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Abstract

The probabilistic approach of detecting completeness of seismic networks by
Schorlemmer and Woessner is based on event data, station information, and
attenuation relations. An intermediate product are distributions of recording
probabilities in the magnitude/distance space for each station. All complete-
ness estimates are derived from them.
Many sources of data �aws exist, e.g., magnitude errors, event clusters, etc.,
which propagate into artifacts in these distributions. Here we present methods
for improving the distributions by adding physical constraints to the data. We
detected event clusters which disturb the homogeneity of the data distributions
and therefore strongly alter the recording capabilities. We introduce a method
for parameterizing the distributions of recording capabilities for easier station
quality evaluation.
We present results for the Northern Californian Seismic Network (NCSN), in-
cluding station evaluation, completeness maps over time, and detection proba-
bility maps.
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Chapter 1

Introduction

Earthquake catalogues are the basis of many seismological studies. Every cat-
alogue re�ects the abilities of the seismic network that recorded it. Each of
these networks covers a speci�c area, which can be local, regional or even global.
The networks consist of numerous stations distributed heterogeneously over this
area. The ability of a network to determine the size and location of an earth-
quake accurately depends mainly on this distribution. If the station density is
too sparse, there is the possibility that there are not enough stations near an
earthquake, and it will thus not be possible to determine its parameters accu-
rately. There will always be a threshold magnitude, beneath which the network
will not be able to record a signal on su�cient stations to accurately deter-
mine all parameteres of an earthquake. This has on one hand simple �nancial
reasons; there is normally a limited amount of money that can be spend on sta-
tions, so the station density can not be in�nitely high. On the other hand, this
threshold magnitude also depends on the site conditions of the single stations;
a station installed on soft underground will less likely record a clear signal of
an event, than a station installed on bedrock. The same holds for a station
in an urban area compared to a station in a quiet area; the noise level at the
�rst station will be much higher, so the signal of a seismic event has to exceed
this level to be recognised as an earthquake. There are other reasons that an
earthquake will not be recorded, e.g. the signal is masked by the stronger signal
of a larger event, which is often case in aftershocks sequences.
The threshold magnitude, above which the earthquake catalogue is supposed
to be complete is de�ned as the magnitude of completeness Mc. Below this,
several events will be missed for the aforementioned reasons. This magnitude is
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CHAPTER 1. INTRODUCTION 3

always a function of space and time, and any change in the network will change
this magnitude, e.g. a new station will increase the density and therefore raise
the ability to record a earthquake in its vicinity.

Importance of Completeness There are various statistical analyses of earth-
quake catalogues that require a complete dataset. Therefore one must know the
magnitude of completeness Mc, to only consider events above this magnitude.
One example is seismic hazard analysis; Mc is one of the crucial input parame-
ters here. Giardini et al. [2004], for example, used two di�erent estimates for the
completeness in their input for their hazard determination, the �nal models dif-
fered by 10%; similar examples can be found in other hazard studies [De Crook,
1989; D'Amicio and Albarello, 2003; Shanker and Sharma, 1998]. Di�erent au-
thors studied the in�uence of the completeness on the determination of b-values
[Utsu, 1965; Aki, 1965; Weichert, 1980; Bender, 1983] of the Gutenberg-Richter
law [Gutenberg and Richter, 1944]; changes in the completeness will also change
b-value estimates, because the magnitude of completeness is an important input
to determine the maximum likelihood of b:

1

b ∗ ln(10)
= m−m0

where m is the is the average magnitude of the sample, and m0 is the lowest
magnitude at which event observations are complete [Aki, 1965]; m0 is basi-
cally identical with Mc. A change in the completeness will lead to a signi�cant
change in b.
We mentioned above that events can be masked by a strong signal of a large
event, which will change the completeness of aftershock sequences, therefore Mc

will always be analysed for afthershock studies [Wiemer and Katsumata, 1999;
Woessner et al., 2004; Gerstenberger et al., 2005]. Mc will normally be higher
in the early part of the aftershock sequence, since small events will be masked
by the coda of larger aftershocks and because the workload of the a�ected net-
work will be immense. Later on, Mc will either return to the level as before the
mainshock, or it will decrease as large events often lead to improvements in the
network.
There are di�erent books dealing with the problem of analyses with missing
data, for example by Dodge [1985] or Little and Rubin [1987]. They emphasise
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the importance of a good knowledge of the completeness of the catalogue, be-
cause analyses of incomplete parts will always lead to wrong results. There is
always a trade-o� of between a large data set and the estimate of Mc; overes-
timating Mc will reduce the amount of data signi�cantly, underestimating Mc

makes results of any study less reliable.

Figure 1.1: This �gure shows how Mc is determined based on the deviation from
the frequency magnitude distribution (FMD). The grey diamond shows
where the cumulative number of events deviates from the FMD, this value
is taken as Mc. (Figure taken from Woessner and Wiemer [2005]).

Approaches to determine the magnitude of completeness There are various
approaches for the estimation of Mc. The most traditional and most commonly
used approach de�nes the magnitude of completeness Mc as the deviation point
from the Gutenberg-Richter line in the cumulative frequency-magnitude distri-
bution (FMD) [Marsan, 2003; Wiemer and Wyss, 2000; Woessner and Wiemer,
2005; Cao and Gao, 2002]. Figure 1.1 illustrates this method; it shows the cu-
mulative (squares) and the non-cumulative (triangles) number of events with a
magnitude M versus the logarithmic number of events. The magnitude of com-
pleteness is taken as the point where the cumulative number deviates from the
Gutenberg-Richter frequency magnitude distribution (grey diamond) [Woess-
ner and Wiemer, 2005]. The method will be described in more detail later (cf.
chapter 7).
Other approaches attempt to �nd the completeness of an earthquake catalogue
by studying the noise-level at a station [Kværna et al., 2002a,b], or by com-
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paring the day-to-night ratios [Rydelek and Sacks, 1989], these will also be
discussed more extensively later (cf. chapter 7).

New approach The problem with the abovementioned methods is that they
have to make too many assumptions. We try to overcome this problem by de-
veloping a new method for determination of magnitude of completeness which
is only based on data recorded by a seismic network; this data will include the
phase picks and the station properties. Every station in a network will have
a di�erent ability to record the signal of an event. As mentioned above, this
ability depends strongly on the site conditions; a weak signal will be hard to
identify on the record of a station which records high noise, for example. We
therefore derive a probability distribution for each station re�ecting the capa-
bility of this station to detect an earthquake at a speci�ed magnitude-distance
combination. We specify an earthquake sample for every magnitude-distance
combination for a station and, from this data, compute the probability of de-
tection as the ratio of the number of picked events to the number of all events
within the sample. We will add the conditions that our probabilities will not
decrease, if the magnitude increases at a constant distance. This re�ects simple
physical properties of the earthquake signal; an event with a higher magnitude
at equal distance will generate a stronger signal than an event with a lower
magnitude, making the probability higher or at least equal that this event will
be recorded by a station. The same holds for an event within a shorter distance
and an equal magnitude; a nearer earthquake will also produce a stronger sig-
nal. Therefore the probability will also not decrease for decreasing distances at
constant magnitude. The distance here includes the station elevation and the
depth of the earthquake.
With the probability distributions, we will be able to compute di�erent maps.
We can compute the probability that a given magnitude M can be detected at
a speci�ed point. Here we take into account how many stations are used for
triggering in the studied seismic network; in our study area �ve stations are
used. Thus we will compute the probability that M will be recorded at �ve
or more stations. This will result in a map showing the probability that the
magnitude M is detected by the studied seismic network. We can also compute
maps showing the spatial distribution of the magnitude of completeness Mc at
a speci�ed probability level. For this, we use the same process as for the �rst
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maps, but apply it iteratively, until we �nd the magnitude that will be detected
at the chosen probability level. Both maps can be computed for di�erent times;
they will always depend on the station con�guration on the speci�ed date. By
computing maps for di�erent times, we can map Mc spatially and temporally.

Figure 1.2: Map showing all stations used in this study. The blue triangles show
the stations from the Northern Californian Seismic Network (NC), the
red triangles show the UNR Broadband Network (NN) and the green
triangles show the smaller networks (BP, BK, PG and WR). All stations
have at least been partly active from 1st January 2001 to 31st December
2005.

