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Degree of Polarization Filter for Frequency-Dependent Signal Enhancement

Through Noise Suppression

by M. Schimmel and J. Gallart

Abstract We construct and examine a new frequency-dependent polarization fil-
ter to attenuate less polarized signals and noise in single and multichannel seismic
data. The filter uses a degree of polarization measure which is defined as a measure
of the variations of an arbitrary instantaneous polarization through the course of the
signal. Small variations indicate a high degree of polarization. The frequency-
dependent degree of polarization is based on the eigen analysis of the data covariance
matrices and is used to weight the decomposed time series in the time-frequency
domain. This approach permits the frequency-dependent detection of polarized sig-
nals and their enhancement through less polarized signal and noise suppression.
Further, interfering signals with different frequency contents can be separated. With
densely spaced data the degree of polarization can be averaged locally to include the
wave-field directivity. This procedure is important since, through the averaging, iso-
lated polarized noise can be removed, but isolated unpolarized signals are not sup-
pressed. In contrast to waveform stacks or stacks of data covariance matrices our
approach does not punish signals with spatially changing characteristics, such as
happens in the transition from precritical to postcritical reflections. Our data adaptive
filter is analyzed with theoretical test data before it is applied to a complex wide-
angle record section from the West Pyrenees.

Introduction and Motivation

The determination of seismic structure in the Earth is
essentially based on the combination of the study of seismic
wave propagation, the measurement of seismic ground mo-
tion, and the identification and interpretation of seismic sig-
nals in seismograms. The study of seismic signal detection
and interpretation is therefore important and has provided
numerous tools which are constantly improved to come up
with new data volumes and new measurement configurations
and to increase the routine extraction of information in the
seismograms.

Not all types of processing methods are adequate for the
different data sets because of the variability of the measure-
ment geometry and the variability of signals and noise. The
methods to apply depend on the geometry and the domain
(time, slowness, frequency, waveform, et al.) where signal
and noise can mostly be distinguished. The polarization fil-
ters form part of these signal detection and identification
tools. They separate signals from noise by their polarization
which is usually measured on three-component (3-c) data.

In this article we report our attempt to construct a
frequency-dependent polarization filter that is based on a
new definition of the degree of polarization. The degree of
polarization is aimed to measure how well a signal is polar-
ized independently of its type and direction. Such measure

can be applied to attenuate the less polarized signals and
noise components.

Polarization analyses have been used for a long time
(Montalbetti and Kanasewich, 1970; Kanasewich, 1981;
Samson, 1983; Vidale, 1986; Christoffersson et al., 1988;
Perelberg and Hornbostel, 1994; Lilly and Park, 1995; Read-
ing et al., 2001; De Franco and Musacchio, 2001). Most of
these studies are based on directional pass filters. Signals
with predefined polarization characteristics such as azimuth,
take-off angle, linearity, or ellipticity are passed by these
filters while the remaining signals are attenuated following
their deviation from the predefined attributes. These attrib-
utes are usually derived in the frequency domain (e.g., Sam-
son, 1983; Park et al., 1987) or in the time domain (e.g.,
Kanasewich, 1981; Vidale, 1986; Bataille and Chui, 1991).
Some approaches are time-frequency hybrids (e.g., Jurke-
vics, 1988), and other methods use the analytic signals (e.g.,
Vidale, 1986; Bataille and Chui, 1991; Morozov and Smith-
son, 1996; Schimmel and Gallart, 2003).

Most techniques are based on an eigen analysis of the
data covariance matrix constructed in the time or the fre-
quency domain. The matrices are determined for sliding data
windows to decompose the data into their principal energy
components (e.g., Samson, 1983; Jackson et al. 1991) given
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by eigenvalue-eigenvector pairs. This decomposition is used
to derive the polarization as function of time or time and
frequency, respectively. The success of these methods de-
pends on the selection of the analysis window, which is sub-
ject to dominant periods, signal-to-noise energy ratio, signal
durations, and signal separations. The polarization studies
are sensible to noise, and the averaging of the covariance
matrixes or waveforms (e.g., Jurkevics, 1988; Bataille and
Chui, 1991) or of the degree of polarization (Schimmel and
Gallart, 2003) permit improved signal resolution and noise
attenuation.

The eigenvalues of the spectral data matrix can be used
to design a frequency-dependent degree of polarization
(Samson and Olson, 1980). Samson and Olson (1980) create
this measure to determine whether the spectral matrix rep-
resents a pure state, that is, whether it can be decomposed
by one eigenvalue-eigenvector pair. The eigenvectors are
complex and therefore describe linear and elliptical motion.
This approach is energy biased and polarized signals with
separate polarizations (e.g., SH and SV waves) that are de-
composed into two principal directions are attenuated when
considering how much the spectral matrix is represented by
one eigenvalue-eigenvector pair. The degree of polarization
determination has been expanded by Du et al. (2000). They
incorporate the multitaper approach (Park et al., 1987) to
diminish spectral leakage and perform a noise decontami-
nation by using a noise estimate from a presignal window.
The modifications make the degree of polarization more sen-
sitive, which can improve the filter performance.

Schimmel and Gallart (2003) present an alternative def-
inition for the degree of polarization that is based on the
variability of arbitrary polarization directions through the
course of the signals. Their measure uses a variational ap-
proach for analytic signals (Morozov and Smithson, 1996)
to obtain instantaneous polarization attributes without the
need of an eigen analysis. It handles linear and elliptical
motion. The measure is frequency independent and designed
to detect time-separated polarized signals. Their filter does
not permit the detection of polarized signals that are hidden
in noise with different frequency contents. Only a frequency-
dependent strategy can deal with such data. Here, we report
a polarization filter that uses a frequency-dependent degree
of polarization based on the principles presented in Schim-
mel and Gallart (2003). The filter concept, however, is dif-
ferent. For instance, we use no analytic signals and use an
eigen analysis to obtain instantaneous frequency-dependent
polarization attributes. In the following we outline and dis-
cuss the method, we examine examples with theoretical test
data, and apply the filter to a complex wide-angle reflection/
refraction profile from the West Pyrenees in Spain.

Frequency-Dependent Degree of Polarization Filter

In this section we introduce the frequency-dependent
degree of polarization measure which can be used for seis-
mic signal enhancement through frequency-dependent noise

suppression. The signals are determined by small variations
in their arbitrary polarization on a sample-by-sample basis.
The polarization is measured as a function of frequency and
time based on a principal component analysis for sliding data
windows. The degree of polarization is determined in anal-
ogy to the strategy by Schimmel and Gallart (2003). We first
outline their approach and then explain the frequency-
dependent method.

