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Abstract —The historical development of spontaneous rupture propagation, starting from the

landmark paper of Griffith in 1920, through to the late 1980s is traced, with particular emphasis on the

work carried out at MIT in the 1970s by K. Aki and his co-workers. Numerical applications of Kostrov’s

method for planar shear cracks were developed by Hamano, Das and Aki. Simultaneously at MIT,

Madariaga considered the radiated field of a dynamic shear crack. The further development of these ideas,

for example, three-dimensional spontaneous planar faulting models, continued through the 1980s. Major

insight into the maximum possible rupture speeds for earthquakes developed, with the acceptance of the

theoretical possibility of supersonic rupture speeds for faults with cohesion and friction, the theoretical

developments spurring the search for such observations for earthquake ruptures. Possible mechanisms by

which faults stop were elucidated. It was shown that a propagating rupture can jump over barriers for

cracks with a cohesive zone at its tip. Complex faulting models, namely the barrier and asperity models,

and their associated radiated field developed. In the late 1980s, it was shown that ‘‘dynamic’’ or transient

asperities can develop during the complex rupturing process. Even seemingly relatively simple physical

situations, can lead to such complex rupturing processes that the usual idea of ‘‘rupture velocity’’ needs to

be abandoned in those cases. Some of the work initiated by Aki and his co-workers, such as the details of

the transition from sub-Rayleigh to super-shear speeds in inplane shear mode, and the behavior of the

cohesive zone size as the crack extends, still remains the subject of research today.
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Introduction

KOTO’s (1893) study of the 1891 Mino-Owari earthquake finally confirmed the

faulting origin of earthquakes, though a few seismologists still continued this debate

into the 1960s! Before then, cause and effect were confused. Even a scientist as great

as Darwin, in his description of the 1835 Chilean earthquake, wrote: ‘‘The most

remarkable effect of this earthquake was the permanent elevation of the land; it

would probably be far more correct to speak of it as the cause’’ (DARWIN, 1889). In

the history of seismology, ‘‘who first proposed it’’ (that earthquakes are due to

faulting) ‘‘is not definitely known’’ (HOWELL, 1990). Clearly, REID’s (1910) brilliant

study of the 1906 San Fransisco earthquake soon after Koto’s paper helped in its

acceptance. But though it was understood by Reid that shallow earthquakes were
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due to rupture of the earth’s crust in response to tectonic stresses, the physical basis

for analyzing this phenomenon, namely, fracture mechanics, did not yet exist. It was

only in 1920 that Griffith initiated the study of the mechanics of fracturing, and the

subject really developed vigorously during and after the Second World War.

GRIFFITH (1920) understood that for a pre-existing flaw in a material to extend, the

energy required to create new crack surface (the fracture energy) can be at most equal

to the strain energy available in the body. This criterion, now known as the ‘‘Griffith

fracture criterion’’ is a global criterion. In 1957, Irwin first introduced the idea of

stress intensity factor k at the crack tip, the stress at the crack tip being given by

k=ð
ffiffi
r

p
Þ, where r is the distance from the crack tip outside the crack, together with

higher order terms in r, which can be neglected as one approaches the crack tip (that

is, as r ! 0). Using this, IRWIN (1957, 1958, 1969) developed a local criterion which

states that the crack tip extends when the stress-intensity factor exceeds some critical

value, called the fracture toughness of the material. These ideas were applied at first

to quasi-static rupture of tension cracks.

The static solution for displacement on a inplane shear crack was written down

by STARR (1928). ESHELBY (1957) wrote down the closed form solution for static

elliptical cracks, both in tensile and in shear modes. These solutions indicated that for

constant stress drop on a simple earthquake fault, the displacement is variable,

decreasing from zero at the edges to a maximum at the center. KOSTROV and DAS

(1984) evaluated and plotted the stresses around circular and elliptical faults using

this latter solution.

Development of Methods of Solution for the Dynamic Problem

In the 1960s, Kostrov pioneered the application of ideas developed in fracture

mechanics to the study of shear fracture and hence set up the basis for analyzing

earthquake ruptures. In KOSTROV (1964) he published the analytical solution for a

self-similar shear crack extending at a prescribed velocity and showed that for a

constant stress drop on the crack, the fault slip velocity varies at the crack edge as the

inverse of the square root of the distance of any point on the crack to the crack edge.

His solution also shows that the displacement in time at each point of the crack

increases from zero to its final constant slope value, and that the time to reach this

value increases as one moves away from the point of rupture initiation. This implies

that the ‘‘rise time’’ of the source time function varies over the fault. In KOSTROV

(1966), he considered the propagation of the semi-infinite antiplane shear crack

which suddenly appears and starts extending at a prescribed (but not necessarily

constant) velocity without stopping. He wrote down the complete closed form

solution for this mixed boundary value problem, in which the stress changes are

assumed known within the crack (the stress drop) and the displacements are known

outside the crack (the slip is zero there). This solution gives the displacement on such
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a crack for any known stress drop distribution on it, as well as the stresses in the

causal region outside the crack. This method has since been called the ‘‘Green

function method’’ by FREUND (1990), and had been widely used in potential theory

and in fluid mechanics studies of supersonic flow around aerofoil wings (developed

by EVVARD (1950) and described in his textbook by WARD (1955)). Note that the

equations for a crack tip moving through a solid is identical to those for fluid flowing

past a solid object! BURRIDEGE and WILLIS (1969) developed the dynamic solution

for a self-similar elliptical crack.

Kostrov’s 1966 method formed the basis of the numerical boundary-integral

equation (BIE) method later developed by HAMANO (1974) and DAS and AKI (1977a)

for 2-D problems, and by DAS (1980) and DAS and KOSTROV (1987) for 3-D

problems. In this method, the problem reduces to calculations of quantities on the

fault surface only. The problem formulation in 3-D is briefly described below, mainly

for completeness, and for definition of quantities to be used later in this paper. The

earthquake source is modeled as a propagating plane shear crack in an infinite

medium (Fig. 1) which is homogeneous and linearly elastic everywhere off the crack

plane, the latter considered to have infinitesimal thickness. (Remember that

earthquakes cannot occur in a medium that is truly homogeneous everywhere.) As

the fault propagates on the planar surface F : X3 ¼ 0, waves are radiated out in three

spatial dimensions. Initially, the infinite body is under a uniform state of stress r0
ij.

The initial stress on the fault plane X3 ¼ 0 can be separated into the normal stress r0
33

and a shear stress r0
13 ¼ r0, say. The component r0

23 can be taken as zero by taking

the coordinate axis X1 in the direction of the maximum initial shear (without loss of

generality). The initial shear stress is increased sufficiently to initiate a fault at the

origin, which then propagates on the X3 ¼ 0 plane. The normal stress r0
33 over the

fault plane remains constant throughout the rupture process, for a planar fault. Let

us take the origin of time t ¼ 0 as the time when the fault initiates and starts

Figure 1

The geometry of the fault.
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extending. We study the case when the fault propagation speed is rapid enough to

generate elastic waves. The fault edges may move at some pre-assigned speed or the

position of the fault edge may be found as a function of time, using some fracture

criterion. (The latter is called ‘‘spontaneous’’ propagation in seismology.) Let us

consider the former case only for the moment (that is, the fault propagation speed in

all directions on the fault plane is known). As the fault propagates, there is relative

motion between the two faces of the fault, that is between the regions X3 < 0 and

