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4  Tremor Frequency: The Source

Compared with the seismograms produced by the explosion and double-couple sources

of earthquake seismology, volcanic tremor, especially harmonic tremor, is an unusual seismic

signal. Earthquake sources, which are limited in time, are usually modeled as modified delta

or step functions resulting from a dislocation in the earth. Seismic waves from the source

then propagate through the earth. While the resulting seismogram may last for several

hours depending on the epicentral distance, the frequency content of each segment is

different and can be explained as a convolution of the source signal with the transfer function

of the earth for the various types of waves. Harmonic tremor, on the other hand, continues

for several hours at a time with only small changes in the frequency of the fundamental. It

appears to be a sequence of repetitions of a slowly changing waveform. The changes in the

shape of the waveform are reflected in the variation of the fundamental frequency, the

amplitude, the frequency content and the polarization. An important objective of volcano

seismology must be the effort to use information derived from tremor seismograms to

describe the physical or chemical conditions at the tremor source through modelling.

Narrowband peaks observed in seismic recordings from volcanoes, particularly when

they are members of a harmonic series, are generally attributed to oscillations of bodies of

fluid or gas in the volcano. Several such models have been proposed, for instance, free

eigenvibrations of a magma volume [SHIMA, 1958, SHIMOZURU, 1961], standing waves in a

gas-filled conduit [SCHLINDWEIN et al, 1995, BENOIT and MCNUTT, 1997] or the resonance of

fluid-filled cracks [MORI et al, 1989 and CHOUET, 1996]. In these models, the authors assume

that the conduit and its contents are an oscillator which they describe using a linear differential

equation and which has been excited by the action of an impulsive force of unspecified

origin. They claim that any harmonic overtones observed are the result of the excitation of

higher modes. For these models, the authors match the frequency of the oscillations to the

frequency of the tremor by varying the dimensions of the conduit model, along with the

density, viscosity and other characteristics of the fluid in the conduit. In fact, these models

neglect the most interesting question in volcano seismology: what is the the physical process

which provides the force to excite the oscillator?
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The observations derived from Lascar’s unusual harmonic tremor with many overtones

provide a foundation on which to develop physical models for the tremor source process

which go beyond the oscillations in a gas-filled volume or a fluid-filled body in response to an

outside force. To produce a spectrum with many exactly integer harmonics as in Lascar’s

harmonic tremor, the seismic waves generated by the source must have extremely steep

slopes and a well-defined periodicity, as do sawtooth or square waves. Waves with such

characteristics have been recorded during the resonance of bubbles in a sound field [LEIGHTON,

1994] and in shock waves during flow [LIGHTHILL, 1993]. They have also been observed in

cyclic and reversible phenomena with rapid transitions between two or more quasi-steady

states like Trevelyan’s rocker [RAYLEIGH, 1945]. JULIAN [1994] models the source for tremor

with harmonic overtones as the movement of conduit walls in response to unsteady flow of

magma. Thus, the characteristics of harmonic tremor suggest that it is caused by the flow

of liquids or gases and their interaction with the conduit.

Changes in the fundamental frequency of the harmonic tremor also provide clues to

characteristics of the source. While they might be produced by a change in the speed of

sound along the propagation path, such a change is not likely to occur over an interval of

seconds. Doppler shifting of a constant frequency source due to motion toward or away

from the stations can also be excluded as a cause of the frequency changes, since the

stations lie in different directions from the volcano. In addition, if the frequency changes

were caused by Doppler shifting, the frequency should revert to the original, constant

frequency after motion ends. The frequency changes are probably the result of some

systematic change at the source.

Models for the source of harmonic tremor must produce waveforms with the following

characteristics.

• The signals must have a well-defined periodicity and steep slopes at some

point during the cycle. The steep slope causes the many harmonic lines in the

Fourier amplitude and power spectra.

• The model must also allow the cycle length to change over the time frame of

minutes, as can be observed in Figure 2.12.
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• The process must be “non-destructive”, since it continues for hours with no

apparent external effect on the volcano.

Many of the flow processes studied in fluid dynamics satisfy these criteria. They are repetitive

and may continue for hours, as long as the reservoir of fluid at the source is large. There

are several fluids in any active volcano which may be involved in flow processes: Magma,

water, either in the form of liquid or steam, and other gases such as CO2 and SO2. In

general, a flow regime is described by the Reynolds number, which is dimensionless,

Re = vd/κ, (4.1)

where v is the flow velocity of the fluid, d a measure of the characteristic dimension of the

flow. κ, the kinematic viscosity of the fluid is defined as its shear or dynamic viscosity, η,

divided by its density, ρ. The characteristic dimension of the flow regime depends on the

specific example. In cases of flow in a conduit, d is taken to be the conduit diameter, while

it may be the diameter of an obstruction in other cases.

Three flow regimes in which a continuous, steady flow is converted into a cyclic

stream can be modelled as Vortex Shedding, Slug Flow and the Soda Bottle. The three

models can be distinguished on the basis of the range of Reynolds numbers in which they

occur. Vortex shedding occurs when the Reynolds numbers lies between 100 and 105

[FABER, 1995]. Slug flow begins in model flow systems if the Reynolds number rises above

2300 [FABER, 1995], while the Reynolds numbers for the Soda bottle model must be very

low, on the order of 1 [GINZBURG, 1963]. For each of the three models, I describe the

phenomenon and draw parallels between the experimental conditions under which it is

observed and realisitic situations in a volcano which might produce it. Finally, I will constrain

the model of the flow system using parameters measured from the harmonic tremor

seismograms and discuss its implications for the source of tremor.

