomalies, e.g.

single or multiple objects. The algorithm discussed here considers only time

domain EMI data recorded over single objects. While the lone object problem

may not always represent the real-world, any classification algorithm which

cannot solve this problem, is unlikely to succeed in more complicated situa-

tions. Since reliable classification of single objects remains an open problem,

it is addressed first.
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Intact UXO have the property of rotational symmetry about one axis,

and furthermore, UXO tend to be furthen extended along the axis of rota-

tional symmetry by an aspect ratio of around four or five. Induced currents

in these objects circulate primarily about the long axis, and less so in the

other directions. For over a decade researchers in the field of UXO detec-

tion and discrimination have been working with physics-based models ap-

proximating subsurface conductors by induced magnetic dipoles. Decaying

currents in the target are represented by an induced dipole moment tensor

(M). Determination of M is the objective of most UXO EMI inversion algo-

rithms. Diagonalizing M yields dipole-moment amplitudes in the principle

directions. The time dependent relationship between these moment ampli-

tudes is the chief source of information regarding target shape and aspect

ratio. Early attempts to exploit this information such as [Khadr et al., 1998]

and [Pasion and Oldenburg, 2001] looked promising, but in the decade since

their publication no comprehensive solution to the target identification prob-

lem has emerged. A 2004 report on EMI methods for UXO discrimination

[Butler, 2004] emphasizes the need for cooperation between the techniques

of UXO detection and classification which were at the time state of the art.

The techniques discussed were magnetometery, time and frequency domain

EMI (although the UXO problem may require incorporating GPR and acous-

tic methods for some cases). Some work incorporating magnetometery and

TDEM is being explored ([Pasion et al., 2008]) but this is not currently the

standard methodology. [Butler, 2004] concluded that most existing meth-

ods were producing similar results and that various noise sources including
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geologic, position uncertainty, and instrument noise were the main factors

impeding progress.

Since 2004 significant work has been conducted with time domain multiple-

transmitter, multiple-receiver (MTMR) systems, in both theoretical model-

ing and instrument design, specifically [Smith and Morrison, 2005], [Smith et al., 2007].

The new generation of MTMR systems, of which BUD is an example, has in-

creased the efficiency of surveying by enabling array-style acquisition and pro-

cessing to be employed with a single instrument sounding. The EM data from

an array measurement carries information about the shape/size/composition

of the subsurface scatterer, and the three-component illumination of the tar-

get allows superior determination of aspect ratio as was previously possible.

Recent field surveys using the BUD system suggest that object classification

is possible based on information extracted from a surface measurement, e.g.

[Gasperikova et al., 2009]. Time-dependent polarizability tensors obtained

via data inversion under the assumption that a lone isolated spheroid is the

source of receiver deviation from noise,([Smith et al., 2007]) were examined

by [Kappler, 2008] for the Camp Sibert AL dataset. [Kappler, 2008] em-

ployed the technique of Polarizability Curve Matching (PCM). The method

was applied to 416 cued and OpenField measurements. 99 of these were clas-

sified as UXO and the remaining 315 as scrap/clutter. The routine yielded 0

false negatives FN, and only 5 false positives FP however, the anomalies at

Camp Sibert were typically large, and the scrap were typically small. Thus,

most of the classification was done easily depending on the amplitude of the

polarizability curves associated with the anomalies. The PCM method of is a
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pattern classifier which treats as the domain, the three polarizability curves

output by an inversion algorithm ([Smith and Morrison, 2004]. This method

is extended here to the Yuma, AZ BUD survey, where data were acquired

over a Calibration Grid (CG) and a Blind Test Grid (BTG). It is shown that

an augmented form of the PCM approach can succeed when multiple UXO

are present, even when the UXO targets span a wide range of sizes, and

can easily be smaller than the scrap. When many different types of object

are present, PCM is shown to have a dramatic effect in generating so-called

’diglists’ which order anomalies by priority of extraction from the ground.