X3 > 0, and a displacement discontinuity appears across the broken region of the

fault plane. This discontinuity is a function only of the coordinates X1 and X2 and

time t. The shear stress on the fault surface is zero if there is complete stress release;

or, it can be equal to the the frictional stress r on the fault faces, given by r ¼ lr0
33,

where l is the coefficient of friction. l may be taken constant or a function of space,

time, and any other desired parameter. Let the incremental stresses due to the

displacement u from its initial configuration be sij, so that rij ¼ r0
ij þ sij, that is, sij is

the stress change due to the motion, and all motions depend only on these stress

changes on the fault. Exploiting the symmetries in the problem for planar shear

cracks, the solution can be shown to be antisymmetric in X3 that is, the displacement

components u1, u2 and traction perturbation s33 are odd in X3 while u3, s13 and s23

are even in X3 (DAS and AKI, 1977a). Hence, it is sufficient to solve the problem for

the upper half-space X3 � 0. Further, from the continuity of tractions across X3 ¼ 0,

it follows that s33 vanishes everywhere on X3 ¼ 0. Then, the required representation

relation is obtained as

ukðX; tÞ ¼
Z1

	1

dt0
ZZ

F

GkiðX	 X0; t 	 t0Þsk3ðX0; t0ÞdS ð1Þ

where X and X0 are two-dimensional vectors on F , uk is the component of

displacement in the k direction, Gki is the displacement response of the medium in the

k direction at ðX; tÞ due to an impulse acting in the i direction at ðX0; t0Þ, k ¼ 1; 2; 3,

and F is the causal portion of the fault plane X3 ¼ 0, that is, the cone of dependence

given by

v2
P ðt 	 t0Þ2 	 ðX1 	 X 0

1Þ
2 	 ðX2 	 X 0

2Þ
2 � 0; t � t0 � 0 ð2Þ

where vP is the compressional wave speed of the medium. The required components

of the Green functions G are the solution to Lamb’s problem and can be expressed in

terms of elementary functions. The analytical expressions for Gki for the two- and

three-dimensional problems are given in Appendix I of KOSTROV and DAS (1988).

The kernel G possesses only weak singularities and can be directly discretized for

numerical computation.

This mixed boundary value problem is solved numerically by discretizing the

above equation. However, the stress changes sk3 are known only on the broken part
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of the fault plane (the stress drop) but are unknown in the unbroken but causal

portion, so these have to be determined before the integrations can be carried out in

equation (1). This is done by using the fact that the slip is zero on the unbroken part

so that the lhs of (1) is zero there for k ¼ 1; 2. The solution then proceeds by a time-

marching scheme. The region of integration in 3-D, the intersections of the cones of

dependence and influence, is shown in Figure 2 (DAS, 1980). Note that even though

the problem was solved by DAS and AKI (1977a) in 2-D only, the full set of equations

for the 3-D problem were written down by DAS (1976) [in fact, it follows

straightforwardly from BURRIDGE (1969)] and the required Green functions were

already available, having been written down by CHAO (1960) for a Poisson solid, (the

expressions for a general solid were given by RICHARDS (1979)), so that the

development of the 3-D problem later by DAS (1980) followed naturally.

The normal component of displacement u3 is non-zero during the dynamic

process, though of course there is no discontinuity in this component across the fault

for the shear crack problem. This property had already been used earlier by AKI

(1968) to study the near-field transverse component of 1966 Parkfield earthquake, the

only near-field seismogram of that earthquake that was recorded.

In 1969, Burridge had started working on the problem of dynamic crack

propagation, first in 2-D, later extending his method, also a numerical boundary-

integral method, to some simple (namely, the acoustic) 3-D problem (BURRIDGE and

MOON, 1981). DAS and KOSTROV (1987) have discussed this form in detail, and

shown that these two forms of writing the BIE are mutually inverse integral

transforms of one another. In this second form of the BIE, the stress on the fault is

written as a convolution between a kernel and the fault displacement. It has the

advantage that the integrations extend only over the slipping portion of the fault. It

Figure 2

Volume of integration in BIE method of DAS (1980). The cone with vertex pointing down is the ‘‘cone of

influence,’’ and the cone with its vertex pointing up is the ‘‘cone of dependence.’’ The inner cone (stippled)

is the region where the Green function vanishes for this problem, so that the actual volume of integration

for this problem formulation is the grey area.
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has the disadvantage that the singularities in the kernel are strong and the kernel

cannot be discretized as simply as in the previous form of the BIE. BURRIDGE (1969),

mentioned above, did this. DAS and KOSTROV (1987) determined another numerical

form of the kernel. Most recently, MADARIAGA and COCHARD (1992) and COCHARD

and MADARIAGA (1994) have used this form of the BIE in their work, discretizing the

kernel directly. This latter form of the BIE is particularly suited to ‘‘interior’’ crack

problems such as an expanding fault, whereas that given in equation (1) is most

efficient for ‘‘exterior’’ crack problems such as the rupture of an asperity on an

infinite fault, where the zone of the unknown stress changes decreases with time.

Simultaneously, programs were developed to study the crack problem using

finite-difference and finite-element methods, both in fracture mechanics for tension

cracks in 2-D, and by seismologists for shear cracks, both in 2-D and 3-D. For the

tension crack, the reader is referred to the very comprehensive bibliography given by

FREUND (1990). For the shear problem, the 2-D work was carried out by ANDREWS

(1976a,b; 1985) and by ARCHULETA (1976) and later by DAY (1982a,b) in 3-D.

Kostrov’s chef d’oeuvre was probably his 1975 paper (KOSTROV, 1975) in which he

wrote down closed form expressions for all three modes of semi-infinite and finite

crack propagation for cracks with variable velocity, as long as this velocity did not

exceed the Rayleigh wave speed. This paper is a landmark in the development of

applied mathematical methods in fracture mechanics, as John Willis recently

reminded us at the memorial meeting in honor of Kostrov, held at the EGS meeting

in 1999 at The Hague. But probably due to its cumbersome nature, this solution has

not been used widely by seismologists, though it is used by fracture mechanicists.

Spontaneous Propagation of Cracks

In his 1966 study, Kostrov also considered the problem of spontaneous

propagation of a semi-infinite antiplane shear crack that suddenly appears and

starts extending. Using a dynamic form of Griffith’s criterion, he showed that if the

material through which the crack is extending has constant fracture energy c, the

crack goes through a stage of accelerating from zero to its final speed and then

continues to propagate at this speed. For the antiplane crack, this terminal speed was

the shear-wave speed of the medium, but for stronger materials (i.e., with higher c),
the time to reach this speed was longer. Kostrov’s 1966 paper was a very short paper,

demonstrating that the length of a paper is unrelated to its impact on a field! In the

introduction of his book ‘‘Cracks and Fracture,’’ BROBERG (1990) singles out

the work of Kostrov and Freund in dynamic fracture mechanics by saying ‘‘In the

dynamic field, the significant and pioneering contributions of B. V. Kostrov and

L. B. Freund deserve particular mention.’’

During his studies in the 1960s, Kostrov found that despite the sophisticated

developments in fracture mechanics, for seismologists to apply the ideas to
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earthquake rupture was not straightforward. The reasons for this were twofold.