4.1 Vortex Shedding

Vortices or eddies often develop in the flow field, or wake, behind bluff objects. Two

everyday phenomena caused by vortex shedding are the fluttering of a flag and the “singing“
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of power lines in the wind. Fluid dynamics studies mainly concern themselves with the

behavior of vortices behind cylinders, however vortex shedding has also been observed

during flow past corners [BIRKHOFF and ZARANTONELLO, 1957] or steps [HOGAN and MORKOVIN,

1974] and in many other configurations which are important in engineering problems.

As the flow velocity increases, eddies which develop behind an object are likely to

detach from it, forming a von Kármán vortex street. As each vortex develops and detachs,

it produces sound waves. As long as the Reynolds number remains constant, eddies are

shed regularly with alternating spin or vorticity. The sound pulses then appear as periodic

oscillations of a sound field with a characteristic frequency [MORSE and INGARD, 1968].

When the Reynolds number is low (Re < 10), viscous forces are very important in a

flow system. A fluid will flow smoothly and evenly around an object. As the velocity of the

fluid, and consequently Re, increase, the flow separates from the object and eddies begin

to develop on its downstream side. In calculating the Reynolds number, the characteristic

dimension, d, is the diameter of the object. At still higher velocities (Re > 100), the eddies

v
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Figure 4.1  Model systems for eddy shedding. (a) Simple eddy shedding behind an obstacle.
(b) Eddy shedding with resonance. (c) Jet edge whistle. (d) Eddies behind a step.
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are shed regularly and a von Kármán vortex street develops (Figure 4.1). The shedding

frequency, f
K
, is given by the Strouhal number,

St = f
K
 d/v . (4.2)

In this case, the Reynolds and Strouhal numbers are calculated using the size of the obstacle

for d. For all practical purposes, St can be taken to be 0.2 when the Reynolds number lies

between 102 and 105 [MORSE and INGARD, 1968, FABER, 1995, TRITTON, 1988]. When Re >

1000, the wake becomes increasingly turbulent and the periodicity is less strong [BIRKHOFF

and ZARANTONELLO, 1957].

Under certain conditions vortex shedding may be coupled into a feedback mechanism,

producing very large forces and sound amplitudes. As many as 10 integer harmonics have

been observed [MORSE and INGARD, 1968]. The geometric conditions necessary for stimulated

sound emission due to a feedback resonance from eddy shedding exist when the shedding

frequency, f
K
, is equal to one of the transverse resonance frequencies of the duct, f

i
. If

there is a cylinder of diameter d in a duct with the transverse dimension D, for example,

f
K
 = 0.2v/d = nc/2D = f

i
,   i = 1, 2, 3, ... (4.3)

where c is the speed of sound in the fluid.

Resonance may also occur when the vortex street produced by one cylinder interacts

with a cylinder downstream (Figure 4.1b). The interaction between the eddies and the

second cylinder produces a pressure disturbance which is radiated in all directions and

propagates through the fluid with the velocity of sound. When the pressure pulse reaches

the upstream cylinder, it affects the formation and detachment of the eddies. If the pressure

disturbance arrives at the time in the formation cycle of a new vortex to stimulate its growth,

the vortex will be amplified, and strong acoustic emission will result. To calculate the

conditions necessary for stimulation, it is necessary to know how long it takes a vortex to

travel between the two cylinders. If the cylinders are separated by a distance, L, a vortex

reaches the second cylinder after an interval, T
D
 = L/v

D
, where the eddy drift velocity, v

D
 ~ 0.8v

[MORSE and INGARD, 1968]. The pressure pulse then travels at velocity c back to the first
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cylinder, and arrives there after an interval, T
c
 = L/c. Usually, v

D
 « c, so T

D
 » T

c
 and the travel

time of the pressure pulse can be ignored. The condition for resonance is then that the

inverse of the travel time be a multiple of the von Kármán vortex frequency:

1/T
D
 = nf

K
(4.4a)

or

v
D
/L ~ 0.8v/L  = 0.2nv/d,  or  L ~ 4d/n. (4.4b)

Resonances with this type of geometry have produced damage in cooling towers of power

plants [TRITTON, 1988].

Eddies form behind almost any object, not only cylinders, under the right flow

conditions. HOGAN and MORKOVIN [1974] observed vortex formation at 9.5 Hz behind a

0.0013 m step with flow velocities in air of 3.3 m/s (Figure 4.1d). Vortex resonance can

also be observed in jets (Figure 4.1c, [BIRKHOFF and ZARANTONELLO, 1957, MORSE and INGARD,

1968]). There are many reports of vibration-induced damage in dams [i.e. DOUMA, 1974,

LYSSENKO and CHEPAJKIN, 1974, GONCHAROV and SEMENKOV, 1974]. In particular, LJATKHER

[1980] describes “self-induced vibrations” in a dam spillway that he attributes to vortex

shedding. The amplitude of these vibrations in an instrumented structure more than 2.5

km from the dam was greater than 0.5 mm/s.

In a volcano, it is unrealistic to expect to find cylinders in the center of a flow field.