Time-Domain Degree of Polarization Filter

The instantaneous polarization attributes, such as semi-
major and semiminor axes, are determined according to Mo-
rozov and Smithson (1996). Their method is based on the
analytic signal vector formed by the complex traces of the
triaxial data system. A variational approach is used to de-
termine the instantaneous attributes without need of an eigen
analysis of the covariance data matrices.

The filter by Schimmel and Gallart (2003) uses the
semimajor vector (t) and the planarity vector (t) of ther ra p
ground-motion ellipse. The planarity vector is defined by
the vector cross product of the semimajor and semiminor
vector. Vector (t) is perpendicular to the surface of therp
motion ellipse and does not change the direction for planar
(prograde or retrograde) motion.

The degree of polarization c(t) is based on the variation
of the unit planarity or unit semimajor vector with respect
to their mean direction determined within a sliding window
of length T. The variation is measured in terms of vector
projections as shown in equation (1).

t�T/2 m m1 2r r1 m(t) x (s)
c(t) � • (1)�� � � �r r1 � T |m(t)| | x (s)|s�t�T/2

with mean vector rm

t�T/2 r1 x (s)
rm(t) � (2)� r1 � T | x (s)|s�t�T/2

and polarization attribute (t)rx

ra (t) : l(t) � 0.7rx (t) � (3)�rp (t) : else

In equation (1) we add the projections of the instanta-
neous semimajor or planarity unit vectors onto their unit
mean vector. The exponents m1 and m2 are positive numbers
to control the sensitivity of noise attenuation. The exponents
act on the individual vector projections and on their sum,
respectively. They increase the differences between polar-
ized and less polarized signals. Usually, it is not important
how these differences are increased and we simply use m1 �
m2 � m. c(t) ranges between 0 and 1. c(t) � 1 indicates that
the signal is perfectly polarized at time t. Signals that are not
well polarized cause small c(t) values. l(t) is the rectilinearity
defined by the ratio of the semiminor | (t)| to the semimajorrb
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Figure 1. The figure outlines the time-domain de-
gree of polarization filter. The 3-c test data contain a
polarized signal (gray background) and random noise
built from the signal-amplitude spectrum. The hemi-
spheres show the perspective projections of the semi-
major (first line) and planarity unit vectors (second line)
for three seven-sample windows. The dotted line, open
circles, and black dots mark the window centers, the
instantaneous vectors, and their mean vector. The de-
gree of polarization is obtained from the vector projec-
tions within a sliding seven-sample data window. The
filtered data result from a multiplication of the records
with the degree of polarization.

| (t)|. It is expressed as l(t) � 1 � •
r r|b (t)| |p (t)|

ra � 1 � 2r r|a (t)| |a (t)|
l(t) ranges between 0 and 1, with 1 assigning perfect linear
motion. From equation (3) we see that the semimajor (t)ra
is only used in c(t) for linear or almost linear motion. This,
since vector (t) becomes ambiguous for almost circularra
motion due to noise contamination which may transform
semiminor to semimajor axes. Similarly, the planarity vector
is only defined for elliptical motion. For linear motion the
semiminor is small and strongly affected by noise. Conse-
quently, the direction of (t) is not stable. The attributerp
choice in equation (3) bypasses these problems. In practice,
we use a moving average of l̂(t) in equation (3). The filtered
traces are obtained by the multiplication of the degree of
polarization c(t) with the unfiltered data.

The filter procedure is illustrated in Figure 1. The top
panel contains theoretical test data with a polarized signal
which is marked by the gray background. We use the sample
index rather than the time values to simplify the comparison
with small data windows that we use in the following. The
small- and large-amplitude noise is random noise that has
been built from the signal-amplitude spectrum. Below, the
instantaneous semimajor and planarity vectors are shown for
three seven-sample data windows using an orthographic az-
imuthal projection. The semimajor vectors are depicted in
the first line, and the planarity vectors are indicated in the
second line. The center position of the windows are indicated
by the dotted lines. The black dot in the projection center of
each sphere is the mean vector in the considered data win-
dow. It can be observed from these spheres that the instan-
taneous vectors vary only little from their mean direction for
the polarized signal. Consequently, their projections onto the
mean vector are large and add to large degree of polarization
values throughout the course of the signal following equa-
tions (1)–(3). The three lower-most traces in Figure 1 are
the filter output obtained by the product of the test data with
the degree of polarization c(t) (equation 1).

Frequency-Dependent Degree of Polarization Filter

The frequency-dependent approach uses a different phi-
losophy than the method just outlined. The analytic signal
theory is not used to obtain an instantaneous polarization
measure. Here, we perform the eigen analysis of the cross
spectra of sliding data windows to obtain the eigen values
and vectors as function of frequency and time. This way we
obtain a frequency-dependent degree of polarization mea-
sure which is used to attenuate the less polarized frequency
components of the data. Then, the inverse transform is taken
to obtain the filtered traces. The sliding time window enables
the time-frequency analysis of the time series.

Eigen Approach for the Triaxial Data Matrix and Polari-
zation State. The cross spectrum S(x) � (x) (x)s is ar rz z
complex 3 � 3 matrix for each frequency x. s stands for
conjugate complex and (x) is the Fourier transform of therz
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real data vector (t)T � [x1(t), x2(t), x3(t)], which consistsrx
of the windowed 3-c seismic registration. The cross spec-
trum S(x) can be decomposed into eigenvalues k and eigen-
vectors as shown in equation (4).rv

3
sr rS(x) � k(x) v (x) v (x) (4)� l l l

l�1

Matrix S is conjugate-symmetric (Hermitian) and the eigen-
values are therefore non negative. The eigen vectors can be
complex and form an orthonormal basis for the signal vec-
tors. In the following, we suppress the x dependence as long
as it is not explicitely important for the understanding. If
k1 k k2, k3 then the polarization is well determined by the
eigenvector 1. Phase lags between the complex compo-rv
nents of the vector represent the elliptical particle motion.
The case that k1 is the only non-zero eigenvalue is called
pure state (Samson and Olson, 1980), because the wave is
purely polarized. Samson and Olson (1980) define a degree
of polarization measure P2 (equation 5) to determine whether
the spectral matrix represents a pure state.

3 3 2
2 2P � (k � k ) / 4 k . (5)� j k � j� � � �

j,k�1 j�1

P ranges between 0 and 1, where 1 assigns the pure state of
the matrix S.

With k1 � k2 we obtain P � 0. For k1 � k2 k k3 there
is a strong possibility that there are signals with two separate
polarizations (Park et al., 1987). Their superposition is de-
composed into two orthogonal directions by two eigenvec-
tors and eigenvalues. The signals must not have orthogonal
polarization such as SV and SH motion, and a separation into
the two signals is only possible with additional informations.