First, engineering structures are in tensional stress regimes and all the theories were

relevant to tensional fracture. In tensile cracks, the two faces of the crack are not in

contact and hence there is no friction between them. For shear cracks, of course, this

is not the case. In particular, when considering the total energy balance budget in a

problem, the friction of the shear -fault surfaces becomes very large. Later, FREUND

(1979) showed by considering the energy budget of dynamically propagating cracks

that as a shear fault becomes larger and larger, the frictional term becomes more and

more dominant over the term representing the energy needed to create new fracture

surface. Studies of antiplane shear in fracture mechanics were considered in a similar

way to the tension crack problem, and friction was always neglected. Secondly, at

that time, most engineering studies related to quasi-static fracture, but earthquake

ruptures are a dynamic phenomenon. KOSTROV and NIKITIN (1970) even had to

redefine the idea of fracture by what they termed the ‘‘model of fracture.’’ Without

going into details here, we simply refer to his original paper as well as to a brief

description in KOSTROV and DAS (1988). The crack tip energy flux for dynamic

fracture was proposed by ATKINSON and ESHELBY (1968) simply by taking that for

quasi-static fracture and guessing the result for dynamic propagation. KOSTROV and

NIKITIN (1970) confirmed these expressions for dynamic fracture working directly

from the field equations. KOSTROV and NIKITIN (1970) also extended the idea of the

path-independent J -integral (ESHELBY, 1956; RICE, 1968) for quasi-static fracturing

to dynamic fracturing (the J -integral can be obtained from their expression simply by

setting the rupture speed to zero).

BURRIDGE (1973) demonstrated that for cohesionless cracks with friction, the

maximum rupture speed could reach the compressional wave speed of the medium.

His results were not taken seriously either in fracture mechanics or in seismology due

to the cohesionless nature of the crack.

In parallel with developments of the theories which would lead to the study of

spontaneous fault rupture, some important milestones occurred around this time in

the study of the earthquake source. The body force equivalent in terms of the double-

couple was developed by BURRIDGE and KNOPOFF (1964), and the scalar seismic

moment was defined by AKI (1966). RANDALL (1971) understood that the seismic

moment was actually a tensor. BRUNE (1970) wrote a simple relation between

earthquake stress drops and fault radius, for a circular fault, and since this was a

simple formula, it became very widely used, sometimes for faults that were far from

being equidimensional.

The Cohesive Zone Model

In linear elastic brittle fracture, the transition from broken to unbroken material

occurs over an infinitesimally small region. This sharp transition leads to infinite
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stresses at the crack tip in mathematical considerations. But since this cannot exist in

reality, there is, in fact, a region between these two states where the material may be

partially broken. Such a model of fracture is termed imperfectly or non-ideally

brittle, and this intermediate region is called the ‘‘cohesive zone.’’ BARENBLATT

(1959) introduced the idea that the bonding force between atoms that end up on

opposite faces of the crack after total separation, is proportional to the separation

distance between them while the atoms are still in the transition or cohesive zone.

Almost simultaneously, LEONOV and PANASYUK (1959) in the then USSR (the

original paper was written in Ukrainian and hence is not easily accessible to most

readers!) and DUGDALE (1960) in the United States developed the idea of the process

zone further.

From 1972 to 1973, Ida, working beside Aki at MIT, developed a cohesive zone

model in which the cohesive zone stress depends on the amount of relative slip

between the two faces of the crack for a shear crack (IDA, 1972, 1973). PALMER and

RICE (1973) introduced a similar idea to study the stability of a slope under

gravitational sliding. In these models, now termed ‘‘slip-weakening’’ models, the

stress just outside the crack is shown in Figure 3, and the work done at the crack tip,

or the fracture energy, is the shaded area. FREUND (1990) explores such models more

fully in his Chapters 5 and 6. ANDREWS (1976a) showed that for such a model the size

of the cohesive zone decreases as the crack length increases, whereas for a ‘‘strain-

weakening model,’’ it remains constant. Based on laboratory results, OHNAKA (1996)

stated that ‘‘the size of the breakdown zone is almost constant in the zone of

dynamic, fast-speed rupture propagation.’’ This is also seen from Figure 26 of

OHNAKA and SHEN (1999).

BRACE and WALSH (1962) measured fracture energy in quartz in the laboratory

under shear stress. IDA (1972) estimated the fracture energy for earthquakes from his

Figure 3

Cohesive zone model, showing the stress r at the crack edge plotted against the slip weakening distance d.

The critical distance is dc and the shaded area gives the fracture energy.
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cohesive zone model, and found that it is several orders of magnitude greater than

that obtained in laboratory experiments. All further estimations of fracture energy

(DAS, 1976; AKI, 1979) found similar results.

The critical stress level fracture criterion. The ideas of Griffith, Irwin, Barenblatt,

etc. all lead to seemingly different fracture criteria. KOSTROV (1966) showed that

the Griffith and Barenblatt criteria were equivalent from energy arguments and

WILLIS (1967) proved their equivalence by a direct stress analysis. For numerical

applications however, these criteria are difficult to use. So first HAMANO (1974) and

then DAS and AKI (1977a) introduced the ‘‘critical stress level fracture criterion’’ in

which a grid ahead of the crack tip is allowed to break when the stress in that grid

exceeds some critical stress level related to the resistance of the material to fracture.

Hamano’s preliminary results were never published, except as an AGU abstract.

Work on this problem was continued by Das and Aki between 1974–1976.

Hamano had started developing the 2-D numerical form of KOSTROV’s (1966)

Green function method for a semi-infinite antiplane shear-crack solution, and

extended it to 2-D finite cracks for all three crack modes. He also implemented the

critical stress level fracture criterion, but did not show its connection with the Irwin

criterion, which was done later by DAS (1976) and DAS and AKI (1977a). They

related this criterion to a discrete form of the Irwin criterion, but of course the

relation is grid-size dependent. VIRIEUX and MADARIAGA (1982) studied this

criterion further and by comparing the analytical and grid-size-dependent numer-

ical solutions for the antiplane shear crack determined the range of normalized

critical stress levels for which this criterion gives the same result as the analytical

solution using the Irwin criterion.

The critical stress level criterion becomes nonproblematic from the point of view

of grid size dependence if we consider the material to be imperfectly brittle and the

stress at the crack tip to be nonsingular. Then for small enough grid sizes (but not so

small as to be impracticable for computations) the average stress near the crack edge

varies smoothly and becomes independent of the grid size. In seismological

applications, no attempt has ever been made to relate this discretized resistance to

fracture at the crack edge to actual laboratory measurements. This is partly because

it is not yet technologically possible to conduct dynamic fracture experiments on

large rock specimens at the temperatures and pressures that exist at depths in the

Earth where earthquakes actually occur. So the numerical results have been discussed

in the context of fracture on ‘‘relatively strong’’ or ‘‘relatively weak’’ faults or

interfaces. The term ‘‘relative’’ is discussed next. For this, we define the dimensionless

quantity S ¼ ðru 	 r0Þ=re, where r0 is the initial stress level, ru is the critical stress

level ahead of the crack tip required for fracture, and re is the stress drop on the

fault. Then larger S implies ‘‘relatively’’ stronger material, that is, relative to the

stress drop.
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Relation between Different Fracture Criterion

DAS (1976) and DAS and AKI (1977a) extended Kostrov’s analysis for the Griffith

criterion to the Irwin criterion and compared both results with that for the critical

stress level fracture criteria for a semi-infinite antiplane shear crack that suddenly

appears and extends spontaneously. Using Griffith’s criterion, the crack tip position x
as a function of time t is

x ¼ bt þ btcðp=2 	 1 	 2 arctanðt=tcÞÞ ;

where tc is the time of onset of fracture (KOSTROV, 1966). Using Irwins’s criterion,

DAS and AKI (1977a) showed that the crack tip position in time is

x ¼ bðt 	 tcÞ 	 btc logðt=tcÞ :

Figure 4 shows the crack tip position as a function of time for this problem for the

analytical forms of the Irwin and Griffith criteria and for the numerical criterion. It

shows that for the same tc, the Griffith locus always lies above the Irwin locus, i.e.,

the Griffith crack accelerates faster to the terminal velocity than the Irwin crack. For

the numerical case, by finding the value of the (grid-size dependent) S for which a

crack starts propagating at the same time as those for the Griffith and Irwin criteria,

namely with the same tc, it was shown that the critical stress level criterion could

indeed be considered a numerical analog of the Irwin criterion. This criterion has

since been used in numerical applications in seismology.