Steps, corners and jets similar to those sketched in Figure 4.1 are however not unlikely.

Jets, for example, have been observed in association with steam explosions and harmonic

events at Semeru [HELLWEG et al, 1994, SCHLINDWEIN et al, 1995]. In geological investigations

of dike structures, junctions and constrictions have been observed which could act like

corners or steps in a flow field.

Just as the fundamental frequency is a basic characteristic of harmonic tremor, von

Kármán vortex streets, which occur when 102 < Re < 105, are defined by their shedding

frequency, f
K
, (Equation 4.2). Solving Equations 4.1 and 4.2 for the flow velocity v in terms

of frequency, the Reynolds number and the kinematic viscosity gives:
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Figure 4.2  Flow velocities for the eddy shedding model as a function of Reynolds number
and kinematic viscosity when the eddy frequency is 0.63 Hz. The flow velocity, denoted
by color, is calculated from Equation 4.5. The colored bars give the kinematic viscosities
of several fluids which may be encountered in a volcano. Eddy shedding may occur
when the Reynolds number lies within the  cross-hatched region. The white lines
show the flow dimension as a function of kinematic viscosity and Reynolds number,
given the eddy frequency.

v2 = f
K
κRe/St. (4.5)

Figure 4.2 shows the velocity (color) for a range of Reynolds numbers and kinematic

viscosities, if the vortex shedding frequency is taken to be f
1
 = 0.63 Hz, the fundamental

frequency of the harmonic tremor. The Reynolds number range for which vortex resonance

occurs is indicated by cross-hatching. The colored bars show typical kinematic viscosities

for dry air, water and steam at atmospheric pressure and various temperatures, for steam

at 2x107 Pa and for andesite melt at several temperatures [MURASE and MCBIRNEY, 1973]. A

lithostatic pressure P = 2x107 Pa corresponds to a depth below the surface, h, of
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 h
P=

ρg = 2x107 Pa / (2.5x103 kg/m3 9.81 m/s2) ~ 800 m

where ρ is the density of the rock and g the gravitational acceleration at the surface of the

earth. Characteristic dimensions calculated using Equation 4.3, are plotted as labeled,

white contour lines.

If vortex shedding resonance is the process which generates harmonic tremor, then

Figure 4.2 provides several clues to the fluid involved, as well as the location and size of

the obstacle causing the eddies. For steam at pressures equivalent to a depth of 800 m to

shed eddies every 1.6 s, the obstacle could range in size from 4 mm to 4 cm at flow

velocities of 1 cm/s to 10 cm/s. At the opposite end of the range of kinematic viscosity,

even the most fluid andesite melt, assuming it retains the characteristics that MURASE and

MCBIRNEY [1973] reported, must flow at 5 m/s to 50 m/s through characteristic flow

dimensions of 5 m to 50 m in order to generate vortices that detach every 1.6 s. The order

of magnitude for velocity and obstacle size for water at 100° C, superheated steam or dry

air at atmospheric pressure are 0.1 - 5 m/s and 0.05 - 0.5 m, respectively. These dimensions

are similar to those of dikes observed in volcanoes.

Shed vortices produce sound waves in two ways. First, the eddies produce density

variations in the fluid, in particular when they come into contact with conduit walls, and are
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Table 4 -- Eddy Shedding Forces
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therefore sources of sound waves. Secondly, each time an eddy is shed from the object, it

produces a force on the object. The force per unit length due to shedding on a cylinder of

diameter d, is given by MORSE and INGARD [1968]:

F
l
 ~ bρv2d/2, (4.6)

where where b is a unitless constant and its range, 0.5 ≤ b ≤ 2, has been determined

experimentally [MORSE and INGARD, 1968]. This force is similar to the force due to the Magnus

effect. It is actually a time-varying force on the cylinder that increases as the vortex forms

and reaches a maximum when the eddy is shed, then dropping suddenly. In the volcano,

each impulse to the obstacle as an eddy is shed will propagate in the medium as a seismic

wave. For the flow velocities and dimensions given in the previous paragraph, Table 4 gives

Figure 4.3  Relationship of flow velocity to frequency. (a) The Reynolds number is held
constant and flow velocities are given for various kinematic viscosities taken from the
range for air, steam and water at low pressures. (b) Kinematic viscosity is held constant
and flow velocities are given as a function of shedding frequency for several Reynolds
numbers. k.v. is the kinematic viscosity in m2/s.
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the force due to eddy shedding calculated using Equation 4.6 on a cylinder of 1 m length.

These values can only be taken only as a rough estimate of the minimum order of magnitude

for the force as they do not take resonance into account. This can intensify the force by

several orders of magnitude. In addition, it is highly unlikely that the obstacle producing the

eddies is a cylinder. While many papers describe observations and experimental evidence

of damage due to eddy shedding, there are few measurements of the forces involved and

little theory that can be applied to calculating exact forces. BLAKE [1986] reports that under

appropriate geometric conditions, the forces due to eddy shedding can exceed the values

predicted by Equation 4.6 by four orders of magnitude.

Section 3.1.2 gives the amplitude for a point force as the source of Lascar’s harmonic

tremor as being on the order of 106 N. Even if feedback resonance is a factor [BLAKE,

1986], and the geometry of the vortex-producing obstacle can be approximated as a cylinder,

so that Equation 4.6 is valid, it is unlikely that the first three substances listed in Table 4

would cause sufficiently large forces to be involved in the generation of harmonic tremor.