Study Area Our study area is Northern California and we will analyse the
Northern Californian Seismic Network (NCSN). This network consist of several
subnetworks and maintains over 1,000 stations. However, not all of them are
used in our approach. We only include stations used for triggering; these are
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about 600 stations, depending on the date of our analysis. Figure 1.2 shows all
stations that were at least partly active during the time of our analysis; di�erent
colours represent di�erent networks (the Northern Californian Seismic Network
NC is blue, the UNR broadband network NN is red and smaller networks are
green). The NC network is maintained by the United States Geological Survey
(USGS), the NN network by the University Nevada and the smaller networks
are maintained by local organisations. However, all data from smaller networks
are integrated in the Northern Californian Earthquake Data Centre (NCEDC,
http://www.ncedc.org).
We investigate this region because it is a highly active and a well-studied region.
There are many stations installed, especially along known faults, such as the
San Andreas fault. The study region also includes geothermal and volcanically
active �elds. It also encloses a region that is essentially quiescent. Therefore
we have a large diversity within this network, which makes it a good area for
our study, as we want to show that the magnitude of completeness should not
be averaged over a large area, but changes on a small spatial scale.
Will will study the data from �ve years, from 1st January 2001 to 31st December
2005. We will analyse the data of the catalogue provided by the NCEDC. We
aim to �nd features for di�erent stations and possibilities to improve the data,
without excluding an excessive amount of data.



Chapter 2

Method

2.1 Analysis

Steps of the Analysis The analysis consists of �ve main parts (1) De�ning a
period, during which the data recording was homogeneous (2) Importing station
data and creating a master station list (3) Importing event data with phase in-
formation (4) Assigning information about recorded (picked) and not recorded
events to the stations. (5) Deriving probabilities of detection for each station
and any given magnitude-distance combination.
(1) We will derive probabilities of detection for each station in the analysed
network. The obtained probabilities can only be representative, if they have
been derived during a period of homogeneous data recording. Particularly, this
means that the triggering condition, the routine analysis condition and the
magnitude de�nition must not change over the chosen time period. However, it
is not possible to appoint every potential change within the routine processing
work�ow of a seismic network that may have a strong impact on the recording
capability of the stations; slighter changes should not proceed into the probabil-
ities of detection. By all means, one has to be careful at selecting this period; a
longer period will lead to a larger amount of data but it will also contain more
possible changes.
(2) For the chosen time period, we select all stations from the network having
been in operation at least partially during the this period. It is important to
have exact knowledge about on- and o�- times of this stations. If it is not
reported that a station is inactive, it will be interpreted as not recording, this
will corrupt the probability of detection for this station. We also only import
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station used to trigger the location procedure. In many networks, there are
small subnetworks, for example temporal stations in boreholes, or local net-
works in high seismicity regions. These smaller networks are often not used for
triggering, therefore they have to be excluded from the analysis.
(3) We will select all earthquakes from the catalogue, occurring during the
chosen time period. From each event we have to select only phases, used for
triggering, normally the P-wave picks on vertical components.
(4) The probabilities of detection are derived as the ratio of picked events to
the total number of events. We select only events, occurring during the active
time of a particular station, from this data we generate a triplet:

[D M B]

where D is the distance between the event and the station, M is the magnitude
of the earthquake and B is a boolean number with the information if the station
recorded the event or not. If B = 1, we call this plus-triplet, if B = 0 minus-
triplet. These triplets repressent the raw data to compute the probability of
detection for a station.
(5) To compute the probabilities of detection for di�erent M/D combinations,
PD(M, D), we sample the aforementioned data triplets. To de�ne the bin, from
which the triplets will be sampled, we translate the distances in magnitude
units, de�ning a metric magnitude/distance space:

De�ning a metric magnitude/distance space By comparing an event with
the magnitude, M ′, and distance, D′, we obtain two di�erences:

∆M = |M −M ′|
∆D = |D −D′|

Here the distance includes the depth of the event and the elevation of the sta-
tion. Because magnitudes and distances are measured in magnitude units and
meters, respectively, we translate distances into magnitude units. This trans-
lation uses the magnitude de�nition of the network. The Northern Californian
network uses di�erent magnitude de�nitions, depending on the size of the event.
For events smaller than M3, they generally use the coda duration magnitude
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equation, based on Eaton [1992]. This equation has the form:

MD(f − p) = −0.81 + 2.22 log(f − p) + 0.0011 ∗D∗ + Stacor + G + CC

+ 0.006 ∗D∗ if D∗ < 40 km (2.1)
+ 0.006 ∗D∗ if D∗ > 350 km
+ 0.014 ∗ Z if Z > 10 km

where (f − p) is the end-of-coda (F) minus P-time, i.e. the duration, D∗ is the
epicentral distance of the station to the event, Stacor is the duration magnitude
correction for the station, G is the gain correction, CC = Component Correction
and Z is the (positive) depth of the event.
The coda duration magnitude has some restrictions, one of them is that it
is almost independent of the distance to the earthquake. However, we want
to translate the distance into magnitude units, therefore we encounter many
problems using this magnitude de�nition. Thence, we chose to use the local
magnitude de�nition, also by Eaton [1992]. The coda duration magnitude was
derived, basing on this equation, therefore we will not make wrong assumptions.
The local magnitude, ML de�nition has the form

ML = log(AWA/(2× CAL)) + F1(s) + F2(d) + XCORcomp + XCORsta (2.2)

where AWA is the maximum peak-to-peak amplitude on the paper record for a
Wood-Anderson seismometer, CAL is a dimensionless scaling factor assigned to
the station and XCOR is a correction made for the component and the station,
respectively. The two factors F1 and F2 are distance corrections [Eaton, 1992]:

F1 = 0.821× log(S) + 0.00405× S + 0.955 for S < 185.3 km
F1 = 2.55× log(S) for S > 185.3 km
F2 = −0.09× sin(0.07× (D − 25)) only if D < 70 km

where S is the slant distance S2 = D2 + Z2 and D is epicentral distance.
To determine the di�erence between the observations at the same station, we
can make some assumptions: The amplitudes AWA1 and AWA2 will be the
same for two similar events and the correction factors CAL and XCOR are the
equal by de�nition for the same station. Therefore we can simplify the above
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equation:

M1 −M2 = F1(s1) + F2(d1)− F1(s2)− F2(d2) with
F1 = 0.821× log(S1) + 0.00405× S1 − 0.821× log(S2)− 0.00405× S2

for S < 185.3 km
F1 = 2.55× log(S1)− 2.55× log(S2)

for S > 185.3 km
F2 = −0.09× sin(0.07× (D − 25)) only if D < 70 km

We now translate the di�erence in distance ∆D into a magnitude di�erence
∆M∗ = M1 −M2. We de�ne now our metric as the euclidian distance in this
magnitude/magnitude space as:

DM =
√

∆M2 + ∆M∗2

This magnitude de�nition describes only the attenuation for the NCSN, for
any other network, there will be another de�nition. It is also essential that
this de�nition is constant for the time period chosen above. For our case this
is given, because this de�nition is in use since 1992 [Eaton, 1992].
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Figure 2.1: Magnitude against distance for events from 2001-2005. Green events have
been recorded at the station BJO, red ones were missed. The ellipse
outlines the events, being will be sampled to compute the probability at
the point at M ′/D′ = 2/100, if the coda duration equation is used.
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Derivation of probability of detection The probability of detection,
PD(M, D), is derived from the aforementioned data triplets. We de�ne
PD(M ′, D′) as:

PD(M ′, D′) =
number of picks

total number of events
We are using a criterion to select the triplets used to determine the probability
at detection at the point M ′/ D′. We select all events with:

DM ≤ 0.1

because 0.1 magnitude units can be considered as a usual magnitude error. This
means that we normally will sample all events within an ellipse with the axes
being ∆M and ∆M∗. We call Np the number of triplets, obeing this criterion.
If Np < 10, we apply a second criterion to sample at least ten triplets.
From all triplets, not obeing the �rst criterion we select triplets with magni-
tudes M ′ ≤ M and distances D′ ≥ D. From this set of triplets, we select
10−Np triplets with the lowest DM .
Figure 2.1 illustrates the independence of the coda duration magnitude equa-
tion to the distance; if we use this equation, we will sample all events within the
displayed ellipse to compute PD(M ′, D′) for M ′ = 2 and D′ = 100 km. This
basically means that using D′ = 180 km leads to almost the same magnitude
M ′ as using D′ = 50 km, if we only consider the distance in equation 2.1. On
the other hand, if we use equation 2.2 for our analysis, we obtain a completely
di�erent form of the ellipse. This is shown in �gure 2.2 (a), this �gure shows
the same information as �gure 2.1, but the ellipse outlines the events that will
be sampled when the local magnitude equation 2.2 is used. All events within
this ellipse have a DM ≤ 0.1 from the point with M = 2′ and D′ = 100 km.
If the data is sparse, the second criteria will be applied, this is shown in �gure
2.2 (b). We renounce to display an example for the coda duration magnitude
for this case, as we already showed above that this equation can not be used
for our approach. The ellipse in �gure 2.2 outlines all events that would be
sampled if the �rst criteria would be applied. It can be seen that there are no
events within this ellipse, therefore the ten events with the smallest DM and
with D ≥ 20 and M ≤ 3.5 will be sampled; these are indicated with black
crosses.
For both cases we sample N ≥ 10 triplets, from these we will derive the prob-
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(a) Station BJO, (M ′/D′)=(2/100)
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(b) Station KIP, (M ′/D′)=(3.5/20)