If S represents a pure state then the semimajor and semi-
minor vector of the motion ellipse can be determined from
the first eigenvector 1. The vector is rotated in the complexrv
domain by a phase U such that 1 exp(iU) � � i ,rr rv a b
where and are mutually orthogonal vectors in a realrra b
space ( T � 0). The rotated vector 1 remains an eigen-rr ra b v
vector of matrix S despite the rotation. Choosing | | � | |rra b
then and are the directions of the semimajor and semi-rra b
minor axes of the polarization ellipse for sinusoidal waves.
Samson and Olson (1980) call these vectors state vectors
and provide two ways to determine their directions. Another
approach can almost directly be adopted from Morozov and
Smithson (1996). In the following we explain how these
vectors and are used to build the frequency-dependentrra b
degree of polarization filter.

Measuring the Degree of Polarization. The cross spectrum
and the corresponding polarization attributes are determined
for sliding data windows. We use Gaussian-shaped windows
g(t) and keep the option to stabilize the cross spectra over
(2d � 1) frequencies.

The cross spectrum estimate then becomes

x�d1 sˆ r rS(t, x) � z (t, k) z (t, k) (6)�2d � 1 k�x�d

where

s�t�T/2

r rz (t, k) � g(t � s) x (s) exp(�iks) (7)�
s�t�T/2

and x, d, k, and t, s are the frequency and time indices,
respectively. In equations (6) and (7), t is the center time of
the Gaussian-shaped window and T is the length of the win-
dow. As a consequence of the time-frequency description,
the degree of polarization from equation (1) becomes a time-
frequency matrix c(t, x), where t is the center time of the
sliding data windows.

c(t, x) is determined by using the vectors and ob-rra b
tained from the eigenvector 1. Only if k1 k k2, k3 (P � 1)rv
then the vectors and correspond to the true polarizationrra b
ellipse. In general, it is assumed that this case describes the
data at most instances. If k1 � k2 then the signal at frequency
x is decomposed into more than one direction. P is very
small and the spectral matrix is not in a pure state. Never-
theless, we consider the first principal direction 1, which,rv
in general, does not coincide with a polarization vector of
one of the superimposed signals. Therefore, vectors andra

do not represent anymore the true ground-motion ellipse.rb
Still, the stability of these vector directions can be used as
measure of the degree of polarization. The little variation of
the unit vectors can indicate the presence of polarized signals
that we do not want to attenuate. These signals interfere in
time and frequency and can only be separated by their prin-
cipal components if the polarization is orthogonal such as
for the superposition of SH and SV waves.

The local spectrum (t, k) is obtained using a Gaussianrz
envelope. We keep the option to make its width frequency
dependent. The use of a constant window width implies that
the time resolution is the same for all spectral components.
Conversely, with the frequency-dependent window one
maintains a constant number of periods in the window and
has therefore an invariant frequency resolution. Other win-
dows can replace g(t), depending of the special needs of the
analysis.

Frequency-Dependent Noise Reduction. The degree of po-
larization measure c(t, x) is used to attenuate the less polar-
ized frequency components of the Fourier transform of the
windowed data. This is performed by a simple multiplication
of c(t, x) with the data in the frequency domain. The filtered
traces y(t) are obtained after the inverse transformation to
the time domain and can be expressed as:

�1
y(t) � c(t, x)z(t, x) exp(ixt)dx. (8)�2pT ��
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c(t, x) is attained from the triaxial input data and, therefore,
equation (8) describes a data-adaptive filter. If c(t, x) is
rough, then it is recommended to stabilize the inverse trans-
form by smoothing the degree of polarization matrix. A sim-
ple averaging procedure such as �1ĉ(t, x) � (1 � 2d)

can already provide goodx�d t�s�1(1 � 2s) c(t, x)� �x�d t�s

results. As shown later, we often run first a median filter to
remove possible outliers before they get blurred by the mean
filter (Schimmel and Gallart, 2003). We do not compute the
degree of polarization function at all frequency components.
Using a coarser sampling and an interpolation scheme to fill
the gaps is generally possible. However, Ŝ from equation (6)
should be determined by using the smallest frequency (fun-
damental frequency) increment.

Including the Wave-Field Directivity. For densely spaced
data the efficiency of the filter can be increased by including
the directivity of the wave fields. This can be done by a
scheme that considers the coherence of the wave field over
space. In Schimmel and Gallart (2003), we successfully
showed that one can average the degree of polarization
rather than the waveforms or covariance matrices. This pro-
cedure does not down-weight polarized signals with spa-
tially changing waveforms, such as occurs at the transition
between pre- and postcritical reflections or due to focusing/
defocusing by heterogeneous structure. Further, isolated po-
larized signals can be suppressed, whereas the averaging can
prevent the attenuation of isolated unpolarized signals.

Schimmel and Gallart (2003) use for linear record sec-
tions a local slant-stack strategy within a sliding time-
distance window across the degree of polarization section.
Their local averaging scheme has been extended to include
the frequency and can be expressed as follows:

ĉ(x, t, r) � max{c̃(x, t, r, p )} (9)j j�1, J

with

K i�M L

c̃(x, t, r , p ) � Ni j � � �
k��K m�i�M l��L (10)

c(x � kdx, t � (r � r )p � ldt, r )m i j m

and

�1 �1 �1N � (1 � 2M) (1 � 2K) (1 � 2L) , r � r . (11)i

ĉ(x, t, r) is the averaged degree of polarization that is used
in the filter. pj values are discrete slowness values within the
range of J realistic slowness values for the signals. dt and
dx are the time and frequency intervals and r is the station
distance to a reference point, such as the source location. 1
� 2M defines the number of traces used in the averaging,
whereas K and L permit the inclusion of neighboring fre-
quency and time samples. In practice, we keep K and L
small, that is, equal 1 and determine the median instead of
the mean to remove outlying isolated features in the polar-

ization matrix rather than blurring these signals by applying
the mean.

The averaging can be an important filter stabilizator be-
cause the polarization is not a robust measure to noise con-
tamination. Noise can be polarized itself or can unpolarize
polarized signals. The spatial averaging removes the isolated
polarized noise or inhibits the attenuation of the isolated
unpolarized signals. Latter means that if an unpolarized sig-
nal is aligned between polarized signals, then the averaging
can raise the low degree of polarization for the unpolarized
signals. Consequently the signal is less attenuated.