Figure 4

Comparison of the crack tip positions for the Griffith, the Irwin and the critical stress level fracture criteria

(after DAS and AKI, 1977a).
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Maximum Permissible Rupture Speeds for Shear Faults

BARENBLATT and CHEREPANOV (1960) and BROBERG (1960) showed that the

maximum speed for tension cracks in perfectly brittle materials (i.e., with infinite

crack tip stresses) was the Rayleigh wave speed of the medium. (An incorrect

solution had been published by MOTT (1948), in which he obtained the erroneous

result that the maximum speed of a tensile crack is some fixed fraction, typically

about half the shear-wave speed of the material.) CRAGGS (1960) showed that the

maximum rupture speed was the Rayleigh wave speed both for the tensile as well as

the inplane shear crack. The maximum rupture speed for antiplane shear cracks was

shown to be the shear-wave speed.

The presence of the singularity at the crack tip in perfectly brittle material leads to

the result that for tensile and inplane shear cracks the maximum speed cannot exceed

the Rayleigh wave speed; for antiplane shear cracks the maximum permissible

rupture speed is the shear-wave speed. In numerical problems where the stress

singularity at the crack edge is replaced by a large but finite stress, application of the

critical stress level fracture criterion to the antiplane shear crack and the tension

crack gave the same terminal rupture speeds as obtained for the analytical problems

discussed above. But for inplane shear cracks, terminal speeds as high as the P-wave

speed were found for relatively weak materials (ANDREWS, 1976b; DAS, 1976; DAS

and AKI, 1977a).

The transition from sub-Rayleigh to super-shear speeds for inplane shear cracks is

reproduced from DAS and AKI (1977a) in Figure 5. Similar results were found by

ANDREWS (1976b) using Ida’s criterion and a finite-difference method. The maximum

permissible rupture speed has since been confirmed in numerous numerical studies.

There has been much discussion recently on whether the transition from sub-Rayleigh

to super-shear is sudden or smooth. With the computing power available in the late

1970s, this was impossible to resolve, but it could be resolved today, if so desired.

BURRIDGE et al. (1979) showed that even in the case of a perfectly brittle solid,

cracks can propagate at
ffiffiffi
2

p
times the shear-wave speed. Very recent laboratory

measurements (ROSAKIS et al., 1999) confirm this.

Truly convincing observations of super-shear rupture speeds for earthquakes still

remain elusive. In some reported cases it is not clear if the speed being measured is not

the apparent rupture speed. Often such speeds are determined from one station close to

the fault, or stations not close enough to the fault. Remembering the very unstable

nature of the inverse problem of obtaining the fault rupture history from analysis of

seismograms (KOSTROV and DAS, 1988; DAS and KOSTROV, 1990, 1994; DAS and

SUHADOLC, 1996; DAS et al., 1996; SARAO et al., 1998), such velocities must not be

unquestioningly accepted in situations without sufficient constraints (usually good

station distribution and many three-component accelerograms). What is most

important is that this theory has led to the search for such super-shear speeds, whereas

previously such speeds would be considered impossible, and not considered at all.
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For the antiplane shear problem, the only wave speed in the problem is the shear-

wave speed. But for the other two crack modes, P, S and Rayleigh waves all exist

along the crack face. So why then does the tension crack not reach the P-wave speed

even for the weakest materials? This can be explained by considering the Green

functions for the two problems. The Green functions for the Mode II crack is such

that the sign of the stress due to the body waves and the Rayleigh wave are the same,

whereas for Mode I, the body wave stresses have opposite sign to the Rayleigh wave,

and close the crack, inhibiting it from growing until the arrival of the Rayleigh wave.

The tension crack, filled with fluid, was used by Aki and his co-workers, to model

magma transport in volcanoes (AKI et al., 1977).

Radiation from Spontaneous Faults

MADARIAGA (1976) considered the radiated body-wave pulses from a dynamic

circular crack propagating at a constant velocity. He solved the problem numerically

Figure 5

Transition from sub-Rayleigh to super-shear velocity for inplane cracks, (after DAS and AKI, 1977a),

shown as contour plot of the crack tip velocity for different values of the fault strength parameter (S)

against the dimensionless parameter Lc=L, where Lc is the initial crack length required for propagation to

occur, i.e., the initial Griffith critical length, and L is the instantaneous crack length.
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to determine the slip rate on the fault. Then, summing these fault slip rates in

appropriate directions around the source (HASKELL, 1964), he obtained the pulse

shape in those directions. He demonstrated that the far-field pulse shapes in different

directions in a plane perpendicular to the crack can be used to estimate the fault

dimension, if the rupture speed is known. In earlier kinematic models (SAVAGE, 1966;

SATO and HIRASAWA, 1973) fault slip was stopped artificially, to find the expected

pulse shapes at different stations. Madariaga’s study from propagating faults in

which the slip was stopped using a physically realistic criterion, first gave us insight

into how fault slip stops on the different parts of a fault by ‘‘healing’’ information

from the fault edges, and the resulting pulse shapes. MADARIAGA (1976) also

considered the corner frequencies for faults propagating at different constant speeds

and showed that the rupture speed affects the corner frequency. This implies, as DAS

and AKI (1977b) demonstrated, that corner frequency is not a measure of fault size

but of rupture time, and the two can be related if and only if the rupture speed [which

in reality is variable as shown, for example, by KOSTROV (1966)] is known.

Complex Faulting Models

The barrier model. Using their numerical BIE method, DAS and AKI (1977b)

considered the propagation of spontaneous 2-D faults on planes with variable values

of S. The critical stress level fracture criterion was used in these calculations to

determine how the crack advanced. This led to the development of what has now

become known as the ‘‘barrier model’’ for heterogeneous faults, the barriers being

regions of large S. In addition to the maximum permissible rupture speed, discussed

above, other unexpected results were found, which cannot occur for the previously

studied cracks with singularities at their edges. For example, a fault can jump over

very strong regions and continue to propagate, leaving behind some unbroken

regions. If these regions had very large S they still remained unbroken at the end of

the rupture process, but if they had some intermediate values, the region was

unbroken when the fracture front first jumped over it, but the concentration of stress

on it during the dynamic rupture process led to its rupture.

What is most important in seismology is that the different kinds of rupture

processes lead to different pulse shapes and hence these differences can potentially be

inferred from seismograms. Figure 6 shows the ‘‘far-field’’ pulse shapes obtained by

DAS and AKI (1977b) for smooth and rough faults. Their major conclusions are

summarized below:

(i) The smooth fault and the fault with barriers that break during the dynamic

process result in single earthquakes whereas the heterogeneous faults with unbroken

barriers result in multiple shocks.

(ii) The time history of slip on the fault and the resulting far-field radiation is most

complicated in the case when the initially unbreakable barrier eventually breaks. In
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this case the duration of the fracture and slipping process take longer than in the

other cases for the same fault length.