According to the table, the forces due to the flow of andesite would be nearly large enough

to produce the tremor observed at Lascar. It is, however, unlikely that andesite would flow

at a velocity of 5 m/s or more, if the volcano is not erupting. There were no reports of

eruptions during the observation of harmonic tremor. Only the vortex shedding in the flow

of water near the surface, with the additional assumption of feedback resonance [BLAKE,

1986] produces forces which approximate the estimate of the amplitude of a point force

derived from the seismograms using Equation 3.1.

If Lascar’s harmonic tremor is caused by eddy shedding in a flow of hot water near

the volcano’s surface, changes in the frequency may result from changes in the flow velocity,

the viscosity of the fluid or the geometry of the obstacle. If the geometry of the obstacle

were to change rapidly, it would probably mean some movements of the rock walls of the

conduit. Such changes are unlikely to be reversible and the tremor would probably stop.

Reversible changes in the flow velocity, due to changes in the pressure or the kinematic

viscosity are quite realistic. Figure 4.3a shows how the fundamental frequency changes

with changing flow velocity at constant Reynolds number for several different kinematic
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viscosities. In Figure 4.3b the relationship between flow velocity and frequency at various

Reynolds numbers is shown for constant kinematic viscosity. Relatively large changes in

the kinematic viscosity or the Reynolds number produce only small changes in the flow

velocity and tremor frequencies.

4.2 Turbulent Slug Flow

Intermittent turbulence or turbulent slugs are sometimes observed in the transition

from purely laminar pipe flow to completely turbulent flow [GINZBURG, 1963, TRITTON, 1988].

In this case, the slug is a region of turbulence in the pipe, which is separated from other

turbulent segments by regions of laminar flow. Figure 4.4 shows a sketch of a slug flow

cycle. If the reservoir is large, the pressure difference between the reservoir and the outlet

will remain approximately constant over a long period of time. When calculating the Reynolds

number for this experiment, the characteristic dimension is the diameter of the pipe or

Figure 4.4  Cycle of turbulence slug generation. (a) Laminar flow in the conduit has reached
a Reynolds number at which turbulence is generated at the intake. (b) The turbulence
slows the flow and therefore lowers the Reynolds number, so that the fluid behind the
turbulent section or slug again flows laminarly. (c-d) As the turbulent slug progresses
through the conduit, it lengthens because its forward end progresses more rapidly
than the average flow velocity while the rear end is slower. (e-f) Eventually the slug
leaves the end of the conduit and the flow velocity increases again until a new slug is
generated.
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conduit, d. One of the necessary conditions for the generation of turbulent slugs is that the

ratio of the length of the pipe or conduit, L, to its diameter, d, be L/d > 50. For a given

pressure, the flow rate will be higher if the flow is laminar and lower if the flow is turbulent.

Imagine a situation, as in Figure 4.4, where the flow at a certain Reynolds number in

a pipe connecting two reservoirs is laminar. Experiments have shown that sometimes

when the Reynolds number increases, usually due to an increase in the flow velocity,

turbulence develops at the intake (Figure 4.4a, [GINZBURG, 1963, TRITTON, 1988, FABER,

1995]). The turbulent slug moves through the pipe at a lower velocity than the laminarly

flowing fluid (Figure 4.4b). At the same time, its front and rear edges propagate at different

velocities through the pipe, the front at a higher velocity, v
F
, than the “center” of the slug

and the rear at a lower velocity, v
R
, so that the slug grows in length as it progresses (Figure

4.4c). In the meantime, the fluid behind the slug can no longer flow at the high velocity

which caused turbulence to develop; the flow becomes laminar again (Figure 4.4b). When

the front end of the slug has left the pipe, the region of laminar flow grows until the rear of

the turbulent slug has left the pipe (Figure 4.4e). Finally the velocity of the flow can again

increase to the point at which a new turbulent slug is generated at the intake (Figure 4.4f).

The cycle begins again.

The propagation velocities of the front and rear ends of the slug have been studied

experimentally [TRITTON, 1988]. Figure 4.5 [taken from TRITTON, 1988] shows the ratios of v
F

Figure 4.5  Ratios of front and rear velocities of turbulent slugs to the mean flow speed as
functions of the Reynolds number, based on experimental results. Taken from TRITTON

[1988], p. 286.
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and v
R
 to the mean flow velocity, v

A
, as a function of the Reynolds number of the flow. When

Re ~ 2300 and generation of turbulent slugs begins, these two velocities are very close to

v
A
, and the slugs do not grow while flowing through the system.

Slug flow is a cyclic process. The period of the cycle is determined by the length of

the conduit and the velocity of the rear of the slug,

T
S
 = L/v

R
. (4.7)

The flow leaving the conduit is turbulent from the time the front of the slug reaches

the end, L/v
F
, until the rear of the slug reaches the end, L/v

R
. T

T
 = L/v

R
 - L/v

F
 is the time the

flow is turbulent. This value is used along with the cycle length to calculate the intermittency

factor, the fraction of time that the motion is turbulent [TRITTON, 1988],

T
I
 = T

T
/T

S
 = (L/v

R
 - L/v

F
 )v

R
 /L = 1 - v

R
 /v

F
 . (4.8)

If, for a given configuration, the mean flow velocities in turbulent and laminar regimes

are taken to be constants, and the change between the regimes virtually instantaneous,

the variation of flow velocity can be modeled as a square wave (Figure 4.6a). This figure

also shows the relationship between the intermittency and the period of the slug flow cycle.