The underlying idea of the PCM method is that UXO of a particular

class tend to have nearly invariant PC representations (see Figure 1) over

a wide range of depths. By forming a set of training curves from data ac-

quired over known objects, field data can be compared to the training data,

and the class of object beneath the system can be determined by identifying

a matching template from the training data. After examining hundreds of

P-curve printouts on loglog scale where known targets were placed beneath

the BUD system, in most cases it is an easy matter to decide the class of an

object by comparing the P-curves against a collection of templates. PCM

is simply a computer algorithm which extends this supervised method to

an unsupervised method which emulates the human interpretters decisions.

[Pasion et al., 2007] also applies a method based on training data (libraries)

with encouraging results, although some munitions are occasionally misclas-

sified as other munitions. It is important to note that [Pasion et al., 2007]

takes as input only data acquired over UXO, and the range of the classifica-
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tion algorithm consists only of UXO. The problem of saving costly digging,

is not to distinguish between various dangerous objects, but to distinguish

between objects which are dangerous and those which are not.

An ideal classification method is a map between sets. Elements of the

domain X are themselves sets, comprising data acquired by one or more field

instruments, together with the meta-data regarding those instruments, and

information about ambient conditions, such as meteorologic, and geologic

data, as well as noise measurements. The range is the collection of categories

relevant to the classification problem, thus for UXO, the range partitions

into two sets; Dangerous D={data soundings for which a UXO is present},

and Benign B={data soundings for which no UXO are present}. The UXO-

present set D is itself partitioned into a set of subclasses, one for each type of

munition. The method described here is not designed to map each element of

X to a unique subclass, but rather it assigns a pseudoprobability to each x in

X , that the data are associated with a particular type of object. The specific

form of f developed here compares field data soundings against soundings

from a training dataset T which are acquired over known targets. Thus, the

object classes in the range of f are dictated by the classes represented in T ,

hence the function f depends in part on the reference training dataset.

In practice classification may be complicated. Consider for example the

case of data acquired with a UXO near the system, but too far away to get

reasonable SNR. How do we classify this situation? It depends on the volume

of subsurface which the operator is confidently interrogating. This sort of

ambiguity can be mitigated by constraining the space of estimated object
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Figure 1: Collection of PCs from various targets motivating the curvematch-
ing method of identification.
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positions, and SNR levels which are admitted as inputs to the classification

function. Further complicating the situation are uncertainties in the posi-

tion and characteristics of instrument coils, and fluctuations in ambient and

geologic noise which can lead to non-unique inversion results. This problem

tends to abate as more constraints are forced on the interpretation by mul-

tiple receivers operating simultaneously. In the case of BUD, eight channels

record data, and the position of the recievers with respect to the transmitters

are fixed to a high degree of accuracy.

The following assumptions are made:

1. There is at most one object present within the detection footprint of

the system.

2. Placing a data sounding into the set B means that there is no object

of diameter greater than d at depths shallower than zd(d), as defined by

the depth-to-10%-uncertainty curves, as shown in [Morrison et al., 2005].

3. SNR of a data sounding admitted to classification is greater than a

threshold value.

This manuscript is organized as follows: The dataset treated here, includ-

ing preprocessing are described in section XX1. This includes a subesection

on criteria for sorting data into two sets, those that are admissible to PCM

and those that will be classified as Can’t Analyse. The underlying idea of

the PCM approach is mathematically formalized in section XX2. A brief

disucussion of Bayesian classifiers is included in section XX2 along with a

description of how this classifier can be applied to refine PCM. Section XX3
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gives results from the simplest PCMmethod, as well as from PCM augmented

with techniques of voting, subclass consideration, and a Bayesian classifier.

Results of the cross validation trials are discussed in section XX4, together

with a plan for applying the method the the BTG dataset. In section XX5

preliminary conclusions are offered without scoring results from BTG, which

will be presented at SAGEEP 2011.