Figure 2.2: Magnitude against distance for events from 2001-2005, green events have
been recorded red ones were missed at the given stations. The ellipse
outlines the events meeting the �rst criteria, in (a) more than ten events
lie within this ellipse. For (b) no events lie within the ellipse, therefore
the second criteria will be applied. The black crosses indicate the sampled
events, those are the events with the smallest DM that have magnitudes
M ′ ≤ M and distances D′ ≥ D (indicated by the bars).

ability of detection as the number of plus-triplets divided by N . Therefore we
estimate for any magnitude-distance combination the probability of detection,
based only on the nearest data triplets, or in the second case, only triplets that
represent weaker signals at the station.

Probability Matrices We are calculating the detection probabilities for each
station for a distance range from 1 to 200 kilometres and a magnitude range for
0 to 4. Figure 2.3 shows two examples of matrices we obtain with this procedure.
The left �gure shows the station BJO, the raw data of this station was shown
above in �gure 2.2 (a). We can see that this station records many events and for
many magnitude-distance combinations the probability of detection PD(M,D)

is 0.8 or higher. On the right site of �gure 2.3 we see the probability matrix
of the station KIP. The raw data of this station (�g 2.2 (b)) shows that there
were less events in the near vicinity of this station, this leads to less data and
a lower probability of detection for many magnitude-distance combinations.

Adding physical constraints Until now, we only considered the raw data to
calculate the probability matrices. We saw that the data is not everywhere
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(b) Station KIP

Figure 2.3: Probability matrices for two arbitrary stations, the colour bar indicates
the probability level.

dense enough so that we had to apply a second criteria to chose events that will
be sampled for regions with too few data (see �g. 2.2 (b)). With this second
criteria, we are able to determine a probability at these points, but �gure 2.3
(b) shows that these probabilities are mostly lower than probabilities obtained
where the data is denser. When the second criteria applies, we sample only ten
events, therefore the e�ect of a missed event within the sample becomes much
higher.
To overcome the e�ects of too few data, we add an assumption. We assume
that the probability can not become smaller for the same distance but higher
magnitudes. If a station is able to detect an earthquake with magnitude M1.5
at 20 kilometres distance, it will also detect events with magnitude M3 or M4
at this distance. The signal for an event with a higher magnitude will generally
be stronger, therefore the station should record it, when it was also able to
record the event with the weaker signal. It is possible that the station was not
reported as being inactive during such an event, therefore the event will be reg-
istered as a missed event. Thence, it is possible that the probability decreases
because the in�uence of such errors get too high. Figure 2.4 (a) and (b) show
the comparison of the probability matrix based on the raw data only (a), and
the matrix where we included our assumption (b). The probability increases
at many places, especially for low distances. This can be explained if we look
at the raw data of this station in �gure 2.2 (b), there is only a few data for
distances lower than 40 kilometers and magnitudes higher than 2.5. Therefore
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(a) Raw Data
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(b) Increasing Magnitude Dependence

D
is

ta
nc

e 
[k

m
]

Magnitude

Probability of recording

0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

0

0.2

0.4

0.6

0.8

1

(c) Decreasing Distance Dependence
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(d) Combination of (b) and (c)

Figure 2.4: Probability matrices for the station KIP, (a) is based on the raw data
only, (b), (c) and (d) include assumption. In (b) the probabilities don't
get smaller with increasing magnitudes for constant distances, in (c) the
probabilities don't get smaller with constant magnitudes for decreasing
distances. In (d), these both assumptions are combined.
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(b) With assumptions

Figure 2.5: Probability matrices for the station BJO, (a) is based on the raw data
only, (b) includes he assumptions that the probability does not decrease
with constant magnitude and decreasing distance and constant distance
and increasing magnitude.

the probabilities in this region will all be calculated with the second criteria,
this can lead to the above mentioned e�ects.
In addition to the dependence on the magnitude, we also considered a de-
pendence on the distance. The probabilities should not decrease if we have a
constant magnitude and decreasing distance. This means that if a station is
able to detect an event of magnitude M3.5 at 100 kilometres distance, it will
not miss an event with the same magnitude at 20 kilometres distance. Figure
2.4 (c) shows this e�ect. Figure 2.4 (a) shows the probability matrix with based
on the raw data, (c) shows the e�ect, if the probability does not decrease if the
magnitude stays constant and the distance decreases.
The next step is now to combine both assumption, the result of this is shown
in �gure 2.4 (d). From the rather bad probability matrix of station KIP,
we obtained now a probability matrix, where the probability is one for many
magnitude-distance combinations. We applied this on all probability matrices,
because even stations with a dense distribution of data had patches with lower
probabilities. This is shown for the example of the station BJO in �gure 2.5, we
get the probability one for many magnitude-distance combinations, especially
where we had regions with smaller probabilities before.
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2.2 Synthesis

We are computing two di�erent kinds of maps. (1) We compute the probabil-
ity of detection of earthquakes of magnitude M at any location x, resulting in
probability map (PD(M,x) map). (2) We search the probabilities through the
magnitude space to �nd the lowest magnitude with a probability of detection
for a chosen probability level; this will results in a probabilistic completeness
map (PMC map).
(1) To compute the probability of detection PD(M,x), of earthquakes of mag-
nitude M at any location x, we measure the distances to all stations in the net-
work. We compute this probability of detection for one speci�ed date, therefore
we only consider stations having been active on this day

x = [Lonx/Latx]

Station = [Lons/Lats/Elevations]

D = f(Lonx, Latx, Lons, Lats, Elevations)

where Lon and Lat stand for longitude and latitude, respectively. The eleva-
tion of x is taken as constant. We then compute the probabilities of detection,
PD(M, D) at every station for the given distances D to x and the corresponding
probabilities of non-detection PN(M,D) = 1 − PD(M,D) for later use. This
probability is derived from the probability distribution of every station, for ev-
ery distance D, we look up the probability that a magnitude M will be detected
at the stations that lie in this distance. The probability of detection PD(M,x)

is then de�ned as the joint probability that 5 or more stations have detected
this event. This number depends on the triggering condition of the network, the
Northern Californian network uses �ve stations. Most events will be detected
at more than �ve stations, depending on the size of the earthquake on ten or
even more stations. Therefore it is easier to compute the joint probability by
computing the probabilities of detection at zero, one, two, three stations and
four stations and subtracting these values from 1. This gives us the probabilities
of detection at 5 or more stations within the network.

PD = 1− P0 − P1 − P2 − P3 − P4
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Each determination of PD is based on the input magnitude M , by changing this,
we will compute another map. With these calculations, we can map the distri-
bution of the probability of detection for one speci�c magnitude M . Changing
the date of the this computation will lead to another station con�guration and
therefore will change the probability of detection. By computing maps for dif-
ferent dates, we can sketch the temporal changes in the studied network.
(2) We will also calculate probabilistic magintude of completeness (PMC) maps.
These are based on the above calculations; instead of computing PD for only
one magnitude, we apply the above calculation iteratively. For each map, we
chose a threshold probability Pt, as soon as PD exceed this threshold, we take
the value of M∗ as our probabilistic magnitude of completeness Mpc:

PD = f(M∗, D)

if PD ≥ Pt

M∗ = Mpc

Just as in (1), we can vary the date of this calculation to obtain the temporal
changes in PMC. To investigate small spatial changes in PMC, we can do this
calculation for a small region with a high resolution.



Chapter 3

Data

We are analysing the period from January 1st, 2001 until December 31st, 2005.
For this time period, we need two kind of empirical data: (1) Station data
describing location and active time of each station of the network and (2)
event data. The event data consists of hypocentral parameter data (including
location, origin time and magnitude of event), and series of arrival times
(including station name, seismometer component, picked arrival time and
phase identi�cation.)