(iii) The final slip on the fault and hence the seismic moment is largest for the

smooth crack and smallest for the case of the fault with the most number of

unbroken barriers. In the case of the barrier that eventually breaks, the final slip and

moment are almost as large as that for the smooth fault. The slip for the fault with

the largest number of unbreakable barriers has the most uniform value over the fault

while the fault with no barriers at the end of the fracture process shows the largest

amount of variation in slip distribution over the fault! This may explain why the

uniform dislocation model (HASKELL, 1964) has often been able to explain observed

Figure 6

Pulse shapes for complex faulting models. (a), (b), (c) and (d) refer respectively to a fault without any

complexity, a fault with one unbroken barrier, a fault with two unbroken barriers, and, a fault with two

barriers which do not break when the rupture front passes it initially, but due to the increase of the stress

on it caused by being surrounded by broken regions breaks while other parts of the fault are still fracturing

dynamically.
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overall features of seismograms satisfactorily, for example, BOUCHON’s (1979) study

of the 1966 Parkfield, California earthquake.

(iv) Clear directivity effects in the seismic radiation are seen in all cases, these

effects being stronger for the fault with unbreakable barriers than for the smooth

fault. However when the barriers eventually break the directivity effect is even weaker

than that for the smooth fault.

(v) The time domain pulses are more sensitive to the complexity of the fracture

process than the spectral shapes. In particular, when the barriers eventually break the

pulses show complexity in all directions from the source but the amplitude spectra

are not particularly revealing.

(vi) When the barriers remain unbroken, the spectra at the highest frequencies

for which the numerical results are meaningful (this limit can be obtained by

comparing the numerical solution for some simple case with an analytic solution,

Figure 6c,d
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the spectra in all the cases plotted in this example being shown only up to the

frequency where the numerical results are valid) have more energy than that for the

smooth fault.

(vii) The corner frequency averaged over all directions from the source is

unaffected by the presence of unbreakable barriers.

(viii) The stress drop averaged over the total fault length (including the barriers) is

lower for the case with unbroken barriers than the other cases. In fact, there is a

stress increase on these unbroken regions due to the earthquake. Thus, a complex

earthquake with lower average stress drop can generate relatively higher frequency

waves than a simple earthquake with relatively higher stress drop.

The idea that faults can jump over barriers was not immediately accepted, when

first proposed by DAS and AKI (1977b), since in classical fracture mechanics with

infinite crack tip stresses it cannot do so, as mentioned above. In the many

observations since in which faults have been shown to jump across barriers, the

barrier that is jumped over is relatively small, usually a few kilometers (AKI, 1979,

1980). A study of the great 1998 Antarctic plate earthquake shows that this

earthquake jumped over a 70–100 km long barrier and kept propagating for

another 60 km (HENRY et al., 2000). This is similar to the case P-SV-1 illustrated in

Figure 6b.

The asperity model. The basic idea of this model was first suggested by MADARIAGA

(1979) and then by RUDNICKI and KANAMORI (1981). According to this model, an

earthquake is caused by the failure of isolated, highly stressed regions of the fault, the

rest of the fault having little or no resistance to slip (being partially broken and

preslipped, say) and contributing little or no stress drop to the earthquake process.

This results in a nonuniform stress drop over the fault. Since the regions without slip

are able to withstand the high stresses concentrated on it until the moment of

commencement of the earthquake, the model implies that the parameter ru for these

regions is higher than that for the rest of the fault.

The observational support for complex faulting models came both from

seismology and geology. Observations of multiple shocks on seismograms, the

measured surface slip after large earthquakes, direct evidence from fractures on mine

faces showing that faults are usually very complex with side-steps and highly

deformed but unbroken ligaments in the step-over regions (SPOTTISWOODE and

MCGARR, 1975; MCGARR et al., 1979) all contributed to this. In spite of its

idealizations, these models enhanced our understanding of the earthquake faulting

process. It led to the characterization of barriers as being material (large S) or

geometrical (when the fault plane deviated from planarity) by AKI (1979). It has led

to the identification of barriers in the field by structural geologists and by

seismologists in various locations world wide (LINDH and BOORE, 1981; KING and

YIELDING, 1984; NABELEK and KING, 1985; SIBSON, 1986; BARKA and KADINSKY-
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CADE, 1987; BRUHN et al.,1987; DAS, 1992, 1993; HENRY et al., 2000, to name only a

few among many such examples). Finally, the most convincing evidence that faults

are heterogeneous not only near the surface of the Earth but also at the depths where

the main faulting in an earthquake occurs is that aftershocks do occur at these

depths. Effort is under way to to identify barriers along faults and to try to

understand the origin and geochemical characteristics of barriers. The primary

reason for this general interest is that earthquakes often nucleate and terminate at

barriers.

How Faults Stop

A problem that was considered in the mid-1970s is how faults stop. ESHELBY

(1969) had shown that the crack tip has no inertia. For seismological applications,

this implies that fractures can start and stop suddenly. HUSSEINI et al. (1975)

considered two possible ways in which faults can stop, either by encountering a large

high strength region or by running into a ‘‘seismic gap,’’ i.e., running out of available

strain energy for fault propagation to continue. DAS (1976) demonstrated that these

two methods of fracture arrest lead to different far-field spectra. This part of the

work was never published by the author except as part of a thesis, but is reviewed by

DMOWSKA and RICE (1985).

Summary of Developments since the Late 1970s

In 1980, Das continued the work started with Aki at MIT and developed the fully

3-D numerical BIE method. DAS (1981) applied this method to truly 3-D shear

cracks, and confirmed the maximum rupture speeds in the purely mode II and III

directions as being the same as found for the 2-D case, implying that in relatively

strong materials, a circular crack remains circular as it grows, but on weak planes,

they become elongated. The problem was further continued by Das, in collaboration

with Kostrov, until the late 1980s.

Since the unbroken barrier with its high residual stress concentration can become

the ‘‘asperity’’ of a future earthquake on the same fault, the radiation due to the

fracturing of such an unbroken barrier was considered by DAS and KOSTROV (1983),

who studied the dynamic fracture of a single circular asperity and showed that the

rupture process is so complex, that the idea of rupture velocity becomes almost

meaningless. Of the different cases studied by DAS and KOSTROV (1983), one is shown

in Figure 7. Interestingly, for an elliptical asperity the rupture propagates as a very

simple straight front (DAS and KOSTROV, 1985). The rupture of a pre-existing circular

crack was also shown to be complex, and is shown in Figure 8, which is redrawn

from KOSTROV and DAS (1988). DAS and KOSTROV (1986) also studied the rupture of

Vol. 160, 2003 Spontaneous Complex Earthquake Rupture Models 595



a single asperity on a finite pre-broken fault and showed that its spectrum has the

properties of a ‘‘slow’’ or ‘‘weak’’ earthquake. DAS (1986) compared the radiated

field generated by the rupture of a circular crack and a circular asperity. We refer the

reader to KOSTROV and DAS (1988) for a full treatment of these problems.

DAS and KOSTROV (1987) increased the efficiency of the 3-D BIE method,

enabling the use of fine grids in the numerical problem. DAS and KOSTROV

(1988) used this to study complex 3-D rupture on faults, and showed that all peaks

on source time functions are not due to rupture of pre-existing asperities, and that

‘‘dynamic asperities’’ can appear and be seen on the source time function. Such

dynamic concentrations of stresses, involving persistent ‘‘crack front waves’’ have

been shown numerically to exist for 3-D tensile crack problems by MORRISSEY and

RICE (1998), and have been shown analytically to exist by RAMANATHAN and

FISCHER (1997) based on the 3-D perturbation solutions by MOVCHAN and WILLIS

(1995). Earlier 3-D analytical solutions by RICE, BEN-ZION and KIM (1994) for

acoustic wave (scalar model) problem, later also studied by WOOLFRIES and WILLIS

(1999), showed a non-persistent, but only slowly decaying (algebraically in time) type

of dynamic stress concentration. The 3-D perturbation solution has also been given

Figure 7

Rupture history for a pre-existing circular asperity on an infinite fault plane in shear, under a critical stress

level fracture criterion.
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by MOVCHAN and WILLIS (1995) for shear cracks, and by WILLIS and MOVCHAN

(1997) for cracks perturbed out of a plane, although it has not yet been established if

and when these cases lead to persistent crack front waves.