3 PREPROCESSING AND SORTING

Static BUD data are acquired by positioning the system over an area of inter-

est and engaging the onboard data acquisition system. A single field measure-

ment comprises recordings from 8 differenced-pair receivers, together with Tx

Current waveforms from each of three orthogonal transmitters. Such a mea-

surement includes 320 stacked records for each Tx which are acquired over a

period of 2s. All cycling between tranmitters and synchronization of channels

is automatically handled by the system electronics. Prior to calculation of

principal polarizabilities the Rx responses are differenced against a “Back-

ground” measurement. The collection of raw data, background measurement,

and metadata regarding instrument or background noise phenomena are re-

ferred to en masse as a sounding. An inversion program which calculates po-

larizability curves ([Smith and Morrison, 2004]), is used to map each sound-

ing to a set of three polarizability curves. These are represented by three

vectors of length 34, p1,p2, and p3 where the subscript 1 is the polarizbility

with the largest eignvalue, and subscript 3 denotes the lowest eigenvalue. The

34 logarithmically-spaced time gates are the same for all three curves, and
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for all soundings. We will sometimes refer to the ’raw’polarizability curves

from sounding x as P (x).

The polarizability curves from hundreds of BUD soundings taken at the

YUMA Calibration Grid, together with some scrap soundings from the Camp

Sibert, AL survey were compiled into master dataset (or universe) U . U is the

union over M=(29) disjoint sets Si, i = 1..M where each class is comprised

of example soundings over a particular class of target.

U =
M⋃

i=1

Si (1)

Each sounding in this set is examined to see if it is fit for PCM analy-

sis. It is obvious when visually inspecting the data that poor classification

can be expected if soundings are kept which have very poor SNR, and/or

unrealistic depth estimates. The BUD system specifications do not provide

for discrimination of targets buried deeper than 1m (although the do detect

these objects) and data with SNR less than 2 are removed from the set U

before any further processing takes place. In practice, detected objects with

low SNR can be dealt with as provided in the discusion. All admitted curves

are ’paper-projected’, and replaced with quadratic fits before PCM is run.

3.1 Paper Projection

In an effort to approximate the method of comparing printouts, the Pcurve

coordinates are log-transformed and scaled to a set of linear coordinates that

the curves would have, if a cartesian grid were laid on top of a loglog printout

on an 8.5 x 11 sheet of paper. Given a set of loglog axes with y axes limits
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[yL1 , y
L
2 ], and xaxes limits [xL

1 , x
L
2 ], and an overlain linear axes with the origin

in the bottom left of the sheet, with linear y-axes limits [0,y2], and x-axes

limits [0,x2], a point (x,y) is transformed to (x’,y’) according to:

y′ =
y2log10(

y

yL
1

)

log10(
yL
2

yL
1

)
(2)

x′ =
x2log10(

x

xL

1

)

log10(
xL

2

xL

1

)
(3)

which, when using an 8.5 x 11 sheet on the axes shown in the example

Figure, results in scaling each of the pi:

p′

i =
11log10(

pi

1e−3
)

4.027
(4)

t′ =
8.5log10(

t

6e−5
)

1.523
(5)

3.2 Quadratic Curve Fitting

The projected polarizability values p′

i together with the projected time gates

t′ are the base quantities used in the curve matching method. Each p′

i

is further condensed to a second order polynomial approximation by least-

squares fitting a quadratic to p′

i vs. t
′. Thus for each p-curve p′

i, we obtain

three quadratic curve fit coefficients Ai, Bi, Ci. The quadratic approximation

to p′

i, we will call qi. The curve qi is plotted vs t′ by the relation:
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qi(t
′) = Ait

′2 + Bit
′ + Ci. (6)

In most cases, p′

i, and qi are indistiguishable by eye, however when SNR

is low, p′

i can take on a jagged character which cannot be well fit by a sec-

ond order polynomial. The three quadratic fit curves, each of length 34 are

finally concatenated into a single vector of length 102 for easier manipulation

in programing. The 102-length quadratic fit represetnatation of a sounding

x will be referred to as Q(x)

4 PCM ALGORITHM

The composition of the universe U obtained from the CG and Sibert data

is shown in Table 1. Before applying the method to field data, an extensive

series of cross-validation experiments on this dataset of soundings from known

targets.