Synthetic Examples

First Example: White-Noise Contamination

The functioning of the filter is illustrated with synthetic
case studies. First, we consider three polarized signals con-
taminated with random white noise. The noise-free and
noise-contaminated time series are the top two traces in Fig-
ures 2a–c. The signals 1, 2, and 3 (labeled in Fig. 2a) have
different elliptical polarization and have been obtained by
filtering a random time series. Their center frequencies are
4.5, 8.5, and 11 Hz with sample interval of 16 ms. The traces
are shown with their sample index to enable a better com-
parison with the small data windows used in the filter. The
amplitude spectra of the noise-free signals and the white
background (BG) noise are shown in Figure 2d. The noise-
contaminated traces form the input data of our filter.

The third traces in Figure 2a–c show the filter outputs
obtained using Gaussian-shaped data windows [g(t) in equa-
tion 7] with twice the standard deviation (2r) equal 19 sam-
ples to determine the instantaneous polarization ellipse (pla-
narity and semimajor vector) through their cross spectra
(equation 6). The degree of polarization is obtained from the
instantaneous attributes with sliding windows of nine sam-
ples and power m � 32 (equation 1). For brevity we name
these windows 2r window and DOP window, respectively.
The degree of polarization has been computed at 50 fre-
quencies between 0.3 and 17 Hz, using every second fre-
quency in the spectral domain. The frequency values are
marked by the inverted triangles at the top of Figure 2d.
Further, the measure has been smoothed with a three-sample
window in time and frequency. This is almost a default
smoothing, which one can apply before the backtransfor-
mation to the time domain to avoid artifacts that may arise
for rough functions. Filter outputs (Z components) obtained
with alternative values for the 2r and DOP windows are
shown in Figure 2e. These traces permit access to the wave-
form changes for alternative settings. Altogether, the filter
outputs show a clear noise attenuation. A similar noise sup-
pression can not be achieved with a bandpass filter. The
signals have different frequency contents that together cover
a broad frequency range (Fig. 2d). This means that the band-
pass requires a broad band to keep the signals and, conse-
quently, the noise in a broad frequency range.
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Figure 2. (a) From top to bottom: noise-free vertical component (Z) record, same
record with white-noise contamination, and filter result. The len values are the DOP
and 2r window length in sample units. (b) and (c) are the same as (a), except for the
radial (R) and transverse (T) components. The numbers at the upper left are the relative
amplitudes with respect to the corresponding Z trace. (d) The amplitude spectra are
from the three signals and the background (BG) noise. (e) The Z-component filter
outputs for different parameters.

The degree of polarization of the noisy traces in Figure
2a–c is contoured in Figure 3a. The contouring starts at 0.2
(gray lines) and 0.8 (black lines), which correspond to 20%
and 80% of the theoretical maximum amplitude. The contour
intervals are 0.1 and 0.05 for the gray and black lines, re-
spectively. From this figure several maxima with different
amplitudes are identified. Most of these maxima are isolated
features in time and frequency and can be attributed to ran-
domly polarized noise components. The three signals (Fig.
3) are identified by their large polarization at the expected
time (gray background) and their dominant frequencies. The
high amplitudes at the first samples are artifacts due to the
windows that partly cover the data when centered at the first
samples. These effects can be avoided by damping or in-
creasing the time series, such as done at the end of the time
series. The first trace in Figure 3e shows the filter output
obtained using the degree of polarization matrix from Figure
3a. It can be seen from the filter output that the artifacts or

isolated polarized noise components do not strongly affect
the time series.

The impact of the isolated features in the degree of po-
larization matrix onto the filtered time series depend on their
amplitudes and the phase and amplitude spectra of the sig-
nals. In this and the other examples in this article, a stabi-
lization of the degree of polarization matrix is not needed.
Nevertheless, if required, then the isolated outlying signals
are generally easy to remove as illustrated with Figure 3b
and c. Figure 3b shows the degree of polarization after
smoothing the values using their median in a sliding data
window of three time samples � three frequency samples.
This procedure can be repeated several times until station-
arity is archived, that is, when further iterations will not sig-
nificantly alter the matrix. In Figure 3c and d we show the
degree of polarization matrix after applying the median filter
3 and 50 times, respectively. After the last median filter it-
eration a mean filter with the same three-sample window is
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Figure 3. The degree of polarization of the noisy data (Fig. 2) is contoured as a function
of time and frequency. The contouring starts at 0.2 (gray lines) and 0.8 (black lines) with
intervals of 0.1 and 0.05, respectively. The gray background marks the time of the three
signals. In (a), the degree of polarization is not smoothed, and in (b), the matrix is smoothed
by a 3 � 3 median filter. (c and d) The results after applying 3 and 50 times the same
median filter and afterward a 3 � 3 mean filter. (e) and (f) contain the filter output obtained
with the matrices from panels (a) and (b) and (c) and (d), respectively.

applied for additional smoothing. The time series in Figure
3e and f are the filter outputs using the degree of polarization
matrix from Figure 3a–d. Figure 3 shows that the median
removes the isolated outliers and preserves the signal shapes,
but one final mean iteration can further smooth the ampli-
tudes. Using only the mean would blur the isolated spikes.
The degree of polarization matrix can be processed in many
different ways. For instance, at this stage interfering polar-
ized signals with different frequency contents can be isolated
for individual reconstructions by attenuating the undesired
elements in the matrix.

In Figure 4a and b we illustrate the mean dependence
of the filter output on the power, and the DOP and 2r win-

dows in terms of waveform similarity and signal-to-noise
(S/N) energy ratio. For this analysis we use time series with
three signals and white noise such as shown in Figure 2a–c.
To remove the dependence to a special waveform or noise
realization we compute 22 different data sets with random
signal waveforms and noise realizations. These data sets
have been filtered using the filter settings from Figure 4a and
b. The filtered signal waveforms have been correlated with
the noise-free signal waveforms to measure their waveform
similarity. The values have been averaged for each filter set-
ting and are illustrated in Figure 4a. A high correlation
means a good waveform recovery or, alternatively, a low
waveform distortion.
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Figure 4. (a) The PCC waveform similarity between filtered and noise-free signals
is contoured as function of power, DOP and 2r window length. Contouring starts at
0.5 (gray lines) and 0.7 (black lines). The maximum correlation determined with a
conventional cross-correlation is 0.944. (b) The natural logarithm of the signal-to-noise
energy ratio (see text) is contoured from 1.6 with interval 0.1 (gray lines) and from 2
with interval 0.05 (black lines). The values in (a) and (b) are the mean values obtained
with 22 different random signal-and-noise realizations.