Based on the work of DAS and KOSTROV (1988), DAS (1987) created movies which

demonstrated that the existence of heterogeneities leads to narrow zones of slip

propagating across faults, which have since been called the ‘‘Heaton pulse.’’ Efforts

are underway to show that such narrow pulses arise from complex friction laws, but

the work of DAS and KOSTROV (1988) demonstrate that simple Coulomb friction

combined with fault heterogeneities can also result in such narrow slip pulses on the

fault.

Further developments in the late 1980s and the 1990s continued with rate- and

state-dependent friction laws incorporated into the models (OKUBO, 1989). Some of

this work is reviewed MADARIAGA and PEYRAT (2000).

Finally, we can ask what the impact of the work done in the 1970s by Aki and

coworkers has been? One can answer this using the following famous statement:

‘‘It is too soon to tell!’’

Chou-en Lai, former prime minister of China, on being asked what the effect of

the French Revolution was on history.

Figure 8

Rupture history for a pre-existing circular shear crack, under a critical stress level fracture criterion.
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AKI, K. and RICHARDS, P. G., Quantitative Seismology: Theory and Methods (San Francisco: W. H.

Freeman and Co., 1980).

AKI K., BOUCHON, M., CHOUET, B., and DAS, S. (1977), Quantitative Prediction of Strong Motion for a

Potential Earthquake Fault, Annali de Geofisica XXX, 341–368.

AKI, K., FEHLER, M., and DAS, S. (1977), Source Mechanism of Volcanic Tremor: Fluid-Driven Crack

Models and their Application to the 1973 Kilaueau Eruption, J. Volcanol. 2, 259–287.

ANDREWS, D. J. (1976a), Rupture Propagation with Finite Stress Antiplane Strain, J. Geophys. Res. 81,

3575–3582.

ANDREWS, D. J. (1976b), Rupture Velocity of Plane Strain Shear Cracks, J. Geophys. Res. 81, 5679–5687.

ANDREWS, D. J. (1985), Dynamic Plane-strain Shear Rupture with a Slip-weakening Friction Law Calculated

by a Boundary Integral Method, Bull. Seismol. Soc. Am. 75, 1–22.

ARCHULETA, R. J. (1976), Experimental and Numerical Three-dimensional Simulations of Strike-slip

Earthquakes (Ph.D. Dissertation, University of California, San Diego, 1976).

ATKINSON, C. and ESHELBY, J. D. (1968), The Flow of Energy into the Tip of a Moving Crack, Intl. J. Frac.

4, 3–8.

BARENBLATT, G. I. (1959), The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and

Hypotheses, J. Appl. Math. Mech. 23, 434–444.

BARENBLATT, G. I. and CHEREPANOV, G. P. (1960), On the Wedging of Brittle Bodies (English translation)

Phys. Math. Mech. 24, 667–682.

BARKA, A. A. and KADINSKY-CADAE, K. (1988), Strike-slip Fault Geometry in Turkey and its Influence on

Earthquake Activity, Tectonics 7, 663–684.

BOUCHON, M. (1979), Predictability of Ground Displacement and Velocity near an Earthquake Fault: An

Example: The Parkfield Earthquake of 1966, J. Geophys. Res. 84, 6149–6156.

BRACE, W. F. and WALSH, J. B. (1962), Some Direct measurements of the Surface Energy of Quartz and

Orthoclase, Am. Mineral. 47, 1111–1122.

BRUNE, J. N. (1970), Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, J. Geophys.

Res. 75, 4997–5009.

BROBERG, K. B. (1960), The Propagation of a Brittle Crack, Arkiv för Fysik 18, 159–192.

BROBERG, K. B., Cracks and Fracture (Academic Press, New York, 1999).

BRUHN, R. L., GIBLER, P. R. and PARRY, W. T. (1987), Rupture Characteristics of Normal Faults: An

Example from the Wasatch Fault Zone, Utah, Continental Extensional Tectonics, Geol. Soc. Special

Publ. 29, 337–353.

BURRIDGE, R. (1969), The Numerical Solution of Certain Integral Equations with Non-Integrable Kernels

Arising in the Theory of Crack Propagation and Elastic Wave Diffraction, Phil. Trans. R. Soc. Lond.

A265, 353–381.

BURRIDGE, R. (1973), Admissible Speeds for Plane-strain Self-similar Shear Crack with Friction but Lacking

Cohesion, Geophys. J. R. Astron. Soc. 35, 439–455.

598 S. Das Pure appl. geophys.,



BURRIDGE, R. and KNOPOFF, L. (1964), Body Force Equivalents for Seismic Dislocations, Bull. Seismol.

Soc. Am. 54, 1875–1888.

BURRIDGE, R. and MOON, R. (1981), Slipping on a Frictional Fault Plane in Three Dimensions: A Numerical

Simulation of a Scalar Analog, Geophys. J. R. Astron. Soc. 67(2), 325–342.

BURRIDGE, R. and WILLIS, J. R. (1969), The Self-similar Problem of the Expanding Elliptical Crack in an

Anisotropic Solid, Proc. Camb. Phil. Soc. 66, 443–468.

BURRIDGE, R., CONN, G., and FREUND, L. B. (1979), The Stability of a Rapid Mode II Shear Crack with

Finite Cohesive Traction, J. Geophys. Res. 84, 2210–2222.

CHAO, C. C. (1960), Dynamical Response of an Elastic Half-space to Tangential Surface Loadings,

J. Appl. Mech. 27, 559–567.

COCHARD, A. and MADARIAGA, R. (1994), Dynamic Faulting Under Rate-dependent Friction, Pure Appl.

Geophys. 142, 419–445.

COCHARD, A. and MADARIAGA, R. (1996), Complexity of Seismicity due to Highly Rate-dependent Friction,

J. Geophys. Res. 101, 25321–25336.

CRAGGS, J. W. (1960), On the Propagation of a Crack in a Elastic-brittle Material, J. Mech. Phys. Solids, 8,

66–75.

DARWIN, C., A Naturalist’s Voyage, (John Murray, New York, 1889).

DAS, S. (1976), A Numerical Study of Rupture Propagation and Earthquake Source Mechanism (Sc.D.

Thesis, MIT, 1976).

DAS, S. (1980), A Numerical Method for Determination of Source Time Functions for General Three-

dimensional Rupture Propagation, Geophys. J. R. Astron. Soc. 62, 591–604.

DAS, S. (1981), Three-dimensional Spontaneous Rupture Propagation and Implications for Earthquake

Source Mechanism, Geophys. J. R. Astron. Soc. 67, 375–393.

DAS, S. (1985), Application of Dynamic Shear Crack Models to the Study of the Earthquake Faulting

Process, Intl. J. Frac. 27, 263–276.

DAS, S. (1986), Comparison of the Radiated Fields Generated by the Fracture of a Circular Crack and a

Circular Asperity, Geophys. J. R. Astron. Soc. 85, 601–615.

DAS, S. (1987), Complex Earthquake Fault Dynamics: Color Movies, Trans. Am. Geophys. Un. 68, 1242.