To perform a single cross validation trial, U is partitioned into two disjoint

sets; U = T ∪ F . The set T acts as a training library, and the second set

F = U/T acts as a mock field dataset. T is the union ∪M
i=1Ti where Ti is

generated by selecting at random either 1,2, or 3 elements from each of the

Si according to the following rule: if there are fewer than 5 elements in Si,

then #Ti = 1, if there are between 5 and 15 elements in Si, then
#Ti = 2,

and if there are more than 15 elements in Si, then
#Ti = 3.

The actual classification process is quite crude and straightforward. For
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a given field sounding x in F , a single cross-validation trial returns a class

which the sounding was determined to be nearest to in the sense that of all

the trianing data, the training curves which were nearest x in a least squares

sense are assumed to be representative of the class of which x is a member.

Preliminary results from cross validation indicated that most soundings

are classified correctly, but some are not. Sometimes a given sounding is

classified differently depending on the chosen training data. In order to deal

with the non-unique results, I apply a voting scheme; By running the xVal

algorithm on each element of F with many (say 150) training data configu-

rations, each xVal is taken as a vote for the class of the sounding. In this

case, the object is classed finally as the type which receives the most votes.

The PCM method returns a class which F probably belongs to, as well

as a pseudo-probability that the classification is accurate.

Sometimes a given sounding is classified differently depending on the cho-

sen training data. In order to deal with the non-unique results, I apply a

voting scheme; By running the xVal algorithm on each element of F with

many (say 150) training data configurations, each xVal is taken as a vote for

the class of the sounding. In this case, the object is classed finally as the

type which receives the most votes.
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5 RESULTS

SIMPLEPCM Preliminary trials using this method showed encouraging re-

sults, AVGNUMBER FN and FP... for CULLED TRG DATASET Of 336

objects being classified, cross validation (XV) yielded on average 5 false

negatives and 33 false positives when object classification is considered be-

tween the set of dangerous and benign objects only. This statistic is slightly

misleading because incorrect classifications were not uniformly distributed

amongst the XV runs. Figure ?? shows the number of false negatives en-

countered in 100 XV runs, and shows that approximately two-thirds of the

time, no FPs are encountered at all. In rare cases eight FNs are encountered.

This inconsistent success is attributed to some scrap objects which “look”

somewhat like UXO. Such occasional failures can be mitigated by running

the algorithm multiple times, with slightly different training data for each

run. A dig-list is then generated using a voting scheme, where objects are

ordered by the frequency with which they are classed as dangerous.

IMPROVED PCM ALGORITHM using VOTING, SUBCLASSES, and

BAYESIAN feature classifier

DISCUSSION

5.1 BAYESIAN REFINEMENTS

Preliminary work with purely feature-based classification yields encouraging

results (ROC curves comparable in shape to the voting method), but there

are also some problems with the method, namely the limited number of train-

ing data for some categories. Implemetation of multidimensional Bayesian
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classifiers requires inverting the feature-data-covariance matrix. These ma-

trices can become ill-conditioned in the case where the number of training

samples is on the order of the number of features (N) which is the same as the

dimension of the covariance matrix. Similar problems are also encountered

when features are highly correlated, i.e. the dimensions of the feature vector

are not independent. These problems will be examined in more detail later.

For now, we note that you need at least as many examples in a training set

as there are features, as the dimension of the N × N covariance matrix is

the same as the number of features N , and an N ×N covariance matrix will

span at most the dimension of the number of obserations used in calcualting

it. The collection of features under current study are listed below:

1. P11: Amplitude of the primary polarizability in the first time gate.

2. D23: Integrated measure of the difference between the second and

third polarizability curves, a.k.a. primary axial symmetery parameter

3. D12: Integrated measure of the difference between the second and

third polarizability curves, a.k.a. secondart axial “diskness” parameter

4. M1: The slope of a straight line fit to the primary polarizability in

logspace

5. K1: The Curvature of the primary polarizability in log spaceDerivetheequationfortheradiusof

(1+f ′(x)2)(3/2)/f ′′(x), wherexisthexcoordinateforapointonthecurve, f ′(x)isthefirstderiv

6. P INDEX: Integrated measure of the amplitude of all P-curves, witha

time factor
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Figure 2: bw

7. Median Residual: Median best-fit residual comparing the sounding

to a particular class during voting.