In Figure 4a, we show the zero lag phase cross-corre-
lation (PCC) values (Schimmel, 1999) since PCC is more
sensible to waveform coherence than the conventional en-
ergy normalized cross-correlation. PCC is based on complex
trace analysis. Roughly, PCC measures the similarity by the
number of coherent samples rather than by using the sum of
energy cross products and is therefore less energy biased.
The conventional energy cross-correlations have also been
computed and show a similar trend to PCC with overall
higher values (maximum mean correlations are 0.944) and
a slightly less pronounced maximum.

Further, we use the filtered traces to determine the en-
ergy ratio S/N � (Si � So)nn/((Ni � Nn)ns), where Si, Ni

and So, No are the energy values for data stretches with sig-
nals (S) and with pure noise (N) on the vertical component
filter input (i) and output (o). nn and ns are the number of
the corresponding noise and signal samples. Si and Ni sta-
bilize the ratio for low-energy filter outputs. The averages
of the natural logarithm of the S/N values are contoured in
Figure 4b and provide a measure of filter efficiency.

The analysis shows only the responses to the filter set-
tings for a particular type of signals and noise. It therefore

inhibits generalizations for other data types. For this type of
data we see that the best waveform similarities and highest
S/N ratios are obtained at decreasing DOP window lengths
for increasing power values. This is observed in a limited
range of empirical power values and is also reported for
the frequency-independent filter by Schimmel and Gallart
(2003). The shorter DOP windows enable a better time res-
olution, but the differences between polarized and less po-
larized signals may decrease, which requires a larger power
for improved signal discrimination. Further, we observe that
for increasing power the best waveform similarities move to
increasing 2r windows. An improved frequency resolution
seems to be necessary to counteract the increased sensitivity
due to an increase of the power.

If one just wants to detect the signals, then the waveform
distortions, in general, are not very important. The waveform
distortions are caused by noise-corrupted frequency com-
ponents, which will be demonstrated with the next example.
Especially the smaller signal amplitudes can be unpolarized
and may therefore be completely attenuated before the back-
transformation to the time domain. Higher-amplitude noise
affects the signals more strongly and an increased waveform
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Figure 5. The traces in (a–c) are from top to bottom the noise-free data with three
polarized signals, the noise-contaminated filter input, and the filtered traces. The num-
bers in (b) and (c) are the relative maximum amplitudes with respect to their corre-
sponding Z components. (d) The black curves display the amplitude spectra of the three
signals and of the low-frequency (LF) and high-frequency (HF) noise. The amplitude
spectra of the signals on the normalized filter output are illustrated with the gray lines.
The inverted triangles at the top indicate the frequencies used in the filter. (e) shows
the filtered Z components for alternative filter settings. The waveforms of signals 1 and
3 are not reconstructed because of noise interferences in the frequency domain.

distortion is expected until all signal components are cor-
rupted in such way that it inhibits a signal detection by a
polarization approach.

Second Example: Colored-Noise Contamination

The first and the second traces in Figure 5a–c show the
noise-free and noise-contaminated test data of this example.
The signals 1, 2, and 3 (labeled in Fig. 5a) have different
elliptical polarizations. The relative maximum amplitudes on
the R and T components with respect to their Z components
are depicted in the upper left of each trace in Figure 5b and
c. The amplitude spectra of the three noise-free signals and
the colored noise are displayed with the black lines in Figure
5d. From these curves it is visible that the low-frequency
(LF) noise overlaps mostly with signal 1. The amplitude
spectrum of signal 2 does nearly not interfere with the col-
ored noise while there is partly a superposition of signal 3,
especially with the high-frequency (HF) noise spectrum.

The time series at the bottom of Figure 5a–c show the
filter outputs using DOP and 2r windows of 9 and 25 sam-
ples, respectively. The power m equals 128. It is obvious
from these traces that the noise has been successfully atten-
uated, but with alterations of the waveforms of signals 1 and
3. The signal-amplitude spectra of the normalized filter out-
put are demonstrated with the gray lines in Figure 5d. Parts
of these gray curves have higher amplitudes than the cor-
responding portions from the noise-free signals. This is in-
herent to the normalization of the filter output. Nevertheless,
the comparison of the shapes of the spectra shows that the
frequency components that overlap with the large-amplitude
noise have been attenuated by the filter. This is expected
because the degree of polarization of the signals is decreased
by the noise contamination at these frequencies. It is the
reason why the signal waveforms from signals 1 and 3 can
not be entirely reconstructed. Signal 1 contains more noise-
corrupted components than signal 3, which explains why
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signal 1 is more affected by the noise. The dominant fre-
quency components of signal 2 are not unpolarized by noise
interaction, which explains the good reconstruction of signal
2. In Figure 5e we present the filtered Z components with
alternative settings to access the waveform variability. It is
observed that for the different filter settings signal 1 remains
the signal that is less reconstructed after the filter procedure.
The waveforms of signal 2 vary less and resemble most the
unfiltered signal.

The example illustrates that noise and signals can be
separated in the frequency domain by considering their po-
larization. Further, interferences between signals and noise
in the frequency domain lead to decreased polarizations of
the corresponding signal components and affect the signal
waveform reconstructions. Large-amplitude noise can com-
pletely unpolarize the signals and may, depending on the
interferences in the frequency domain, inhibit the signal de-
tection by a polarization approach.

Third Example: Record Sections and Spatial
Averaging

With densely spaced data it is recommended to include
the directivity of the wave fields (slowness) and to perform
a spatial averaging to increase the filter efficiency. The signal
polarization is vulnerable to noise, and the spatial averaging
of the degree of polarization permits removal of isolated
polarized noise components or prevention of the attenuation
of isolated noise-corrupted signal components.

In this example we use a theoretical record section
where signals and noise share the same narrow frequency
band. It is therefore a difficult task for a frequency domain
filter. Figure 6a and b show the vertical and radial compo-
nent record sections, respectively. The transverse compo-
nents contain random noise and are not shown. The first
signal is located at sample 40 and has an elliptical polari-
zation that changes its phase by 3� per trace. The second
arrival has positive slowness, is linearly polarized, and in-
terferes with a third circular polarized signal at about sample
100. The third signal has two discontinuities at about traces
64 and 75. The fourth signal arrives at samples 160 to 170
with elliptical polarization and an amplitude that is modu-
lated by an absolute cosine function on the Z component.
The spatially coherent signals after sample 179 are amplified
random noise. Entire sections have been contaminated by
random noise derived from the signal-amplitude spectrum.
Similar data have been used by Schimmel and Gallart (2003)
with their time-domain filter.