DAS, S. (1992), Reactivation of an Oceanic Fracture by the Macquarie Ridge Earthquake of 1989, Nature

357, 150–153.

DAS, S. (1993), The Macquarie Ridge Earthquake of 1989, Geophys. J. Intl. 115, 778–798.

DAS, S. and AKI, K. (1977a), A Numerical Study of Two-dimensional Rupture Propagation, Geophys. J. R.

Astron. Soc. 50, 643–668.

DAS, S. and AKI, K. (1977b), Fault Plane with Barriers: A Versatile Earthquake Model, J. Geophys. Res.

82, 5658–5670.

DAS, S. and KOSTROV, B. V. (1983), Breaking of a Single Asperity: Rupture Process and Seismic Radiation,

J. Geophys. Res. 88, 4277–4288.

DAS, S. and KOSTROV, B. V. (1985), An Elliptical Asperity in Shear: Fracture Process and Seismic

Radiation, Geophys. J. R. Astron. Soc. 80, 725–742.

DAS, S. and KOSTROV, B. V., Fracture of a single asperity on a finite fault: A model for weak earthquakes? In

Earthquake Source Mechanics (eds. Das, S., Boatwright, J., and Scholz, C. H.) (AGU Monograph 37

1986), pp. 91–96.

DAS, S. and KOSTROV, B. V. (1987), On the Numerical Boundary Integral Equation Method for Three-

dimensional Dynamic Shear Crack Problems, J. App. Mech. 54, 99–104.

DAS, S. and KOSTROV, B. V. (1988), An Investigation of the Complexity of the Earthquake Source Time

Function Using Dynamic Faulting Models, J. Geophys. Res. 93, 8035–8050.

DAS, S. and KOSTROV, B. V. (1990), Inversion for Slip Rate History and Distribution on Fault with

Stabilizing Constraints—The 1986 Andreanof Islands Earthquake, J. Geophys. Res. 95, 6899–6913.

DAS, S. and KOSTROV, B. V. (1994), Diversity of Solutions of the Problem of Earthquake Faulting Inversion.

Application to SH Waves for the Great 1989 Macquarie Ridge Earthquake, Phys. Earth Planet. Int. 85,

293–318.

DAS, S. and SUHADOLC, P. (1996), On the Inverse Problem for Earthquake Rupture. The Haskell-Type

Source Model, J. Geophys. Res. 101, 5725–5738.

Vol. 160, 2003 Spontaneous Complex Earthquake Rupture Models 599



DAS, S., SUHADOLC, P., and KOSTROV, B. V. (1996), Realistic Inversions to Obtain Gross Properties of the

Earthquake Faulting Process, Tectonophysics, Special issue entitled Seismic Source Parameters: from

Microearthquakes to Large Events (ed. C. Trifu), 261, 165–177.

DAY, S. M. (1982a), Three-dimensional Simulation of Spontaneous Rupture: The Effect of Non-uniform

Prestress, Bull. Seismol. Soc. Am. 72, 1881–1902.

DAY, S. M. (1982b), Three-dimensional Finite Difference Simulation of Fault Dynamics: Rectangular Faults

with Fixed Rupture Velocity, Bull. Seismol. Soc. Am. 72, 705–727.

DMOWSKA, R. and RICE, J. R. Fracture theory and its seismological applications. In Continuum Theories in

Solid earth Physics (ed. Teisseyre, R.) (Elsevier Publ. Co., Holland 1985) III, pp. 187–255.

DUGDALE, D. S. (1960), Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids 8, 100–110.

ESHELBY, J. D. The continuum theory of lattice defects. In Progress in Solid State Physics (eds. Seitz, F. and

Turnbull, D.), (Academic Press, New York 1956) 3, 79–144.

ESHELBY, J. D. (1957), The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related

Problems, Proc. R. Soc. Lond., A241, 376–396.

ESHELBY, J. D. (1969), The Elastic Field of a Crack Extending Nonuniformly under General Antiplane

Loading, J. Mech. Phys. Solids 17, 177–199.

EVVARD, J. C. (1950), Use of Source Distributions for Evaluating Theoretical Aerodynamics of Thin Finite

Wings at Supersonic Speeds, N. A. C. A. Report, 951.

FREUND, L. B. (1979), The Mechanics of Dynamic Shear Crack Propagation, J. Geophys. Res. 84, 2199–

2209.

FREUND, L. B., Dynamic Fracture Mechanics (Appl. Math. Mech. Ser., Cambridge University Press,

New York), 1990.

GRIFFITH, A. A. (1921), The Phenomenon of Rupture and Flow in Solids, Phil. Trans. R. Soc. Lond., Ser. A.

221, 163–198.

HAMANO, Y. (1974), Dependence of Rupture Time History on the Heterogeneous Distribution of Stress and

Strength on the Fault (abstract), Trans. Am. Geophys. Un. 55, 352.

HASKELL, N. A. (1964), Total Energy and Energy Spectral Density of Elastic Wave Radiation from

Propagating Faults, Bull. Seismol. Soc. Am. 54, 1811–1841.

HENRY, C., DAS, S., and WOODHOUSE, J. H. (2000), The Great March 25, 1998 Antarctic Plate Earthquake:

Moment Tensor and Rupture History, J. Geophys. Res. 105, 16,097–16,118.

HOWELL, B. F., An Introduction to Seismological Research. History and Development (Cambridge,

New York, 1990).

HUSSEINI, M. I., JOVANOVICH, D. B., RANDALL, M. J., and FREUND, L. B. (1975), The Fracture Energy of

Earthquakes, Geophys. J. R. Astron. Soc. 43, 367–385.

IDA, Y. (1972), Cohesive Force across the Tip of a Longitudinal Shear Crack and Griffith’ Specific Surface

Energy, J. Geophys. Res. 77, 3796–3805.

IDA, Y. (1973), Stress Concentrations and Unsteady Propagation of Longitudinal Shear Crack, J. Geophys.

Res. 78, 3418–3429.

IRWIN, G. R. (1957), Analysis of Stresses and Strains near the End of a Crack Traversing a Plate, J. Appl.

Mech. 24, 361–364.

IRWIN, G. R. Fracture dynamics. In Fracturing of Metals (Cleveland: ASM 1948), pp. 147–166.

IRWIN, G. R. (1969), Basic Concepts for Dynamic Fracture Testing, Trans. ASME 91, 519–524.

KING, G. and YIELDING, F. (1984), The Evolution of a Thrust Fault System: Processes of Rupture Initiation,

Propagation and Termination in the 1980 El Asnam (Algeria) Earthquake, Geophys. J. R. Astron. Soc.

77, 915–933.

KOSTROV, B. V. (1964), Selfsimilar Problems of Propagation of Shear Cracks, J. Appl. Math. Mech. 28,

1077–1087.

KOSTROV, B. V. (1966), Unsteady Propagation of Longitudinal Shear Cracks, J. Appl. Math. Mech. 30,

1241–1248.

KOSTROV, B. V. (1975), On the Crack Propagation with Variable velocity, Intl. J. Frac. 11, 47–56.

KOSTROV, B. V. and DAS, S. (1984), Evaluation of Stress and Displacement Fields due to an Elliptical Plane

Shear Crack, Geophys. J. R. Astron. Soc. 78, 19–33.

KOSTROV, B. V. and DAS, S., Principles of Earthquake Source Mechanics (Appl. Math. Mech. Ser.,

Cambridge University Press, New York, 1988).