Several of these features are shown as box-and-whisker plots in Figures

XX-YY. In each boxplot, the red line is the median, and the interquar-

tile range is specified by the box edges. The Whisker lines represent the

maximum, and minimum values obtained by the data, but whiskers are not

allowed to exceed 1.5 times the length of the box. Points lying outside the

whiskers are denoted by the red crosses.

I have developed the concept of Classes of Limited Distinguishabil-

ity. These classes, for example {UX155 vs. SP060}, or {UX105 vs. UX106},

or {UX081 vs. UX275} are not so easily sorted using simple PCM as devel-
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oped here. Usually, items are classified correctly, but after running several

thousand trials, we can get a feeling for the emprical distribution of errors

inhernt in the voting scheme. From these statisitcs we can identify the true

set of classes of which an sounding may be a member. The matlab script

identifyConfusionClasses.m works in the following way; for each subclass, the

voteRecord is scanned, and a list of all object MUIDs which received some

votes for that subclass are identified. Then, the TRUE classes of each of

these MUIDs objects are recorded as the CLD(subclass). The resultant list

is an indicator, that, “Say object X is classified, in part as subclass S. Then

we admit in feature space, CLD(S) as possible ellipsoids to consider. If object

X is classed as S1, S2, ...SN, then we admit as ellipsods UNION(CSP(S1),

CSP(S2), ...CSP(SN)).

5.2 CROSS VALIDATION RESULTS

SIMPLE PCM APPLIED TO THE TRAINING DATA RESULTS IN FIGS

3 and 4.

5.2.1 SUBCLASS REFINEMENTS

It is sometimes the case that a particular target can yield different responses

such as those shown for a 57mm target in Figure 5. The relationship between

object-system orientation is not clear if it exists that causes these variations.

UX57 for example come in Flavor A and B. What can happen is that trg

data can by random chance be drawn all of type A or all of type B. This can



5
R
E
S
U
L
T
S

17

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dry Holes

P
er

ce
nt

 U
X

O
 D

ug

ROC Curve for 200 VOTES U_0004 (356 elements)

F
igu

re
3:

reliab
leR

O
C



5
R
E
S
U
L
T
S

18

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

120

140

160

180

200
Histogram of Pseudoprobabilities

N
um

be
r 

of
 O

cc
ur

en
ce

s

Pseudoprobability of being UXO

 

 
UXO
NonUxo

F
igu

re
4:

R
eliab

le
P
seu

d
oP

rob



5 RESULTS 19

Figure 5: ux57ab

lead to misclassification. Although over many votes the object still classes

as 57mm, it doesn;t get as many votes as it could. This led me to cut classes

like this into subclasses, and insist that at least one example per subclass

went into the trg data. Doing this with 57mm sginificantly raised the lowest

RED vote from around 70 to around 85 percent.

Applying these refinements gives PCM results shown in Figure

5.2.2 BAYESIAN METHOD

Using simple Bayes on P11, D23, M11, D12, a 4-dimensioanl feature, we

get Figurs 7 and 8. Distributions of the Probability are more bimodal than
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Figure 6: rh57
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for the Pseudoproabability, but we see that False Neagatives Occur in the

Bayesian method.

5.2.3 HYBRID

A modest improvement to the PCM results can be achieved if the diglist

is ordered as follows: Run PCM, then run BAYES. In cases where both

methods say with better than some threshold (i used 90%) on the type of

object... then place the object at top or bottom of list accordign to D or B

classification. The remaining objects are ordered as per PCM and inserted

between the confident scrap plus confident UXO.

6 Application of modified PCM to YUMA

Blind Test Grid

The Yuma BTG data set will be formatted for input to the ’Augmented

PCM’ and the results of the classification will be sent to the sponsor for

scoring along with a summary report describing the APCM approach.

