
A Review of the Discrete Wavenumber Method

MICHEL BOUCHON
1

Abstract—We present a review of the discrete wavenumber (DWN) method. The method, introduced

by BOUCHON and AKI (1977), allows the simple and accurate calculation of the complete Green’s functions

for many problems in elastodynamics.
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Introduction

The evaluation of Green’s functions for acoustic or elastic media is an important

problem in fields such as seismology or acoustics. Since the pioneering work of LAMB

(1904), many approaches have been proposed to evaluate the response of elastic

solids to excitation by transient point sources. The methods devised for the

calculation of the Green’s functions are, however, often very complex or, in many

cases, only provide approximate solutions. The discrete wavenumber method,

introduced by BOUCHON and AKI (1977), provides a way to accurately calculate the

complete Green’s functions for many problems with a minimum amount of

mathematics.

The principle of the method may be traced back to Rayleigh, who demonstrated

that waves reflected by a sinusoidally corrugated surface propagate only at discrete

angles that he referred to as the orders of the spectrum (RAYLEIGH, 1896, 1907). The

existence of discrete orders in the horizontal wavenumber spectrum is an immediate

consequence of the periodicity of the reflecting surface. AKI and LARNER, in 1970,

extended Rayleigh’s approach to study the scattering of plane waves in the vicinity of

a periodic irregular surface with the use of complex frequency. In the same way, the

discrete wavenumber (DWN) method introduces a spatial periodicity of sources to

discretize the radiated wave field, and relies on the Fourier transform in the complex

frequency domain to calculate the Green’s functions.
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Principle of the Method

We shall begin with a short consideration of the 2-D case, as the principle of the

method is easiest to describe in this case. The steady-state radiation from a line

source in an infinite homogeneous medium can be represented as a cylindrical wave

or, equivalently, as a continuous superposition of homogeneous and inhomogeneous

plane waves. Therefore, denoting by x and z the horizontal and vertical axes in the

plane normal to the line source, any observable such as displacement or stress can be

written in the form

F ðx; z;xÞ ¼ eixt
Z1
�1

f ðk; zÞe�ikx dk ð1Þ

where x is the frequency and k is called the horizontal wavenumber. Equation (1) still

holds for an extended two-dimensional source located in a medium which is

homogeneous in any horizontal plane.

When the medium is finite or vertically heterogeneous, the integral kernel has

poles and singularities, and the integration over the horizontal wavenumber becomes

mathematically and numerically complicated. One simple way around these

difficulties is to replace the single-source problem, whose solution is expressed by

(1), by a multiple-source problem where sources are periodically distributed along the

x axis. Then, equation (1) is replaced by:

Gðx; z;xÞ ¼
Z1
�1

f ðk; zÞe�ikx
X1

m¼�1
eikmL dk ð2Þ

where L is the periodicity source interval and the eixt time dependence is understood.

Equation (2) reduces to:

Gðx; z;xÞ ¼ 2p
L

X1
n¼�1

f ðkn; zÞe�iknx ð3Þ

with

kn ¼
2p
L
n

which in turn, if the series converges, can be approximated by the finite sum equation

Gðx; z;xÞ ¼ 2p
L

XN
n¼�N

f ðkn; zÞe�iknx : ð4Þ

In moving from equation (1) to equation (4), we have greatly reduced the

calculation. In so doing, however, we have changed the problem from one of a single
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source, to one involving an infinite number of periodic sources, as illustrated in

Figure 1. The DWN method calculates equation (4), that is Gðx; z;xÞ, instead of

evaluating equation (1).

The second stage of the method is to retrieve the single-source solution from the

multiple-source problem that we have solved in the frequency domain. This would be

straightforward if we could calculate the continuous Fourier transform of G, as we
could then isolate the single source solution in the time domain, provided that we

have chosen an appropriate value for L. In practice, however, we can only calculate G
for a certain number of frequencies and use the discrete Fourier transform to obtain

the time domain solution. Thus, on one hand we deal with a signal which has an

infinite time response (because of the infinite set of sources), while on the other hand,

we use the discrete Fourier transform, which yields a signal of finite duration

T ¼ 2p/Dx, where Dx is the angular frequency sampling used in calculating G. This
can indeed be accomplished by performing the Fourier transform in the complex

frequency domain:

gðx; z; tÞ ¼
Z1þixI

�1þixI

Gðx; z;xÞeixt dx ð5Þ

where xI denotes the constant imaginary part of the frequency and is chosen such

that

exI T << 1 : ð6Þ

This last equation insures the attenuation, over the time window T , of the previously
infinite time response solution. Thus, provided that we have chosen L large enough so

that no disturbance arrives at the receiver ðx; zÞ from the next closest source in the

time window of interest T , the time-domain single-source solution f ðx; z; tÞ is

obtained from the frequency-domain multiple-source calculation Gðx; z;xÞ by

Figure 1

Physical interpretation of the DWN method. The single source is replaced by an infinite array of sources

distributed horizontally at equal interval L. For a given radiation wavelength k corresponding to a specific

frequency of excitation, the elastic energy is radiated in discrete directions h only.
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f ðx; z; tÞ ¼ e�xI t
Z1
�1