3.1 Seismic Network

Seismic Stations For this approach, we are using the data of the North-
ern Californian Seismic Network (NCSN). This networks contains of several
smaller networks, not all of them are used for triggering though. Table 3.1
shows the networks being used for this study. The largest of these networks
is the NC network, maintained by the US Geological Survey, Menlo Park
(http://www.ncedc.org/ncsn/), the second largest is the NN network, main-
tained by the University of Nevada (http://seismo.unr.edu/). All networks
are shown in �gure 3.1, blue triangles belong to NC, red ones to NN and the
green ones to some smaller network. The network, not used are not shown in
this �gure, these are some smaller local network, for example the BG Berkley
Geysers Network that is only used locally.
The complete station list can be obtained online at http://www.ncedc.org/
ncedc/station.info.html or http://www.ncedc.org/ftp/pub/doc/ncsn/

19
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No Shortcut Network name
1 BP Park�eld High Resolution Seismic Network
2 BK Berkeley Digital Seismic Network
3 NC Northern California Seismic Network
4 NN UNR Broadband Network
5 PG Paci�c Gas and Electric Seismic Network
6 WR California Water Resources

Table 3.1: Station Network codes from the Northern Californian Seismic
Network, more information about the networks is available on-
line at: http://www.ncedc.org/ncedc/station.info.html and at
http://www.iris.edu/stations/networks.txt

ncsn.stations. We select stations, which have at least been partially active
in the period from January 1st, 2001 until December 31st, 2005. It is important
to have exact knowledge about on- and o�- times of this stations. If it is not
reported that a station is inactive, it will be interpreted as not recording, this
will corrupt the probability of detection for this station. Unfortunately there
is no exact knowledge about these inactive times in this network; it is possible
that a station was not recording for some time, before it was removed from the
�eld and marked as o�ine. It is also possible that is was inactive for some time
and then was repaired and started to record again; such things are not noted
in the station information �le unfortunately. This can alter the probability of
some stations, but it is not possible to remove this in�uence for us.
We only use stations and components used for triggering; this means that we
only select the vertical components from the above mentioned list. As men-
tioned above, stations are often moved over a couple of meters over time. Most
stations become renamed after this, adding a B and then a C to the station
code is common for the NCSN.

3.2 Earthquake data

Phasedata Access to all events registered by the stations of the NCSN
is provided online from the NCEDC at: http://www.ncedc.org/ncedc/
catalog-search.html. To obtain information about the earthquake and the
picked phases, one has to choose the option "Catalog + Phase in Hypoinverse
format". This format provides information about the type and quality of picked
phases, the station and station components and earthquake details. The for-
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Figure 3.1: Map showing all stations used in this study. The blue triangles show
the stations from the Northern Californian Seismic Network (NC), the
red triangles show the UNR Broadband Network (NN) and the green
triangles show the smaller networks (BP, BK, PG and WR). All stations
have at least been partly active from 1st January 2001 to 31st December
2005.
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Figure 3.2: Histogram of the magnitude for all events from 2001-2005. It is obvious
that there are too many events with magnitude M0, these events must
have had a di�erent magnitude that could not be determined.

mat was described by Klein [2006]. This �le provides di�erent magnitudes,
depending on the type of data available, and the size of the earthquake. The
coda duration magnitude is available for most events, but it saturates for events
above 4.5. Therefore the NCSN also computes alternate magnitude from low-
gain instruments that remain generally on-scale during large earthquakes. In
addition to this, the catalogue provides local magnitudes, computed by UC
Berkeley. The NCEDC provides a so-called preferred magnitude, which is the
most reliable magnitude for each event [Klein, 2006], this magnitude generally
follows this scheme:

if M < 3 M = Md (Coda Duration M.)

if M > 3 M = ML (Local M.)

if M > 4.5 M = Mw (Moment M.) (only if good solution and only after 2000, other-
wise ML will be used)

If no magnitude can be calculated for an event, it is set to zero. This leads to a
large amount of events with magnitude zero, this is shown in the histogram 3.2.
It is obvious that there can not be that many events with this magnitude, these
events must have had another magnitude that was not determined. The e�ect
of this on the probability matrices will be shown in the next chapter. Excluding
all events with magnitude zero lead to about 90'000 events for the time period
from January 1st, 2001 until December 31st, 2005. All events are shown in �gure
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Figure 3.3: All events in Northern California from January 1st, 2001 to December
31st, 2005. Circle colours represent the year and circle sizes are scaled by
magnitude.

3.3; each colour represents one year and circle-sizes are scaled by magnitude.
The activity does not change signi�cantly over the years and it is mainly con-
centrated along on the faults, also indicated in �gure 3.3. Most events occur
along the San Andreas fault, but there is also volcanic and geothermal activity
in this region.
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Station Analysis

4.1 Station Quality

To analyse the features of one station, we extract the raw data of the picks.
Two examples are shown in �gures 4.1, 4.2 and 4.3, the �rst two are the same
stations we used for examples above. In all three �gures, (a) shows magnitude
against distance for recorded events and (b) for missed events. In addition to
this, (c) shows maps of the distribution of all events, red ones were missed by
the station, green ones were recorded, larger squares indicate stronger events.
The yellow triangle in this map shows the location of the analysed station.
Figures 4.1, 4.2 and 4.3 o�er a convenient tool for the analysis of a single station.
With the maps we can see which area is normally covered by a station. It is also
easy to see which station can be considered as a good station or bad station.
For example, the station BJO is located near a fault, therefore there will be
more events near this station and it is more likely that this station will record
most of them. If we �nd a station, which is located in a high seismicity region
that does not record as many events as expected, this is an indication that
something is wrong with this station. For instance, it is possible that the noise
level is to high at this station, or it is possible that the station is located on a
di�erent underground than a better recording station.
Figure 4.1 indicates that the station KIP is not as good as the station BJO. It
can be seen that this station is located in a lower seismicity region, �gure 4.1
(a) shows clearly that there are almost no events with magnitude higher than
three within 40 kilometres distance from this station. Overall, the amount of
events which this station was able to record is smaller and therefore this station
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Figure 4.1: Analysis of the Station KIP. (top) Diagrams of magnitude against distance
of recorded (a) and missed (b) events at the station. (bottom) Map of
recorded (green) and missed (red) events, scaled by magnitude; station is
indicated by a yellow triangle.
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is considered to be a worse station than the station BJO.
Figure 4.3 shows an example of a reasonably well recording station. This station
BCW is located about 40 kilometres away from the next high active region, this
can be seen from �g. 4.3 (a) and (b), there is almost no data for any distance
smaller than 40 kilometres. The map of the data distribution shows that this
station is located near the coast, on a mountain range which is seismically quiet.
Therefore this station records much fewer events than the station BJO, which
is only about 30 kilometres away from this station.
By analysing single stations we can observe �aws in the data, which will be
discussed in the next chapter.
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Figure 4.2: Analysis of the Station BJO. (top) Diagrams of magnitude against dis-
tance of recorded (a) and missed (b) events at the station. (bottom) Map
of recorded (green) and missed (red) events, scaled by magnitude; station
is indicated by a yellow triangle.
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Figure 4.3: Analysis of the Station BCW,(top) Diagrams of magnitude against dis-
tance of recorded (a) and missed (b) events at the station. (bottom) Map
of recorded (green) and missed (red) events, scaled by magnitude; station
is indicated by a yellow triangle.
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Data Flaws

5.1 Inspecting and reducing data �aws

5.1.1 E�ect of events with magnitude zero
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Figure 5.1: Magnitude against distance for recorded (green) and missed (red) events
from 2001-2005 at the station KIP. Magnitude is set to zero if no magni-
tude could be determined, thus events with an arti�cal magnitude will be
sampled to compute the probability at M/D = 0.5/20 (black crosses).

It was already mentioned above that events, for which no magnitude could be
determined are assigned with magnitude zero. We observed this after the �rst
computation of the probability matrices and the e�ect of these magnitudes was
quite big. In all pictures that were shown above from the raw data, we already
excluded the events with magnitude zero, �gure 5.1 shows now the raw data
with these events. Also shown on this �gure are the events that will be sampled
to compute the probability of detection for the point with magnitude M0.5 and

29
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Figure 5.2: Two probability matrices of station KIP, for (a) events with magnitude
M0 were included in the probability calculation, in (b) they were excluded.

distance 20 kilometres. Because there are no events within the ellipse, the
second criteria will be applied. Because only events with magnitudes M ′ ≤ M

and distances D′ ≥ D will be sampled, we sample here events with magnitude
zero. Some of these events were recorded and some of these were not, which
leads to a complete arti�cal result for the probability at this point. Figure
5.2 shows the result of such a calculation, (a) shows high probabilities for low
distances and small magnitudes. This result is highly unlikely. Figure 5.2
(b) shows the matrix that we already saw above, the only di�erence between
these plots is that we did not include the events with magnitude zero for the
calculation of the righthand �gure.
As we can see, it is important to note that some events are assigned with
magnitude zero, although the magnitude just could not be determined.