600 S. Das Pure appl. geophys.,



KOSTROV, B. V. and NIKITIN, L. V. (1970), Some General Problems of Mechanics of Brittle Fracture,

Archiwum Mechaniki Stosowanej 22, 749–775.

KOTO, B. (1893), On the Cause of the Great Earthquake in Central Japan, 1891, Tokyo Univ. Coll. Sci. J. 5,

295–353.

LEONOV, M. YA. and PANASYUK, V. V. (1959), Growth of the Minutest Cracks in a Brittle Body (in

Ukrainian), Prikladnaya Meckhanika 5, 391–401.

LINDH, A. G. and BOORE, D. M. (1981), Control of Rupture by Fault Geometry during the 1966 Parkfield

Earthquake, Bull. Seismol. Soc. Am. 71, 95–116.

MADARIAGA, R. (1976), Dynamics of an Expanding Circular Fault, Bull. Seismol. Soc. Am. 66, 639–666.

MADARIAGA, R. (1977), High-Frequency Radiation from Crack (Stress Drop) Models of Earthquake

Faulting, Geophys. J. R. Astron. Soc. 51, 625–651.

MADARIAGA, R. (1979), On the Relation between Seismic Moment and Stress Drop in the Presence of Stress

and Strength Heterogeneity, J. Geophys. Res. 84, 2243–2249.

MADARIAGA, R. (2000), Earthquake Source Dynamics: Some Open Questions, this volume.

MADARIAGA, R. and COCHARD, A. (1992), Heterogeneous Faulting and Friction, Intl. Symp. Earthquake

Disaster, Mexico City.

MADARIAGA, R., PEYRAT, S., and OLSEN, K. B. (2000), Rupture Dynamics in 3D: A Review, In Problems

in Geophysics for the New Millennium (Bologna, Italy: Editrice Composition), 89–110.

MCGARR, A., SPOTTISWOODE, S. M., GAT, N. C., and ORTLEPP, W. D. (1979), Observations Relevant to

Seismic Driving Stress, Stress Drop and Efficiency, J. Geophys. Res. 84, 2251–2261.

MOTT, N. F. (1948), Fracture of Metals: Theoretical Considerations, Eng. 165, 16–18.

MORRISSEY, J. W. and RICE, J. R. (1998), Crack Front Waves, J. Mech. Phys. Solids 46, 467–487.

MOVCHAN, A. B. and WILLIS, J. R. (1995), Dynamic Weight Functions for a Moving Crack. II. Shear

Loading, J. Mech. Phys. Solids 43, 1369–1383.

NABELEK, J. and KING, G. (1985), Role of Fault Bends in the Initiation and Termination of Earthquake

Rupture, Science 228, 984–987.

OHNAKA, M. (1996), Nonuniformity of the Constitutive Law Parameters for Shear Rupture and Quasistatic

Nucleation to Dynamic Rupture: A Physical Model of Earthquake Generation Process, Proc. Natl. Acad.

Sci. U.S.A. 93, 3795–3802.

OHNAKA, M. and SHEN, L. F. (1999), Scaling of the Shear Rupture Process from Nucleation to Dynamic

Propagation: Implications of Geometric Irregularity of the Rupturing Surfaces, J. Geophys. Res. 104, 817–

844.

OKUBO, P. (1989), Dynamic Rupture Modeling with Laboratory-derived Constitutive Relations, J. Geophys.

Res. 94, 12,321–12,335.

PALMER, A. C. and RICE, J. R. (1973), The Growth of Slip Surfaces in the Progressive Failure of

Overconsolidated Clay, Proc. R. Soc. (Lond.), A332, 527–548.

RAMANATHAN, S. and FISHER, D. S. (1997), Dynamic Instabilities of Planar Tensile Cracks in

Heterogeneous Media, Phys. Rev. Lett. 79, 877–880.

RANDALL, M. J. (1971), Elastic Multipole Theory and Seismic Moment, Bull. Seismol. Soc. Am. 61, 1321–

1326.

REID, H. F., The Mechanics of the Earthquake. In The California Earthquake of April 18, 1906, Report of

the State Investigation Commission, (Washington, D. C.: Carnegie Institute of Washington, 1910), 2.

RICE, J. R. (1968), A Path Independent Integral and the Approximate Analysis of Strain Concentrations by

Notches and Cracks, J. Appl. Mech. 35, 379–386.

RICE, J. R., BEN-ZION, Y. and KIM, K. S. (1994), Three-dimensional Perturbation Solution for Dynamic

Planar Crack Moving Unsteadily in a Model Elastic solid, J. Mech. Phys. Solids 42, 813–843.

RICHARDS, P. G. (1979), Elementary Solutions to Lamb’s Problem for a Point Source and their Relevance to

Three-Dimensional Studies of Spontaneous Crack Propagation, Bull. Seismol. Soc. Am. 69, 947–956.

ROSAKIS, A. J., SAMUDRALA, O., and COKER, D. (1999), Cracks Faster than the Shear Wave Speed, Science

284, 1337–1340.

RUDNICKI, J. W. and KANAMORI, H. (1981), Effects of Fault Interaction on Moment, Stress-Drop and Strain

Energy Release, J. Geophys. Res. 86, 1785–1793.

SARAO, A., DAS, S., and SUHADOLC, P. (1998), Effect of Non-uniform Station Coverage on the Inversion for

Seismic Moment Release History and Distribution for a Haskell-type Rupture Model, J. Seismol. 2, 1–25.

Vol. 160, 2003 Spontaneous Complex Earthquake Rupture Models 601



SATO, T. and HIRASAWA, T. (1973), Body Wave Spectra from Propagating Shear Cracks, J. Phys. Earth 21,

415–431.

SAVAGE, J. C. (1966), Radiation from a Realistic Model of Faulting, Bull. Seismol. Soc. Am. 56, 577–592.

SIBSON, R. Rupture interaction with fault jogs. In Earthquake Source Mechanics (eds. S. Das, J. Boatwright,

and C. H. Scholz) (AGU Monograph 37 1986), 157–167.

SPOTTISWOODE, S. M. and MCGARR, A. (1975), Source Parameters of Tremors in a Deep-level Gold Mine,

Bull. Seismol. Soc. Am. 65, 93–112.

STARR, A. T. (1928), Slip in a Crystal and Rupture in a Solid, Proc. Camb. Phil. Soc. 24, 489–500.

VIRIEUX, J. and MADARIAGA, R. (1982), Dynamic Faulting Studied by a Finite Difference Method, Bull.

Seismol. Soc. Am. 72, 345–369.

WARD, G. N., Linearized Theory of Steady High-speed Flow (Cambridge Monographs on Mechanics and

Applied Mathematics, Cambridge University Press, 1955).

WILLIS, J. R. (1967), A Comparison of the Fracture Criteria of Griffith and Barenblatt, J. Mech. Phys. Solids

15, 151–162.

WILLIS, J. R. and MOVCHAN, A. B. (1995), Dynamic Weight Functions for a Moving Crack. I. Mode I

Loading, J. Mech. Phys. Solids 43, 319–341.

WILLIS, J. R. and MOVCHAN, A. B. (1997), Three-dimensional Dynamic Perturbation of a Propagating

Crack, J. Mech. Phys. Solids 45, 591–610.

WOOLFRIES, S. and WILLIS, J. R. (1999), Perturbation of a Dynamic Planar Crack Moving in a Model

Elastic Solid, J. Mech. Phys. Solids 47, 1633–1661.

(Received July 23, 2000, accepted February 27, 2002)

To access this journal online:

http://www.birkhauser.ch

602 S. Das Pure appl. geophys.,