7 DISCUSSION

7.1 FutureWork

Consider sounding UID=130. This scrap object pictured in Figure: 10.

is voted 100% of the time as a 37mm (PCM), BUT, its residual is around

15. Typical intraclass Residuals for 37mm are around 1. Probably with a
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Figure 9: hybrid
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stdDev of around 0.5 at most! So this thing is an outlier in every way except

it always best fits the 37mm of all the trg data. By the above, one can

consider adding a test of observed residual w.r.t assumed class vs

typical intraclass residual for the same class, but this mostly just

saves you from a few FPs...
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HANDLE Description # Training Examples

UX106 105mm M456 HEAT 16
UX105 105mm M60 15
L1215 12 GAGE 15cm LOOP 4
L1230 12 GAGE 30cm LOOP 6
PUT12 12#SHOT 2
UX155 155mm M483A1 13
L1615 16 GAGE 15cm LOOP 5
L1630 16 GAGE 30cm LOOP 5
L1815 18 GAGE 15cm LOOP 4
L1830 18 GAGE 30cm LOOP 6
UX275 2.75in M230 13
L2015 20 GAGE 15cm LOOP 3
L2030 20 GAGE 30cm LOOP 3
UX020 20mm M55 15
SP030 30 CM STEEL PLATE 5
UX037 37mm 16
UX385 40mm M385 12
UXMK2 40mm MKII 13
UX057 57mm M86 13
SP060 60 CM STEEL PLATE 5
UX060 60mm M49A3 16
UX081 81mm M374 12
PUT08 8#SHOT 52
UXBDU BDU-28 15
UXBLU BLU-26 16
UXM42 M42 13
UXM75 M75 12
UX118 MK 118 ROCKEYE 15
SCRAP scrap 41

Table 1: Training Classes
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CLASS fName SNR Est Depth Notes

L2030 H16.inv 15.8166 0.5024
PUT08 back5ew50.inv 1.1853 0.836
PUT08 back6we51.inv 1.3105 0.8871
SCRAP ln0inv4.inv 22.7998 0.2311
SCRAP ln14qSE-36inv5.inv 170.143 0.3078
SCRAP ln15inv10.inv 223.73 0.2119
SCRAP ln36inv8.inv 43.4776 0.3499
SCRAP ln37inv7.inv 53.8824 0.2264
SCRAP ln40inv5.inv 327.375 0.2556
SCRAP ln5inv14.inv 712.826 0.2264
SCRAP ln5qSE-41inv11.inv 43.7198 0.2083
SCRAP ln61inv7.inv 25.0542 0.2664
SCRAP ln64inv6.inv 42.53 0.2373
SCRAP ln77inv16.inv 191.853 0.2547
SCRAP ln9inv8.inv 22.1736 0.345
SCRAP ln9inv9.inv 200.034 0.2082
SCRAP SE2-47inv4.inv 976.69 1.0225
SCRAP SE2-53inv56.inv 25.0039 0.2377
SCRAP SE2-59inv16.inv 135.577 0.2369
SCRAP SE2-60inv41.inv 932.396 0.2235
SCRAP SW-33inv221.inv 258.412 0.2789
SCRAP SW-34inv224.inv 20.7443 0.2
SP060 F07.inv 152.722 1.2053
SP060 flineinv6.inv 104.496 1.2699
SP060 H07.inv 1444.9 0.6672
SP060 hlineinv21.inv 633.286 0.7406
SP060 hlineinv22.inv 527.164 0.7251
UX020 m14ew9.inv 0.82058 2.8811
UX057 k11ew15.inv 6.1095 2.6146
UX057 m12ew13.inv 3.5398 2.8641
UX060 k10ew17.inv 9.7147 2.028
UX081 B02.inv 2.9742 1.245
UX106 ilineinv19.inv 1.502 1.0819
UX155 D04.inv 9.643 2.1373
UX155 dlineinv9.inv 8.2991 2.2702

Table 2: Troublesome Soundings
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