5.1.2 Earthquake Clusters

One of the most striking features of the raw data from the station KIP is the
band of events in the distance range from about 120 to about 140 kilometres
(see �gures 5.1 or 4.1). There are over 30'000 events within this distance range.
This station is not the only one where we observed such a feature, �gure 5.3
shows more examples of such bands at di�erent distances. The station GCR
shows about 30'000 events within the �rst 20 kilometres, station CPM from 90
to about 110 kilometres and station JJO for a distance range from 180 to about
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(c) Station JJO

Figure 5.3: Bands of events for di�erent distances from the stations.

200 kilometres. We computed plots similar to �gure 4.1 to 4.3 (c), but this time
we only coloured events within the distance range of these bands. Figure 5.4
shows the example of the station KIP, where the distance band from 120 to
140 kilometres is highlighted. By inspecting many of such plots, we could �nd
di�erent sources of such bands with a dense event distribution, one origin are
aftershock series, another one are earthquake clusters.

Aftershock Series During an aftershock series many events happen in the
same regions and many of these events will be missed because their signal will be
too small compared to the main shock. An example of such an aftershock series
within our chosen time period, is the aftershock series of December 22nd, 2003
San Simeon earthquake, with a magnitude M6.5. Figure 5.5 shows the events
of this series. From the colour code, we can see that most events happened
in 2004 and 2005, before that the region war relatively quiet. The yellow star
shows the location of the main shock, most events happened to the south-east
of this event.
Although this aftershock series caused some bands on some stations, its e�ect
was not too large and was therefore not further inspected.

Earthquake Cluster An earthquake cluster is created by a region which is
highly active, this can be a fault or a volcanic region for example. We found
that the cluster from the Geysers Geothermal Field had the biggest in�uence in
our region. This region is shown in �gure 5.6, the colour code here shows that
the amount of events does not change much over the years. Altough this region
is small, there were over 30'000 events recorded over the period from January
1st, 2001 until December 31st, 2005. Most of the events happend at very shallow
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Figure 5.4: Map showing recorded (green) and missed (red) events within a distance
range from 120 to 140 kilometres from station KIP; white circles indicate
all events occuring during the active time of KIP. All circle sizes are scaled
by magntidue.
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Figure 5.5: Aftershock series of the San Simeon 6.5 earthquake of December 22nd,
2003; mainshock is indicated by a star, events are coloured by year and
scaled by magnitude.
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depth, which results in weak signals, which will not be recorded too far away.
However, there is a local network, called Berkley Geysers Network, BG (yel-
low triangles in �gure 5.6) installed to record all these events. Therefore they
will be included in the catalogue, although they were missed by most stations.
The stations from the BG network were not used in our analysis, because are
only used to record events from the Geysers �eld, and mostly fail to detect any
events outside this region.
However, as these events are in the catalogue, they reduce the probability that
an event will be recorded at any station in the distance range in which the
Geysers Geothermal Field is located. This in�uence is shown in �gure 5.7, on
the left hand is the probability matrices with all events, the right side shows the
result, when the events within the Geysers �eld are removed. The black ellipse
highlights the di�erence between the two �gures, the probability increases for
a distance range of 120 to 140 km when the Geysers events are removed.
Altough the Geyser events are limited to a small region (�g 5.6), their in�u-
ence on the probabilities is large. Each probability matrix re�ects the ability
of a station to detect an event in a circle around the station location, therefore
the Geysers events reduce the probabilities for a whole distance range for each
station. Excluding the Geysers geothermal �eld from the earthquake catalogue
leads to more reliable probability matrices. We could only overcome this in-
�uence by computing isotropic probabiliy matrices, this will be an subject for
future studies.

5.1.3 Excluding picks not used in the location process

Another feature we found during the inspection of station qualities were events,
which could not possibly be detected, but still were. An example of this is shown
in �gure 5.8, it shows on the left hand events that the station GFC detected
and on the right side the ones station BMR detected. On both �gures, events
which would not be detected under normal circumstances are highlighted with
a red circle, these events generally have a too low magnitude to be detected at
such distances. Therefore, we decided to investigate these events further and
found that the only thing they all had in common was that they were not used
in the inversion process to determine the hypocenter of an earthquakes. Hence,
we decided to exclude all picks from our analysis not used in the inversion. We
only observed after that, that there are many picks not used in the inversion
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Figure 5.6: Earthquake cluster created by the Geysers Geothermal Field; events are
coloured by year and scaled by magnitude. Triangles indicate location of
seismic stations, green= NC network, yellow= BG network.

(a) KIP with data from Geyser (b) KIP without data from Geysers

Figure 5.7: Comparison of probability matrices from the station KIP with, and with-
out the data of the Geysers region. The black ellipses highlight the dif-
ferences between both matrices, eliminating the Geysers events leads to
higher probabilities in the right �gure.
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(a) Recorded events at station GFC (b) Recorded events at station BMR

Figure 5.8: Recorded events at two di�erent stations, red circles show events which
should not be recorded under normal circumstances.

process, for some station we reduced the picks to 50 percent of the primary
data.
So on one hand, excluding the picks, which are not used in the inversion pro-
cess leads to more reliable data, as we are only using picks now, which were in
fact used to determine the hypocenter of events. On the other hand, we exclude
stations, which recorded an event in the �rst place. There are di�erent reasons,
why the pick of a station is not used, some times the station is just too far
away, so there were better picks in the near vicinity of the event. So the station
was just not used because it was too far away, while the signal was still good
enough. It is also possible that the station was not used, because the signal
was too weak or that there were other reasons, which made the station pick
infeasible, but it is not possible for us to distinguish between these reasons.
Figure 5.9 shows the comparison between two probability matrices for the sta-
tion BJO, (a) shows the probability matrix, which is based on the raw data
only, (b) shows the result, if the picks not used in the inversion process, are
excluded. Figure 5.9 (c) shows the di�erence between them, positive numbers
(blue) mean that we obtained a higher probability in (a), negative numbers
(red) mean that the probability computed in (b) is higher. We see that the
probability based on the raw data is generally higher; only for distances smaller
than 40 kilometres and magnitudes smaller than M0.5 the second data set leads
to higher probabilities. The station BJO is not used in the inversion process
at many magnitude-distance combinations, where it can be expected that the
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Figure 5.9: Probability matrices of the station BJO, (a) is based on the raw data, in
(b) no picks, which were not used in the inversion process were used. (c)
shows the di�erence between the two plots, using the raw data leads to
higher probabilities from about 60 kilometres on.
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signal still should be good enough. As we saw in the previous chapter (see
�gure 4.2 (c)), the station BJO is located near an active fault. Therefore the
station density is high and the signal of this station will not be used in the
inversion process to locate an event, because there will be other stations nearer
the event.
So, although it seemed like a good idea in the beginning to exclude all picks
not used in the inversion process, to get more reliable data, we abandon this
idea, because we excluded much to much data. This would not have been a
problem, if we not also excluded data, which was in fact reliable and would
have been used, if the station density was not that high. We are also mainly
interested in stations used for triggering and as the stations recorded a signal,
there will have been involved in this process, which is another reason for us to
refrain from this idea.

5.1.4 Excluding automatic picks

All triggering procedures include di�erent steps, in the NCSN it is implemented
that at least �ve station have to record a signal above a threshold to trigger an
event. This signals are recorded automatically and are only reviewed manually
if the signal is used. Therefore there will be many automatic picks, which can
represent real picks, but they don't have to. It is possible that the noise was
increased at a station, during an actual earthquake somewhere in the region
of the network. Then, the signal that was recorded at this station will be
interpreted as a pick information, altough it was just noise. For this reason,
we decided to exclude the automatic picks and investigate the results of this.
Using only manual picks will lead to more reliable data, but to much fewer pick
information.
Figure 5.10 shows two examples of probability matrices we obtain, when we
exclude the automatic picks. The top shows the probability matrices obtained
with the raw data, the middle the ones without the automatic picks and the
lower �gures show the di�erences between the above plots. The di�erence plot
in �gure 5.10 (b) is not as signi�cant as the di�erence plot in �gure 5.9 (c), at
some places, excluding the automatic picks can even lead to a higher probability,
but over all the probability decreases. For the station KIP, we observe the same
characteristics; excluding the automatic picks leads to a lower probability. For
this station we also see that the di�erence is zero at many places, this means
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(b) KIP, raw data
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(c) BJO, w/o automatic
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(d) KIP, w/o automatic
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(f) KIP, di�erence plot

Figure 5.10: Left side = station BJO, right side = station KIP. (top) Probability
matrices obtained with raw data, (middle) probability matrices obtained
with the exclusion of automatic picks and (bottom) di�erence between
above plots.
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that there were not as many automatic picks as at the station BJO.