The data have been filtered using DOP and 2r windows
of 11 and 15 samples, respectively. Every second frequency
sample is used to compute the degree of polarization at 18
frequency values. In Figure 6c we show the result obtained
with power m � 16 and using our local averaging procedure
with consideration of the slowness (equation 9). Here and in
the next section, we use only the median for the averages.
The window includes 15 traces, three frequency samples,
and three time samples. Figure 6 shows an overall noise

reduction without punishing signals with spatially changing
(continuous or discontinuous) polarization characteristics.
Further, the coherent noise is suppressed. For Figure 6d–f
the power m � 12 has been used. The window sizes are nine
traces, three frequencies, and three time samples for Figure
6d; three traces, one frequency, and one time sample for
Figure 6e; and three traces, nine frequencies, and nine time
samples for Figure 6f.

The main difference between Figure 6c and d is the
increased noise reduction in Figure 6c, which is mainly at-
tributed to the larger power. Although the number of traces
used in the median averaging differs by a factor of 2 no
significant imprints on the signal discontinuities and zones
with interfering signals are observed. Using waveforms or
covariance matrices in the averaging procedure would have
blurred the spatial signal discontinuities. For Figure 6e av-
eraging is performed using only three traces. In comparison
with Figure 6d a noise increase is observed. Further, we
detect signals (marked by the arrow heads) that are attenu-
ated due to unpolarization by noise. Increasing the windows
for the frequency and time samples (Fig. 6f) does not prevent
these attenuations but slightly decreases the overall noise
amplitudes. A comparison of Figure 6e with Figure 6c and
d shows that the attenuated signals marked with the arrow
heads can be healed with the spatial averaging. This is be-
cause the low degree of polarization values for the isolated
unpolarized signals are increased by the local averaging with
slowness values that include the neighboring polarized sig-
nals. This procedure can not introduce signal energy where
there is no signal energy in the input traces. For instance,
the low-amplitude signal at trace 197 and sample 160 (com-
pare Figure 6a and c) can therefore not be amplified. The
amplitudes of the weights range only from 0 to 1, which
inhibits introduction of new energy.

Preventing the attenuation of isolated unpolarized sig-
nals and of polarized signals with spatially changing char-
acteristics, but suppressing isolated polarized noise, are the
benefits of our local averaging procedure. These character-
istics are welcomed in the processing of data where the sig-
nals interfere or where waveform changes occur, such as
experienced in the transition from precritical to postcritical
reflections.

Example with Real Data

Data Characteristics and Preprocessing

The abilities of our filter are further illustrated with
data from a seismic refraction/wide-angle reflection profile
through the Western Pyrenees to the Cantabrian Mountains
in North Iberia. The source is an explosion on land, and the
wave fields are recorded with almost 100 3-c stations sepa-
rated by about 2.5 km. Our data correspond to shot J of a
large field experiment with several profiles that were used
by Pedreira et al. (2003) to determine the crustal structure
in the Cantabrian-Pyrenean area.
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Figure 6. (a) and (b) contain the Z and R components of noisy test data. The T
components contain only noise and are not shown. The first arrival (sample 40) has an
elliptical polarization that changes its phase by 3� per trace. The following two signals
(at trace 0: sample 70, sample 110) have linear and circular polarizations and contain
abrupt arrival-time changes. The fourth signal (trace 20, sample 160) changes its ellip-
ticity with space. Background noise is constructed from the signal-amplitude spectra.
The samples larger than 180 contain spatially coherent noise. (c–f) show the filter
outputs for different averaging parameters.
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The preprocessing consisted in bandpassing the data us-
ing cutoff and corner frequencies of 1, 2.5, 15, and 18 Hz
and resampling about one third of the traces to obtain a rec-
ord section with a uniform sample interval of 10 msec. The
3-c record section is shown in Figure 7a–c. The trace am-
plitudes have been normalized using their root-mean-square
(rms) amplitudes and the time is reduced by using a velocity
of 6 km/sec to increase the visibility of the different P
phases.

Application of Polarization Filter

Figure 8 and 9 show the filter outputs obtained with the
following settings. The degree of polarization of the input
data (Fig. 7) has been determined at 35 different frequencies
between 1.5 and 16 Hz. The 2r and DOP window lengths
are 35 and 9 samples, respectively. The power m equals 64.
Contrary to Figure 8, we average the degree of polarization
in Figure 9. For the averaging we use the median in data
windows of three time samples, three frequencies, and seven
traces with slowness values ranging from �0.06 to 0.06 sec/
km. This range excludes the direct S phases. The traces of
the filter outputs have been balanced by their rms ampli-
tudes.

From Figure 7 to 9 a clear energy reduction is obvious.
The comparison of Figures 8 and 9 shows how the inclusion
of the spatial information through our averaging procedure
further cleans the data by attenuating isolated polarized fea-
tures. Consequently, the coherent signals are further en-
hanced and the first arrivals are distinctly visible. Especially
at offsets larger than 140 km, the filter with the included
averaging procedure improved the visibility of the signal
onsets. In the coda more or less aligned signatures are visible
with the different frequency contents. The alignment
strengthens that these features likely correspond to portions
of the different reflection/refraction branches. Some of the
aligned signals with larger amplitudes, especially on the hor-
izontal components, can also be recognized in the filter out-
put that is obtained without any averaging (Fig. 8).

Further, different frequency ranges are visible in the
coda. A comparison with the input data shows that in some
cases the higher frequencies are caused by registrations that
are dominated by the higher frequencies. From the filter out-
put alone, no conclusions can be made over the dominant
frequencies in the signals. The filter output contains only the
polarized frequency components of the signals. Therefore,
HF features can also be a result of the attenuation of the LF
components.

Although the seismic profile is from the Western Pyr-
enees with a very complex geology (Pedreira et al., 2003),
we determine the travel time curves of reflections/conver-
sions within a simplified 1D crust model. A good signal
alignment along the theoretical travel times can not be ex-
pected because of the strong lateral heterogeneities. Never-
theless, this procedure gives a rough estimate of the type of
phases one may detect in the P-wave coda. No modeling is
intended and the reader is referred to Pedreira et al. (2003)

for a modeling study for this area. The travel time curves of
the 1D velocity model are shown in Figure 10. The traces
from Figure 9 are now normalized with respect to their rms
amplitude between 9 sec and 12 sec and are clipped at 96%
maximum amplitude. This increases the visibility of the low-
amplitude coda features.