Figure 4.6b [TRITTON, 1988] shows an example of measured flow velocities taken from the

Figure 4.6  Flow velocity as a function of time in a fluid flowing in a turbulent slug regime.
(a) Theoretical approximation using a 13% square wave  describing the intermittency
(Re=2675, taken from Table 5). (b) Trace of fluid velocity from a flow experiment
showing local mean velocity changes between laminar and turbulent slug regimes
(Re=5000, L/d=290). Taken from TRITTON [1988], p. 18.
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literature. Although this waveform is not exactly a square-wave, this example does have

extremely rapid velocity changes which produce harmonics in a Fourier spectrum.

For slug flow to occur in a volcano, two reservoirs of fluid must exist at different

pressures, separated by a long, narrow conduit with L/d > 50 (Figure 4.7). Such conduits

may be preserved as dikes often observed in eroded volcanoes. If the slug flow occurs in

a conduit connecting an internal reservoir to the atmosphere and the volcano is not erupting,

the fluid cannot be magma, but must be water or gases such as steam.

The parameters which define this model are the kinematic viscosity of the fluid, the

pressure difference between the reservoirs and the dimensions (length and diameter) of

the connecting conduit. To test the model, these parameters must be related to parameters

which can be measured from the seismograms of harmonic tremor, such as the harmonic

frequencies, f
n
, n = 1, 2, 3, ... (Figure 3.3), and the shape of the spectrum (Figure 3.5).

Figure 4.8 shows the power spectrum of a 10 minute interval of harmonic tremor determined

from the recording of the east component at station LA2. It is compared with the power

spectrum of a 13% square-wave. These spectra are similar, in that their spectral lines

appear in groups of 7, with decreasing amplitude. This suggests that the seismogram may

be produced by a source function like a square wave with an intermittency of 13%. Figure 4.5

can be used to determine the intermittency for different Reynolds numbers (Table 5). For

an intermittency of 13%, the Reynolds number of the flow is 2675.

Figure 4.7  Geometry for generating turbulent slug flow in a volcano.
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According to this table and Figure 4.5, variations in the flow parameters should have

two effects. The intermittency should change with the Reynolds number. In addition, the

frequency of the cycle should change as the ratio of v
R
/v

F
 changes.

For a given Reynolds number, the flow velocity is related to the conduit size and the

kinematic viscosity of the fluid by Equation 4.1. In Figure 4.9, the flow velocity has been

calculated using Eq. 4.1 for Re = 2675. The colors denote the flow velocity as in Figure 4.2.

Figure 4.8  Comparison between the power spectra of harmonic tremor (black, taken from
Figure 3.3b) and a 13% square wave (gray).

eR v
R

v
F ycnettimretnI

0032 0

0052 88.0 69.0 80.0

5762 78.0 1 31.0

0572 58.0 50.1 91.0

0003 8.0 22.1 43.0

0004 37.0 54.1 5.0

0005 56.0 84.1 65.0

0006 6.0 84.1 95.0

0007 55.0 84.1 36.0

Table 5 -- Slug Velocities and Intermittancy
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The cross-hatched area indicates the range of conduit sizes which may be expected in a

volcano, while kinematic viscosities of andesite melt, water (100º C), steam at various

temperatures and pressures, as well as dry air at several temperatures are marked for

reference by colored bars.

Equation 4.8 gives another constraint on the geometry. If L/d = 50, as is necessary for

slug flow and the period of the cycle is that of Lascar’s harmonic tremor, T
S
 = 1/f

1
 = 1.6 s,

then v
R
 = L/T

S
 = 50d/T

S
 = 50f

1
d. This is plotted in Figure 4.9 as a white bar marked with the

frequency. It gives the correspondence between conduit size and flow velocity for cycles of

T
S
 = 1.6 s. If the kinematic viscosity of the fluid is of the order of 10-6 m2/s, as it would be for

steam under high pressure, the conduit would be only several centimeters in diameter, and

the flow velocity would be about 0.01 m/s. When the kinematic viscosity is about 10-3 m2/s,

in the range for air, water and steam at atmospheric pressure, which corresponds to near-

surface hydrothermal activity, then the conduit diameter is on the order of 0.1 m and the

flow velocity around 1 m/s. According to this model, the flow velocity for even the least

viscous andesite melt is close to 100 m/s. Such movement is highly unlikely in a volcano

that is not erupting. Thus, the slug flow model indicates that the source of the harmonic

tremor recorded at Lascar Volcano must be near the surface, and the fluid generating the

signals is not likely to be magma, but rather steam, water or air.