5.2 Summary

We showed here several possibilities, how the reliability of the pick data can be
improved. Excluding picks not used in the inversion process does not improve
our results, as we are excluding picks, which were good enough to be recorded,
but they were just not used because there were better picks in the vicinity of
the earthquake. Therefore we would reduce our data without a prober reason.
Excluding automatic picks will lead to more reliable data on one hand, on the
other hand, automatic picks do not have to be wrong. If they seem to be ok,
they will not be picked manually again, so we are excluding data, which was
good data in the �rst hand.
In the end, we chose to only exclude events with magnitude zero and events from
Geyser Geothermal Field. In addition to this, we included that the probability
can not decrease with increasing magnitude and constant distance and it can not
decrease with decreasing distance and constant magnitude, as it was described
in § 2.1. Figure 5.11 shows the �nal probability matrices we used for our
calculation, again, �gures on the left side show probability matrices and �gures
on the right side show the di�erence plots between the calculations based on
the raw data and the calculation without the events from the Geysers region
and with the probability dependence. We can clearly see that we increased the
probabilities almost everywhere.
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(b) KIP, raw data
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(c) BJO, with assumptions
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(d) KIP, with assumptions
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(f) KIP, di�erence plot

Figure 5.11: Left side = station BJO, right side = station KIP. (top) Probability
matrices obtained with raw data, (middle) probability matrices obtained
with the exclusion of events from the Geysers Geothermal �eld and with
the addition of the constraints described in § 2.1 and (bottom) di�erence
between above plots.
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Results

6.1 Maps

We will presents �rst the maps showing the probability of detection, PD(M,x),
for a speci�ed magnitude. Then we will present results of our calculation of the
probabilistic magnitude of completeness. These maps show for every point the
magnitude threshold, above which we can assume that the NCSN is complete.
For both maps, we will present di�erent maps, which represent the di�erent
steps in our analysis.

6.1.1 Probability of Detection Maps

Figure 6.1 shows the PD(M,x) map, where M is equally to one. This map
results, if we are using the raw data, without excluding any picks or any events.
It does also not include the dependence of the probability on the magnitude and
the distance. We obtained this map without any assumptions. Figure 6.2 shows
the result we obtain, if we exclude all events within the Geysers Geothermal
Field. As we showed above, excluding these events leads to higher probabilities
within the distance range of this cluster for every station. Therefore it not
surprising that the probability to detect an event with magnitude M1 is higher
in �gure 6.2 than in �gure 6.1. The e�ect is also not limited to the actual region
of this cluster (compare �g. 5.6), as the probabilities were increased not only
at this place, but for a whole distance range around every station.
Figure 6.3 shows our �nal result, in this map we excluded the events from

the Geysers cluster and we implemented the dependence of the probability on
magnitude and distance. This means that the probabilities do not decrease

42
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Figure 6.1: Probability of detection map, for magnitude M1. The colour bar indicates
the probability level, with which a magnitude M1 event will be detected
at the speci�ed place. Squares indicate all events with magnitude M1 or
lower, which were recorded from 2001 to 2005. This map is based on the
raw data only.
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Figure 6.2: Probability of detection map, for magnitude M1. The colour bar indicates
the probability level, with which a magnitude M1 event will be detected
at the speci�ed place. Squares indicate all events with magnitude M1 or
lower, which were recorded from 2001 to 2005. For the calculation of this
map, we excluded all events from the Geysers Geothermal Field.
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Figure 6.3: Probability of detection map, for magnitude M1. The colour bar indicates
the probability level, with which a magnitude M1 event will be detected
at the speci�ed place. Squares indicate all events with magnitude M1 or
lower, which were recorded from 2001 to 2005. For the calculation of this
map, we excluded all the event from the Geysers Geothermal Field and
we included a dependence of the probability on the magnitude and the
distance.
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Figure 6.4: Di�erence in probability of detection between �gure 6.1 and �gure 6.3.
The probability that an event with magnitude M1 will be detected is
generally higher for the second case.

with increasing magnitude at constant distance and they do not decrease with
decreasing distance at constant magnitude.
As we already saw in the probability matrices in �gure 5.11, we obtain a

higher probability if we include this assumption. The low probabilities, which
are obtained due to a lack of data, are eliminated now. We see in �gure 6.3
that we obtain an overall probability of detecting an event with magnitude M1,
which is higher than the probability in the above �gures. This is again visualised
in �gure 6.4, which shows the di�erence between �gure 6.1 and �gure 6.3. We
already reached a probability of one at some places in �gure 6.1, there we see no
di�erence in both �gures. In all other regions, we obtain a higher probability
of detecting with our assumptions. The e�ect is highest in less active region,
these are regions which lead to a lack of data. With our assumption that the
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probabilities do not decrease for an increasing magnitude with constant distance
and a decreasing distance with constant magnitude, we can correct for these
lacks.

6.1.2 Probabilistic Magnitude of Completeness Maps

In this section, we will present maps of the probabilistic magnitude of com-
pleteness. We will present di�erent maps, for the di�erent correction steps we
have made. All maps, show from which magnitude on the Northern Californian
seismic catalogue can be expected to be complete. This magnitude varies in
the following maps from M0.5 to about M2.5. Figure 6.5 shows the result, we
obtain if we base our calculations on the raw data. In �gure 6.6, we show the
result, which we obtain if we exclude the Geysers cluster and if we include the
above mentioned dependence of the probability on magnitude and distance.
Each map is based on the station con�guration of one speci�ed date, we only
consider stations which were active during this day for the calculation. Figure
6.5 and 6.6 are based on the station con�guration on January 1st, 2006, �gure
6.7 is based on the con�guration on January 1st, 2003 and �gure 6.9 on January
1st, 2001. On each of these maps, we show the station, which were used for
the particular calculation. Figure 6.7 and 6.9 will show the in�uence of the
di�erent station con�guration.

Regional di�erences in the probabilistic magnitude of completeness The
�rst �gure 6.5 shows the result we obtain, if we use the plain data, without any
assumption. We obtain the same patterns in this map as in the above maps
of the probability of detection. We are obtaining mainly three regions, where
the PMC is signi�cantly lower. This is especially the case if the region is of
interest and the station density is therefore higher. One of the regions is along
the San Andreas fault from around Park�eld up to the San Francisco Bay Area.
This area is the most prominent feature on our maps. Based on the raw data,
we obtain values for PMC from 1.2 down to 0.5. Figure 6.6 shows the result,
we obtain if we exclude the Geysers cluster and include the assumptions. The
small region, where we obtain a PMC of 0.5 with the raw data has now been
greatly enlarged. In the southern part, the green pattern covers a broad region
and more to the north, we �nd a PMC of 0.5 along the San Andreas Fault up
to the San Francisco Bay Area.
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Figure 6.5: Probabilistic magnitude of completeness map, based on the raw data only.
The colour bar indicates the probabilistic magnitude of completeness and
triangles indicate the location of the stations, which were active on the
1/1/2006.
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Figure 6.6: Probabilistic magnitude of completeness map, where the Geysers cluster
is removed and the assumption about the dependence of the probability
on magnitude and distance is added. The colour bar indicates the prob-
abilistic magnitude of completeness and triangles indicate the location of
the stations, which were active on the 1/1/2006.