The black curves in Figure 10 indicate the portions of
the wave field that are generally used in wide-angle reflec-
tion/refraction studies to infer crust structure. These are re-
fractions through the upper crust (Pg) and upper mantle (Pn),
and reflections at the top of the middle crust (PiP), at the
top of the lower crust (PcP), and at the Moho discontinuity
(PmP). The theoretical travel times for some of the S-wave
conversions at the mentioned discontinuities are shown as
gray lines without any black parts. PiS, P30S, PcS, and PmS
indicate the S-wave conversions of the reflections at the mid-
dle crust, at a hypothetical discontinuity at 30 km, at the
lower crust, and at the Moho, respectively. Pis, P30s, and
Pcs mark the transmission-conversions of the P-wave, which
impinges from below at the discontinuity. Note that the theo-
retical travel times of PxS or Pxs phases equal the times of
SxP or sxP phases, respectively. Their amplitudes are dif-
ferent, and their travel times alter due to the presence of
heterogeneities. In principle these phases may exist and in-
terfere, which makes the coda more complex.

In Figure 10a–c an intermittent alignment of seismic
energy to the travel time curves is observed. The first arrivals
are identified as Pg and Pn. In the Pg coda (Z components)
at distances longer than 60 km a P30P phase could explain
the observed energy, which aligns intermittently until dis-
tances of 160 km. Hints of a corresponding reflection-
conversion are also visible, especially on the northern com-
ponents. From 60 km to about 90 km signal energy aligns
at the PiS curve, which stands for a reflection-conversion at
the middle crust. The corresponding PiP phase is used
among others in the study of Pedreira et al. (2003). Further,
energy seems to align intermittently at distances of about
100 km and 220 km to the theoretical PmS curve on the
horizontal components. Other reverberations with similar
slowness accompany these features. It seems strange to see
a strong PmS at large offsets. The PmS signal with ray pa-
rameters, which correspond to the critical PmP reflection, is
expected to arrive at about 75 km. At these distances a PmS
would interfere with the direct S phases, which may obscure
the polarization of the weaker PmS. The S phases are not
enhanced because they are excluded from the considered
slowness range. Besides, other aligned signals are visible in
the coda.

Our brief consideration of the coda features can not re-
place a signal identification and interpretation study, which
also is not the purpose of the present study. The data are
from a complex region, which increases the ambiguities in
the interpretation, and some of the aligned signals could be
attributed to other phenomena. Nevertheless, it is concluded
that, besides the cleaned first onsets and the overall noise
reduction, one can identify coda signals that stand out
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Figure 7. Refraction/wide-angle reflection data from a profile through the Western
Pyrenees to the Cantabrian Mountains in North Iberia. (a), (b), and (c) contain the
bandpassed vertical, eastern, and northern components. The reduction velocity is 6 km/
sec. The traces are balanced by their rms amplitudes.
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Figure 8. (a) shows the filtered vertical components of the data from Figure 7. The
degree of polarization is not averaged. The traces are balanced by their rms amplitudes,
and the amplitudes are clipped at 98%. (b) and (c) contain the corresponding eastern
and northern components.
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Figure 9. (a) shows the filtered vertical components of the data from Figure 7. The
traces are balanced by their rms amplitudes. The amplitudes are clipped at 98%. (b)
and (c) contain the corresponding eastern and northern components.
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Figure 10. (a) The filtered traces from Figure 9a are balanced by their rms ampli-
tudes between 9 and 12 sec and are clipped at 96% amplitude to increase the amplitudes
in the coda. The arrival times are for a 1D crust model and can give a rough estimate
of arrivals that one can expect in the coda. An interpretation is not intended. (b) and
(c) are the same as (a), except for the eastern and northern components.
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through their polarization, which is larger than for the noise.
These signals are detected when they are aligned over sev-
eral traces. Thus, depending on the data the filter can help
to enhance coda signals for a refined modeling of the un-
derlying structure. In the case of the identification of P-to-S
conversions one might be able to infer the Poisson ratios.

Alternative Filter Settings

In Figure 11 the vertical component filter output is
shown for alternative filter settings. We have increased the
number of frequencies from 35 to 210 to obtain the section
displayed in Figure 11a. This means that the polarization is
now computed at all frequencies to avoid the interpolation
of the degree of polarization matrix at omitted frequency
values. In comparison with Figure 9a, we observe that the
filter output based on all frequency components contains
more energy in the coda. This is explained by the fact that
the interpolation procedure acts similarly to a smoothing op-
erator on the complete degree of polarization matrix. In other
words, due to the interpolation, the degree of polarization
contains fewer details and is less rough, which is reflected
in an overall reduction of energy.

Figure 11b shows what happens when we increase the
DOP window from 9 to 13 samples. Figure 11b shows that
the first onsets are sharp and that there is less energy in the
coda than in the data from Figure 9a. The increased DOP
parameter implies that the degree of polarization at each fre-
quency is based on more time samples. Through this window
increase the filter now down-weights more the polarized
events of short durations. This is reflected in the energy de-
crease of the filtered data. If one additionally increases the
2r window then one attains the filtered traces displayed in
Figure 11c. In Figure 11c we observe an increase of coda
energy. For instance, at times and distances that correspond
to the S-wave arrivals, more LF signals are observed than in
Figure 11b. Further, the first onsets and their immediate coda
seem to be less well resolved. This can be observed for the
Pn phase at about 200 km and for the Pg phase at about 50
to 100 km. The 2r window increase down-weights the time
resolution especially of the higher-frequency signals which
inherently yield a shorter time resolution than the low-
frequency signals. Some short-duration signals, such as the
hypothetical P30P signal between 60 and 100 km offset, are
better resolved in Figure 11c than in Figure 11b. This is
explained by the increase of the 2r window which captures
less well the time-varying properties of the polarization. It
therefore counteracts a little bit the increase of the DOP win-
dow. The longer windows can yield more reliable estimates
when no other signals are included in the window.

Altogether, results obtained with the different parame-
ters can demonstrate the robust features in the data. The
settings permit representation of the data in a more conser-
vative to a more forceful fashion. The best filter settings
depend much on the data at hand, the target or purpose of
the data analyst, and her/his experiences and customs in
viewing record sections.

Discussion

We use a new degree of polarization measure to design
a data-adaptive frequency-dependent polarization filter. It is
shown that the filter enhances polarized signals through the
attenuation of less polarized frequency components in the
local spectra. The degree of polarization that we use was
originally defined by Schimmel and Gallart (2003) as a mea-
sure of the variation of an arbitrary polarization through the
course of the signal. Schimmel and Gallart (2003) used this
measure to construct their time-domain filter. They applied
analytic signal theory and a variational approach to obtain
the instantaneous polarization attributes without need of an
eigen analysis. The approach presented in this study is based
on a principal-component analysis to include the frequency
dependence.