In a slug flow regime, the pressure at any given time and point along the conduit

depends on whether the flow is mainly laminar or turbulent at that point. During laminar

flow the pressure gradient is given by the Hagen-Poiseuille law [SCHLICHTING, 1958, FABER,

1995]:

Re= 





d dP

dL2 4

3

2

ρ
η . (4.9)

Suppose one end of the conduit is at atmospheric pressure. If the dimensions for the

conduit are taken from Figure 4.9 for flowing water as d = 0.2 m and the length is then

calculated, L = 50d = 10 m, and the Reynolds number is 2675, then Equation 4.9 gives the

pressure gradient as dP/dL ~ 9 N/m3.
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In the region of turbulence the pressure gradient will be steeper than where the flow

is laminar, because the net movement of fluid through the conduit is lower than during

laminar flow [GINZBURG, 1963, TRITTON, 1988, FABER, 1995]. When the flow is fully turbulent,

the Reynolds number and the pressure gradient are related by an experimental relationship

given by Blasius [SCHLICHTING, 1958, FABER, 1995]

( )
Re7 8

3

2

1 2

22 4 2/

/

.=








π

ρ
η
d dP

dL . (4.10)

Figure 4.9  Flow velocities for the slug flow model as a function of conduit size and kinematic
viscosity when the Reynolds number of the flow is 2675. The flow velocity, denoted
by color, is calculated using Equation 4.1. The colored bars give the kinematic
viscosities of several fluids which may be encountered in a volcano. Conduit diameters
may be reasonably expected to lie within the cross-hatched region. The sloped white
region shows configurations for which the slug flow cycle would have a period of
T

S
 = 1/f

1
 = 1.6 s.
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For the same geometry and Reynolds number as above, the pressure gradient is dP/dL ~

16 N/m3 for turbulent flow.

In this model, the harmonic tremor signal measured at the stations of the Lascar

network is caused by changes in the fluid’s pressure which occur when the flow changes

from laminar to turbulent. In principle, these pressure variations act as a variable force on

the conduit walls  [WALLIS, 1969, CHOUET et al, 1997]. Unfortunately, it is difficult to describe

these variations theoretically. Although the description here gives the Reynolds number as

a constant, it in fact changes during a cycle as the flow changes from laminar to turbulent

and back (Figure 4.10). Practically it is difficult to estimate the relative volumes and flow

velocities of laminar and turbulent fluid as a function of the cycle. In addition, as shown in

Figure 4.10, experiments have demonstrated that Equations 4.9 and 4.10 do not completely

describe situtations in which intermittent turbulence and slug flow develop, because the

flow is not completely turbulent [SCHLICHTING, 1958]. It is thus difficult to correctly estimate

the amplitude of the forces on the medium during slug flow.

Figure 4.10  Reynolds number as a function of pressure gradient for pipe flow. HP marks
the Hagen-Poiseuille relationship for laminar flow while B marks the Blasius relationship
for fully turbulent flow. The inset shows approximately how the Reynolds number and
pressure gradient change during slug flow.



89

On the other hand, a simple estimate of these forces can be made by calculating the

change in the fluid’s momentum between the laminar and turbulent flow regimes. Several

assumptions are necessary. If the conduit is assumed to be completely filled with either

laminarly or turbulently flowing fluid with the transition between the two regimes occurring

in 0.001 s, and if the compressiblity of the fluid is neglected, then Table 6 gives the change

in fluid momentum, ∆p, for several different fluids. These values are calculated for a Reynolds

number of 2675 and a fundamental frequency of f
1
 = 0.63 Hz. In addition, Table 6 gives the

conduit dimensions and fluid density and velocity for these flow parameters. The change in

momentum of the fluid in the conduit is the force on the fluid in remaining in the reservoir. In

this case, only water produces a force comparable to the values of 3.2x106 and 1.1x106 N

determined for harmonic tremor in Section 3.1.2. If the transition is assumed to occur slowly

in 0.2 s, the interval given by the intermittancy, the forces are much smaller (Table 6).

(1)  Calculated from Re=vd/κ, with Re=2675,  v=d f
1
 and f

1
 = 0.63 Hz

(2)  Calculated from L/d=50
(3)  Velocity during laminar flow
(4)  Calculated assuming fluid velocity drops by 15% due to turbulence in 0.001 s
(5)  Calculated assuming fluid velocity drops by 15% due to turbulence in 13% of one period or  0.2 s

diulF
ytisneD

m/gk( 3)
tiudnoC

retemaiD )1( )m(
tiudnoC

htgneL )2( )m(
yticoleV )3(

)s/m(
fossaM
)gk(diulF

∆p )4( )N( ∆p )5( )N(

retaW
)C°001(

0001 53.0 71 11 0061 01x6.2 6 01x3.1 4

riA
01x1( 5 ,aP

)C°001
9.0 23.0 61 01 2.1 0081 9

riA
01x1( 5 ,aP

)C°003
6.0 64.0 32 41 3.2 0094 42

maetS
01x1( 5 ,aP

)C°001
6.0 3.0 51 5.9 6.0 009 5

maetS
01x1( 5 ,aP

)C°003
4.0 84.0 42 51 6.1 0063 81

maetS
01x2( 7 ,aP

)C°003
7 11.0 6 5.3 4.0 002 1

Table 6 -- Slug Flow Forces
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Figure 4.11  Photograph series of bubble cycle in a slightly opened bottle of soda water. On
the left, the bottle has just been opened. Time increases toward the right.