A second region, where we �nd low probabilistic magnitude of completeness is
the region north of Lake Tahoe, where a volcanic �eld is located. In �gure 6.5,
we see that we obtain values down to 0.5 in the middle of this pattern and values
around one at the borders. In �gure 6.6, the region where we obtain a value of
0.5 is broader. The pattern is also no more isolated, but it connects with the
pattern more in the south. This region with a low probabilistic magnitude of
completeness is located near Yosemite National Park. This region corresponds
to the volcanic �eld at Mammoth Lakes in the Long Valley. Based on the raw
data, we obtain values around one there, but in our �nal result we obtain values



CHAPTER 6. RESULTS 50

Figure 6.7: Probabilistic magnitude of completeness map, where the Geysers cluster
is removed and the assumption about the dependence of the probability
on magnitude and distance is added. The colour bar indicates the prob-
abilistic magnitude of completeness and triangles indicate the location of
the stations, which were active on the 1/1/2003.

of 0.5 there.
The highest PMC values are found in the Central Valley in both maps. This
region is less active and there are fewer stations there (compare �gures 3.1 and
3.3), based on the raw data we obtain values around 1.5 up to 2 there. The
advantages of our assumptions are demonstrated here again. Because we can
reduce the e�ect of too few data, we can obtain lower values at regions with a
lower seismicity. Figure 6.6 shows values of about one for much broader regions
and values of about 1.5 are only reached in the middle of the Central Valley.
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Figure 6.8: Di�erence between �gures 6.6 and 6.7. There were not many changes in
the network between the 1/1/2006 and the 1/1/2003, so the changes in
Mc are minor. The triangles mark stations, which became active after the
1/1/2003.
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Figure 6.9: Probabilistic magnitude of completeness map, where the Geysers cluster
is removed and the assumption about the dependence of the probability
on magnitude and distance is added. The colour bar indicates the prob-
abilistic magnitude of completeness and triangles indicate the location of
the stations, which were active on the 1/1/2001.
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Di�erence in the completeness over years. The maps in �gures 6.5 and
6.6 are both calculated for the station con�guration on the 1st January 2006.
We also calculated the maps of the probabilistic magnitude of completeness
for other dates, to investigate the in�uence of a altered station con�guration.
Figure 6.7 shows the result of a map for the January 1st 2003 and �gure 6.9
shows the result of a map for the January 1st 2001. Both maps are calculated
with the same data as �gure 6.6. We can see, how the probabilistic magnitude
of completeness changes, if we add more station or if a station is removed.
Adding a station lowers the value, because this station will contribute to the
new calculation and therefore increase the probability that an event will be
recorded. This e�ect is higher, if a new station is added where the station
distribution was sparse before. Adding a station somewhere, where the density
of the station distribution is already high will not have such a big e�ect. It will
still lower the obtained value, but not that signi�cantly. Removing a station
will of course have the opposite e�ect. It also makes a di�erence there, where
this station is removed and how good the recording capability of this station
was. Removing a station, which had a high probability to record an event in
a region where the distribution is sparse will have the biggest impact on the
obtained probabilistic magnitude of completeness values.
Figures 6.8 and 6.10 show the di�erence between the result with the station

con�guration on the January 1st 2006 and the con�guration on the January 2003
1st and the January 2001 1st , respectively. The changes in the con�gurations
are indicated by the stations, which became only active after the speci�ed date.
There are not many stations which became active after the January1st 2003,
so there is not much change visible in �gure 6.8. In contrast to this, there are
more changes in �gure 6.10, the most prominent feature are the changes around
the southern part of the San Andreas fault; installing more station lowered the
values for probabilistic magnitude completeness in 2006. In addition to this,
there are more station in the San Francisco Bay area, which also lowers the
PMC. The stations, which were removed are not shown on this map, but it
is obvious that stations must have been removed in the northern part of the
region, because the values in 2001 have been lower than the values in 2006.
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Figure 6.10: Di�erence between �gure 6.6 and 6.9. The e�ect of the new station along
the San Andreas fault can clearly be seen, the values for Mc decreased
there. New stations in the San Francisco Bay area also lead to lower
values in 2006. The triangles mark stations, which became active after
the 1/1/2001.
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(b) Station BBG

Figure 6.11: Probability matrices of station BJO and station BBG. In both we in-
cluded the attenuation curve, for three di�erent amplitudes.

6.2 Attenuation Properties

The original magnitude from Richter is

ML = log (AWA/2)− log(A0)

where AWA is the peak-to-peak amplitude on a standard Wood Anderson tor-
sion seismograph and − log(A0) is an attenuation term and is a tabulated
function of distance [Richter, 1935, 1958]. As mentioned above, in Northern
California, the following formula is in use

ML = log (AWA/(2× CAL)) + F1(s) + F2(d) + XCORcomp + XCORsta

where CAL is a dimensionless scaling factor assigned to each station and XCOR

are two corrections made for the component and the station. F1(s) and F2(d)

are two distance correction terms.
We can now include this relation in our probability matrices, this is shown in
�gure 6.11 for three di�erent amplitudes AWA. We can clearly see that the
slope of the probability and the equation �t reasonably good. The correlation
is better for the station BBG, but for we see a match in both �gures.
This means basically that the probability matrices, we compute represent for
every station is attenuation properties.
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Discussion

We showed in the introduction the importance of a good knowledge of Mc. Here
we will �rst discuss the advantages of our method over traditional methods that
rely on various assumptions. Then we will brie�y overview the steps we made
to improve the quality of our data and show our motivation of excluding only
the Geysers cluster and adding our physical constraints.

7.1 Comparison with traditional methods

Traditional methods to estimate the completeness of a seismic catalogue are
based on several fundamentally di�erent assumptions, the methods were already
brie�y mentioned in the introduction.

Methods, based on the Gutenberg-Richter FMD One approach is to inves-
tigate the deviation from the Gutenberg-Richter frequency magnitude distribu-
tion (FMD); methods, based on this, di�er in the way how they determine this
deviation point. The Gutenberg-Richter FMD [Gutenberg and Richter, 1944]
describes the relationship between the frequency of occurrence and magnitude
of earthquakes:

log N(M) = a− bM

where N is the number of earthquakes with magnitude larger than M , and a

and b are constants. Figure 7.1 shows this relation, the red line is an example
of how the FMD can be �tted to the data. In this case, this was just made on
a visual basis, but it should demonstrate the relation between the earthquake
distribution and the power-law. There are di�erent attempts on how to �t the

56
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Figure 7.1: Figure, showing the cumulative and non-cumulative distribution of the
magnitude against the logarithmic number of events. The red line shows
an example of the Gutenberg-Richter power-law.

data to the power law; they all have to �t b-values to the earthquake sample.
In his study on Californian earthquakes, Marsan [2003] calculated the b-values
for di�erent magnitude bands above a cut-o� magnitude, based on the model of
Utsu [1966]. He de�nes the log likelihood of completeness as the logarithm of the
probability that the best Gutenberg-Richter law �tted against all earthquakes
with a magnitude above the cut-o� can predict the number of earthquakes in
the magnitude range just below this cut-o� magnitude. He chose the minimum
magnitude of completeness so that (1) the b value drops for magnitudes smaller
than Mc and (2) the log likelihood drops for magnitudes equal Mc. This should
then indicate that too few earthquakes occur with magnitudes smaller Mc as
would be expected from the best Gutenberg-Richter law. Figure 7.2 visualises
this method; the arrow in �gure 7.2 (b) should indicate a drop in the b-value and
in �gure 7.2 (c) the arrow indicates the drop in the log likelihood. This picture
shows already di�culties in this method, it is not certain, where the b-value
drops. In addition to this, Woessner and Wiemer [2005] showed that the two
criteria are di�cult to combine if the calculation of Mc is done automatically.
They also found instabilities, when they calculated the log likelihood for only
one mangitude bin, as the frequencies of events within the magnitude bins vary
strongly.
Wiemer and Wyss [2000] saw the necessarily to map the completeness spatially.
They evaluate the goodness of �t by computing the di�erence between the
observed FMD and a synthetic distribution; a simple power law will not be
able to explain the observed FMD, if the data set is incomplete, making the
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(a)

(b) (c)

Figure 7.2: Figure, showing the method of Marsan [2003]. (a) shows the magnitude-
frequency graph of their sample, the thick line is the best Gutenberg-
Richter law. (b) shows variations in the b-value, the arrow indicates were
the b-value drops. (c) shows the log likelihood, the arrow indicates again
the drop.
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Figure 7.3: Figure, showing the method of Wiemer and Wyss [2000]. The di�erence
between the observed and the synthetic distribution decreases from (1) to
(3), the bottom shows the goodness of �t. Mc is taken where 90% of the
observed data are �tted with a straight line.