The filter presented here follows a simple recipe: trans-
form the data to the time-frequency domain, weight them by
their frequency-dependent degree of polarization, and per-
form the inverse transforms to obtain the filter output. The
weight function, the degree of polarization, is the heart of
the method and is not restricted to 3-c seismic data. The filter
can be applied to different data types and can be tailored in
many ways to account for specific data characteristics or
geometries. The frequency-dependent degree of polarization
down-weights the less polarized components in the fre-
quency domain and therefore cleans the signals from noise
components. Signal components that are corrupted by noise
will also be attenuated before the backtransformation into
the time domain. In this sense the filtered records show the
polarized components of the signal waveforms rather than a
complete reconstruction of the waveforms.

The main parameters of our filter are the DOP and 2r
windows and the power m. The DOP window length should
be shorter than the signal duration but not too small to pro-
vide a representative degree of polarization. Similar to any
principal component analysis, the 2r window length should
be larger than the signal duration and depends on the signal
separation, dominant periods, and S/N energy ratio. Similar
to other filters, playing with the different settings is required
to learn the filter responses and to find a satisfying output.
We recommend to start filtering with conservative settings
and to interprete the robust features such as in any other
study.

The spatial averaging procedure for densely spaced data
is a well recognized additional tool to improve the efficiency
of polarization filters. For instance, Bataille and Chiu (1991)
and Jurkevics (1988) report the reduction of the estimation
variance of polarization attributes when averaging the co-
variance data matrices of several seismic records. Depending
on the nature of the data one alternatively can average the
waveforms before building the covariance matrices. In our
filter the averaging is applied on the degree of polarization
and imprints on the data before the backtransformation into
the time domain. Our local averaging considers the signal
slowness and does not attenuate signals with spatially chang-
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Figure 11. The vertical component filter output is shown for different filter param-
eters. (a) Here we have used 210 frequencies, a DOP window of nine samples, and a
2r window of 35 samples. (b) The output is obtained with 35 frequencies, an increased
DOP window of 13 samples, and a 2r window of 35 samples. (c) The parameters are
35 frequencies, DOP window of 13 samples, and a 2r window of 45 samples.
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Figure 12. (a) The Z and R component consists of
a sine and cosine curve with same frequency. The
amplitudes on R change abruptly at samples 100, 150,
and 200. (b) shows the degree of polarization corre-
sponding to the test data in (a) at the frequency of the
sine wave. The first trace is determined with our ap-
proach, and the second trace is determined with the
theory of Samson and Olson (1980). The Samson–
Olson theory measures how much of the spectral ma-
trix is in a pure state with a purely polarized wave.

ing waveforms as long as the signals stay polarized. This is
very important for increasing the visibility of variable sig-
nals due to heterogeneities and phase changes. Concepts that
average the waveforms or the covariance matrices attenuate
the variable signals and further decrease their visibility.

An alternative objective measure for the degree of po-
larization has been presented by Samson and Olson (1980).
Their approach is based purely on the eigenvalues of the
spectral matrix to determine how well the spectral matrix
can be decomposed into one eigenvalue–eigenvector pair.
Du et al. (2000) extend this method by incorporating multi-
taper windows to attenuate spectral leakage and by perform-
ing a noise decontamination of the data matrix. The noise
estimate is obtained from a presignal data window. Alto-
gether, these modifications translate into the degree of po-
larization measure.

Our filter concepts are similar and the differences are in
the degree of polarization determination. Whether a local
spectral component will be more or less attenuated by the
different approaches depends on this real number. The de-
gree of polarization can not alter the phase spectrum, it alters
only the amplitude spectrum. Therefore, a complete signal-
waveform restoration is not possible with the filters by Sam-
son and Olson (1980), Du et al. (2000), and our filter, when-
ever the noise interferes with the signal in the frequency
domain.

The degree of polarization by Samson and Olson (1980)
is not designed to enhance superimposed signals with dif-
ferent polarization directions. These signals are decomposed
into more than one eigenvalue–eigenvector pair and are
therefore attenuated with their filter. This is illustrated in
Figure 12. The sine and cosine wave in Figure 12a are two
orthogonal polarized signals with the same frequency that
appear on the Z and R components. There is no noise and
no energy on the T component (not shown). The cosine on
the R component has abrupt amplitude changes at samples
100, 150, and 200. Figure 12b shows the degree of polari-
zation using our approach (first trace) and the theory of Sam-
son and Olson (1980). The degree of polarization using the
eigenvalue approach is smaller than one, as long as the com-
posite signal can be decomposed into two principal direc-
tions. Interfering signals such as may occur at the crossovers
in seismic record sections can be attenuated similarly. The
composite signal is restricted to a plane in an unitary space
and requires a different definition of polarization to be en-
hanced (Samson and Olson, 1980).

Further, it becomes obvious that the eigenvalue ap-
proach is amplitude biased since the result depends on the
energy on the R component. This is an advantage when look-
ing for strong arrivals but may penalize the weak signal de-
tection, the averaging procedure for variable amplitude sig-
nals and the detection of composite signals with different
polarization. Independent of the number of significant prin-
cipal components (directions) our measure uses the stability
of the polarization directions that correspond to the largest
principal component. The measure by Samson and Olson

(1980) is based on a different philosophy and signal defini-
tion than our method. The differences, however, seem not
to be important for the main signatures in our wide-angle
test data from Figure 7. For these data we can obtain similar
outputs with both filters. Both are tools for signal enhance-
ment/detection, and it is the nature of the data and our pur-
pose which decides which method to chose.

Conclusion

We can conclude from our examples that the filter
enables frequency-dependent signal enhancement through
noise suppression. This, however, is only valid for data
where the signals are more polarized than the noise. The
degree of polarization measure is the heart of our filter. It
permits the detection and separation of time-interfering sig-
nals with different frequencies. Polarized signals that inter-
fere in time and frequency can also be enhanced because our
approach uses the largest principal direction of the decom-
posed composite signal. Further, the degree of polarization
can be averaged for densely spaced data to increase the filter
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efficiency. It is important for many applications to note that
our averaging procedure does not attenuate polarized signals
with varying waveforms, polarization styles, and/or ampli-
tudes. This is meaningful in the processing of record sections
with varying signals due to heterogeneities or due to phase
changes in the transition from precritical to postcritical re-
flections. Other benefits are the suppression of isolated noise
components and the prevention of the attenuation of isolated
unpolarized signals. We further recall that the filter output
shows the polarized components of the signal waveforms,
which in the case of noise corruption must not be the com-
plete reconstruction of the waveforms.

The filter framework itself is straightforward and per-
mits tailoring of the measure to the different specific appli-
cations. The filter is not restricted to seismic data and more
than 3-c data can be used. The polarization is subject to noise
contamination, and signals with destroyed polarization on
all frequency components can not be detected.
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