4.3 Soda Bottle

When a system such as a volcano is closed to the atmosphere, the liquids, either

magma or water in the hydrothermal system, must be saturated with gases. When such a

system opens rapidly, the rapid and explosive degassing which takes place is usually a

volcanic eruption or explosion. If, on the other hand, the opening is very small, the gases

can only escape slowly. This may give rise to a cycle of pressure drop and bubble formation

which can often be observed when a bottle of carbonated water is opened slightly [SOLTZBERG,

1997]. Similar cycles have also been observed in the slow decompression of more viscous

fluids used to model volcanic systems [HAMMER et al, 1998]

Figure 4.11 shows a series of pictures taken of a bottle of soda water after its cap

was opened only a small amount. Initially, the gas escapes slowly with a hissing noise, and

the gas pressure in the volume above the water decreases. When the pressure has dropped

enough to overcome the bubble surface tension [LEIGHTON, 1994, SOLTZBERG et al, 1997],

bubbles form throughout the water. Their presence compensates for the initial decrease in

pressure and therefore inhibits the formation of more bubbles. While gas continues to

escape through the “vent” in the cap, the existing bubbles rise toward the surface during

an interval which depends on the size (depth) of the bottle. When all the bubbles have

reached the surface they can no longer contribute to the pressurization of the bottle, so the

pressure again drops as gas continues to escape. When the pressure has dropped enough

to overcome the bubble surface tension, the cycle begins again.
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A similar situation may exist in a volcano, where a small vent or opening allows gas to

escape slowly. The volcano’s reservoir of gas-saturated magma or water is large, and

may, for the purposes of a simulation, be considered to provide an endless supply of gas

when the pressure drops below the saturation level. In such a case, the soda bottle cycle

could continue for hours.

To describe the processes in the slightly opened soda bottle quantitatively several

assumptions are necessary. Figure 4.12 shows schematic pictures of the soda bottle during

an interval when there are no bubbles and at a later point in the cycle when bubbles have

formed. The gas, particularly at high temperatures such as would be expected in a volcano,

may be described using the ideal gas law [GERTHSEN et al, 1974]

PV NRT= , (4.11a)

where P and V are the pressure and volume of N moles of ideal gas at temperature T. R is

the universal gas constant. If the number of moles is rewritten as the quotient of the total

mass of the gas divided by its molecular mass, m/M
gas

, this equation becomes

PV
R

M
mT mR T

gas

= = ′ , (4.11b)

where R’, the universal gas constant, has been normalized by M
gas

. The mass of the gas

divided by its volume is its density, ρ, giving the relationship

P R T= ′ρ (4.11c)

From Equation 4.11b, the time derivative of the mass flux may be written as

′ = +R Tm pV pV& & & . (4.12)

If we assume that the volume of the fluid present does not change, then the total volume

filled with gas also remains constant, so that V = V
0
 and &V = 0. As is to be expected,

changes in the pressure in the gas-filled region depend on the mass flux
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& &P
R T

V
m= ′

0

[ ]= ′ +R T

V
m me b

0

& &  . (4.13)

Two factors contribute to the mass flux, gas escaping from the volume through the vent and

gas leaving the liquid in the form of bubbles. The mass flux of escaping gas, &me , is the

product of the density of the gas, ρ, times the cross-sectional area of the vent, q, and the

velocity of the gas, v. The mass flux of gas entering the gas-filled volume from bubbles,

&mb ,can be described by product of the mean density of bubbles,

ρ π ρb b b gasn r= 4

3
3

 , (4.14)

with the cross-sectional area of the liquid, Q, and the mean ascent velocity of the bubbles,

vb . In Equation 4.14, n
b
 is the number of bubbles per unit volume, and the factor in brackets

is the mean bubble mass, calculated from the volume of spherical bubbles of radii r
b
, and

their density, ρ
gas

.

The change in pressure as a function of time is then

Figure 4.12  Sketch of soda bottle showing parameters used in Equations 4.11 - 4.21.
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[ ] [ ]& & &P
R T

V
m m

R T

V
qv Qve b b b= ′ + = ′ − +

0 0

ρ ρ (4.15)

It is not unreasonable to assume that the geometric parameters, such as Q and q, remain

constant over several degassing cycles in a soda bottle or a volcano. Further, we may

assume that the velocity of the escaping gas, v, is proportional to the difference in pressure

between the interior of the bottle or volcano and the outside, with a proportionality constant

k’ [GINZBURG, 1963]

( )v k P Pa= −' . (4.16)

Inserting these values into Equation 4.15 and using Equation 4.11c for the density of the

gas, gives a non-linear differential equation for the pressure:

( )&P
qk

V
P P P

R TQ

V
v

qk

V
P

qk P

V
P ca b b

a
b= − ′ − + ′ = − ′ + ′ + =

0 0 0

2

0

ρ . (4.17)

c qk V1 0= ′ , and c
2
 =  c

1
P

a
 are constants for the soda bottle, and may vary slowly as a

function of time in a volcano. If the bubbles rise with constant velocity the final parameter,

c
R TQ

V
vb b b= ′

0

ρ , (4.18)

may be related to the kinematic viscosity of the liquid by setting Stoke’s law equal to the

bubbles’ bouyancy and and solving for the velocity .

c
R TQ

V

r g
b b

b= ′

0

22

9
ρ π

κ , (4.19)

Thus, c
b
 is inversely proportional to the kinematic viscosity of the liquid.