di�erence high. Figure 7.3 shows how the data is �tted by a simple power law;
the goodness of �t increases when the power law approaches the �real �magnitude
of completeness and decreases if it is exceeded. Wiemer and Wyss [2000] take
Mc at the 90% level; 90% of the observed data will be modeled by the power
law then. However, this level may not be reached if the FMDs are too curved
to be �tted by a simple power law. They investigate regions, where their �t was
poor and conclude that non-power law FMDs may have three di�erent sources
(1) artefacts in the catalogue, as a result of Mc changes over time, (2) mixing
of heterogenous population of events, e.g. volcanic earthquake families and
tectonic earthquakes and (3) spatially heterogenous Mc distributions. After
eliminating such contaminations, one should be able to model each earthquake
population with a power law for a wide range of magnitudes. However, this
implies that every single earthquake population must be identi�ed, to be able
to �t a power law. This means that a lot of work must be invested in analysing
the earthquake catalogue, as the completeness estimate will be wrong, if a
earthquake population can not be identi�ed. There are also drawbacks for
quiescence regions, it wont be able to �nd a earthquake population there and
therefore it wont be able to determine the completeness there. Although, the
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method maps Mc spatially, temporal changes are ignored.
Woessner and Wiemer [2005] introduced the so called Entire Magnitude Range
(EMR)-Method. They �t the complete part of the data with the FMD and
search for models to �t the incomplete part. They tested di�erent models and
found that a normal cumulative distribution function �ts the data best. The
magnitude of completeness is then found, where the joint log-likelihood of the
�t of the two models is the highest. This model does also not account for
distributions not following the FMD.
Cao and Gao [2002] base their estimation of Mc on the stability of the b-value
as a function of Mc. They use the maximum likelihood method of Aki [1965]
to calculate the b-value

b =
log e

M −Mc

where Mc is the cut-o� magnitude (similar to our use of Mc) and M is the
average of a group of earthquakes with M ≥ Mc. They assume that b-values
increase for M∗ ≤ Mc, remain constant for M∗ ≥ Mc and increase again for
M∗ À Mc. The authors de�ned the magnitude Mc as the value for M∗, when
the change in the b-value between two steps is smaller than 0.03. Woessner
and Wiemer [2005] tested this approach and found that it is unstable, as the
frequency of events in single magnitude bins can vary strongly.
All of the above mentioned methods base the estimation of the completeness of
a catalogue on earthquake samples that should follow the Gutenberg-Richter
frequency magnitude distribution. They do not take temporal changes in the
completeness into account, altough some try to map spatial changes, they still
rely on earthquake samples that have to be sampled over a certain space.

Comparing Day-To-Night Ratios Rydelek and Sacks [1989] investigated the
day-to-night changes of magnitude bins. They assume that cultural activity
and winds increase the noise level on seismogram during the day causing mag-
nitudes to be missed during the day, while they are recorded at night; �gure
7.4 show this schematically. They assume a Poisson distribution and say that
every deviation from this distribution must come from cultural or solar thermal
sources, if they investigate a time period of 24 hours. They then perform a ran-
dom walk simulation to determine the changes from day to night ratios. Figure
7.5 shows three di�erent steps of this procedure, for three di�erent magnitude
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Figure 7.4: Figure, showing the method of Rydelek and Sacks [1989]. Due to the
higher noise, the magnitudes M1 are missed during the day, but recorded
at night.

(a) (b) (c)

Figure 7.5: Three di�erent steps of the random walk, numbers indicate the magnitude
range and the numbers of events within this range. Di�erent con�dence
levels are indicated: 95% (solid) and 99% (dashed) [Rydelek and Sacks,
1989].

intervals: (a) M0.2 to M0.5, (b) M1.1 to M1.4 and (c) M1.7 to M2.0. When
the events stay within the 95% con�dence level (solid circle), the catalogue is
assumed to be complete. This method is able to determine Mc for regions where
the FMD di�ers from linearity, but it has also drawbacks. It assumes that de-
viations from a Poisson distribution only come from day-to-night changes, but
there are also other non-random features that can cause these, examples are
quarry blasts, aftershock sequences or swarms. If there are features like this
in the catalogue, the randow walk will lead to di�erent results. This method
will also not be applicable to regions that have low cultural noise, the 95%
con�dence level will there be achieved with an incomplete catalogue, examples
of such regions are deserts.

Using Signal-To-Noise Ratio Kværna et al. [2002a,b] use the signal-to-noise
ratio at a particular station to determine a threshold from which on a signal is
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(a) All events of the catalogue
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(b) Events within Geysers Cluster

Figure 7.6: Cumulative number of events against magnitude. The �uctuations in this
distribution are much higher for the Geysers cluster.

supposed to be higher than the noise. This method, based on waveform calcu-
lation, is still too time-consuming to be practical for most regions. However,
the method does not make the same assumptions as the methods above and, if
improved, may be applicable to more regions.

Advantages of our method The biggest advantage of our method is that
we do not base our estimation of the magnitude of completeness on earth-
quake samples, but all on events within the seismic catalogue and the station
con�guration. We do not assume that the events follow a Gutenberg-Richter
based frequency-magnitude distribution. This distribution is violated at various
places, for example in geothermal or volcanic regions; the Geysers Geothermal
�eld and the volcanic �eld near Mammoth Lake are just two examples in our
study regions, where it is highly likely that the event distribution deviates. Fig-
ure 7.6 shows this distribution for the events of the whole catalogue and only
for the events within the Geysers cluster. The �uctuations for this �eld with
geothermal activity in the event distribution are higher than the �uctuations
for the whole catalogue, which would it make more di�cult to �t a b-value to
the data.
With our method, we also do not have to assume that the completeness is con-
stant over space or time; we can compute an estimate of Mc for every date and
this will be only based on the station con�guration on this speci�ed date. Once
the probability distributions for each station are computed, we can compute the
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probabilistic magnitude of completeness for every region within the network.
We presented in this work maps for the whole region with a resolution of 0.2◦,
but it is possible to map a single region within Northern California with a much
higher resolution. The computation-time depends on the size of the region and
the resolution, maps that we produced take about 48 hours.
However, we have to make sure that the triggering condition was constant over
the time period during which we collect our data. If this condition changes, we
have to de�ne a new period and base the completeness on this new period.
We also make one assumption: we assume that we can add the conditions that
the probability of detection does not decrease with increasing magnitude at
constant distance and that it does not decrease with decreasing distance at
constant magnitude. This only means that we assume that a station follows
some simple physical conditions. A station will record a stronger signal for an
event with a high magnitude than for an event with a smaller magnitude, if
they occurred at the same distance from this station. Therefore it should not
be possible that the capability of a station to record an event with a lower
magnitude is higher at the same distance. This can only be the case if there
are no events of this magnitude within the speci�ed distance of the station.
The same hold for events a di�erent distances and constant magnitudes. The
signal should be stronger, if the event occurred within a shorter distance and
therefore the capability of the station to record these events should be higher or
at least equal. By adding our assumptions we are accounting for these e�ects.
The only �aw in this assumption is that errors can occur if there is incorrect
data in the event catalogue. If an event is wrongly reported as recorded at
a certain distance/magnitude combination, this will also a�ect combinations
with a lower distance and a higher magnitude. However, the e�ect is not very
large, if just one event is reported wrongly, as the probability depends on the
sample of at least ten events, but if there is a systematic error, it will a�ect the
probability.

7.2 Steps of reducing data �aws

We introduced several steps of data correction. First, we excluded all events
with a magnitude zero from our data, because they lead to arti�cal probabilities
for small distances and low magnitudes. While analysing the stations we came
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across dense bands of events within certain distance ranges at di�erent stations;
we detected that the origin of such bands are earthquake clusters or aftershock
series. We decided to remove the earthquake cluster with the biggest in�uence in
our region; the Geysers cluster. It was necessary to remove this cluster, because
it in�uence the probabilities not only in the region where it was located. As the
probability matrices we compute are isotropic, the Geysers cluster reduces the
probability within a whole distance range of a station, not only at its origin.
We did not remove other clusters or aftershock series, because we found that
their in�uence is minor compared to the Geysers cluster. To overcome such an
in�uence of earthquake clusters, a future approach should include the direction,
when calculating the probability distributions of the stations.
We also investigated the e�ect of removing other data, e.g. all picks not used
in the inversion process to locate an event, or all automatic picks. We believe
that it is not reasonable to exclude all picks not used in the inversion process,
because most of these were not bad picks, but not used simply because there
were better picks nearer to the event. Excluding all automatic picks increases
the reliability of the data; however this does not mean that all automatic picks
are bad; there were just not checked manually because there was no need for
it. Therefore we decided to neither exclude the picks not used in the inversion
nor the automatic picks for our �nal results.
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