In fact, c
b
 is non-zero only if bubbles are present, since ρb  is proportional to n

b
, the

number of bubbles per unit volume. The presence of bubbles depends on the bubble
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nucleation rate. According to SOLTZBERG et al [1997], the bubble nucleation rate, &nb , is an

exponential function of the Helmholtz energy, ∆E
H
, necessary to form a bubble,

& exp( / )n E kTb H∝ −∆ , (4.20)

where k is Boltzmann’s constant and T is the temperature. From classical nucleation theory,

the Helmholtz energy is proportional to the cube of the bubble surface tension, σ
S
, and

inversely proportional to the square of the difference between the supersaturation

concentration of disolved gas in the fluid, c
S
, and the equilibrium concentration, c

eq
. Using

Henry’s law, c = KP, these concentrations can be used to relate the Helmholtz energy to the

original pressure in the system, as well as, the pressure after it drops,

∆ ΚE c c P PH S S eq S S eq= − = −16 3 16 33 2 2 3 2πσ πσ/ ( ) / ( ) . (4.21)

For the soda bottle, P
S
 is the initial pressure of gas in the bottle. Bubbles begin to form

when P
eq
 = 2σ

S
/r

b
, that is, when it reaches the Laplace pressure corresponding to the

surface tension in a bubble of radius r
b
.

Initially, there are no bubbles in the bottle, n
b
 ~ 0. According to Equation 4.20, &nb  is

very small and nearly constant until P
S
 ~ P

eq
, when it very suddenly becomes extremely

large. Thus, no bubbles appear spontaneously until the pressure drop exceeds the Laplace

pressure. They immediately cease to form as soon as P
eq
 rises again due to the presence

of bubbles.

To simplify calculations, Equation 4.17 can be solved for two cases. I assume c
b 
= 0

initially when no bubbles are present, and after a wave of them has risen to the surface. It

is a non-zero constant depending on the viscosity of the liquid, on the bubble density and

rise velocity, and on the geometry of the chamber when bubbles are present. In this case,

bubble formation acts as a regulator relay for the self-regulation of the pressure in the

bottle or volcano [MAGNUS and POPP, 1997]. Equation 4.17 can be solved numerically, using

Matlab, for example. Figure 4.13 shows several solutions for assumed initial conditions in

a soda bottle. As c
b
 increases, that is with decreasing kinematic viscosity of the liquid, the

bubbles rise more quickly and pressure oscillations increase dramatically in amplitude. To
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produce the oscillations observed at Lascar, with a fundamental frequency of 0.63 Hz, the

kinematic viscosity of the liquid involved must be low. It could, for example, be water near

the surface at relatively low overpressure.

Although this description of the soda bottle phenomenon is highly simplified, the model

generates non-sinusoidal waveforms (Figure 4.13) which resemble the seismograms of

harmonic tremor at Lascar. They are produced by pressure variations inside the reservoir

during the bubble formation cycle. Under the simple assumptions used for solving Equation

4.17, the pressure changed by more than a factor of 2.

ACHENBACH [1975] gives a relationship describing the wavefield generated by pressure

changes in a spherical cavity of radius A in a homgeneous, isotropic and linearly elastic

medium. If the pressure change is a step function, P(t) = P
0
H(t) with H(t) the Heaviside

function, then the displacement potential is

Φ( , ) [ ( ) exp( )sin( )] (/r t
A P

r
s s H s= − − − − +1

4
1 2 2

3
0 1 2

µ
σ χ ϕ λ (4.22)

where α is the speed of longitudinal waves in the medium, σ is the Poisson ratio, µ is the

shear modulus, χ, ϕ and λ are defined as

Figure 4.13  Pressure oscillations in a soda bottle with a small opening. The curves are
marked with their initial conditions.
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χ σ
σ

α= −
−

1 2

1 A
,    ϕ

σ
σ

α2
2

2

2

1 2

1
= −

−( ) A
,   λ σ= −−cot ( ) /1 1 21 2   (π/4 ≤ l ≤ π/2)

and

s t
r a

cL

= − −
.

A pulse of finite duration, τ, can be simulated by superimposing the displacement

potential for a pressure change of equal but opposite magnitude a time τ after the initial

pressurization. Solutions for Equation 4.22 giving the displacement at a distance r = 4000

m, using α = 1000 m/s, σ = 0.3 and µ = 2x1010 N/m2 are plotted in Figure 4.14. The

expected displacement is displayed as a function of the source radius, A, for initial pressures,

P
0
 = 3 atm, 5 atm and 7 atm, the pressures used in the calculations for Figure 4.13. The

root mean square displacement measured at LA2 is also plotted as a dashed line. It intersects

the lines for all three atmospheric pressures at a radius of about 20 m. This indicates that

Figure 4.14  Displacement amplitude due to a pressure pulse at 4000 m distance from a
spherical cavity of radius A in a homgeneous, isotropic and linearly elastic medium
calculated using Equation 4.22.  The dashed line is the root mean square displacement
amplitude measured at station LA2. The solid lines are for pressure differences
between the interior of the sphere and the environment of 3 atm, 5 atm and 7 atm.
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under the simplifying assumptions used here, fluctuating pressure of the order of magnitude

described above in a sphere with a radius of 20 m, or approximately 3x104 m3 volume,

could produce the harmonic tremor seismograms measured at Lascar. If harmonic tremor

is produced by such a mechanism, Lascar must contain such a volume of boiling or otherwise

periodically degassing fluid.
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