Gðx; z;xÞeixRt dxR ð7Þ

where the integral is computed by using the FFT.

Equation (6) shows that xI is only a function of the length of the time window T
considered. The results should not be sensitive to the particular value of xI chosen, as

long as it provides enough attenuation for the disturbances which arrive after the

time window of interest T to be negligible. Values in the range:

xI ¼ � p
T
;� 2p

T

� �
ð8Þ

are recommended for most applications.

It is worth noting here that disturbances which arrive in the time range ½T ; 2T � will
be attenuated by exI T , while disturbances in the time range ½2T ; 3T � will be attenuated
by e2xI T , and so on. The choice of xI may also be justified by the fact that the

frequency spectrum GðxÞ is not discrete, as would be the case with real frequencies,

but is continuous with a bandwidth proportional to xI (LARNER, 1970). Choosing

values in the range of relation (8) implies that the bandwidth of the spectral lines is of

the order of the frequency interval. Thus, the calculated signals may also be

considered as resulting from a nearly continuous sampling of the frequency domain.

In Figure 2, we present a comparison of the numerical results obtained through

these equations with an analytical solution. The case considered involves an explosive

line source in a half-space, as it is one of the rare cases where an analytical solution

exists (GARVIN, 1956). The comparison shows the great accuracy of the DWN

method.

Discretization in Various Coordinate Systems

The simplest type of elastic source in three-dimensions is an isotropic point

source. The wave field radiated by such a source can be conveniently represented by

the displacement potential, which, for a steady-state excitation, is given by:

/ðR;xÞ ¼ �VSðxÞ
4pR

eixðt�R=aÞ ð9Þ

where VS is the volume change at the source and a denotes the compressional wave

velocity.

In the shallow earth, where boundaries are nearly horizontal and where the

medium properties change primarily with depth, using this spherical wave represen-

tation would be most cumbersome, so we must express the wave field in more

appropriate coordinate systems. One possibility is to use a Cartesian system with the
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z axis running vertically. In such a system, the wave field is expressed as a double

integral over the two components of the horizontal wavenumber, kx and ky , through
the Weyl integral (LAMB, 1904; AKI and RICHARDS, 1980):

/ðx; y; z;xÞ ¼ iVSðxÞ
8p2

Z1
�1

Z1
�1

1

m
e�imjzje�ikxxe�ikyy dkx dky ð10Þ

with

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2
� k2x � k2y

r
; ImðmÞ < 0 ;

where the origin of the coordinate system is taken at the source, and the eixt

dependence is understood.

Figure 2

Comparison between numerical and analytical solutions for the surface displacement due to a buried

explosive line source with step-function time dependence. Computations are made for a Poisson ratio of

0.25 and a ratio of distance R to source depth equal to 10. s ¼ ta=R, where t is time and a is the

compressional wave velocity. The analytical displacements are infinite at the time of P -wave arrival (s ¼ 1).
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The generalization of the previous results from 2-D to 3-D is straightforward and

leads to the following expressions (BOUCHON, 1979):

/ðx; y; z;xÞ ¼ iVSðxÞ
2LxLy

XNx

nx¼�Nx

XNy

ny¼�Ny

1

m
e�imjzje�iknxxe�iknyy ð11Þ

with

knx ¼
2p
Lx

nx; kny ¼
2p
Ly

ny

for which the corresponding multiple-source problem is a periodic array of sources

distributed at equal intervals Lx in the x direction, and Ly in the y direction.

In many wave propagation problems, the elastic wave field may also be

conveniently expressed in a cylindrical coordinate system with z as the vertical axis.

The wave field is then represented as an integral over the horizontal wavenumber

through the Sommerfeld integral:

/ðr; z;xÞ ¼ iVSðxÞ
4p

Z1
0

k
m
J0ðkrÞe�imjzj dk ð12Þ

with

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2
� k2

r
; ImðmÞ < 0

and where J0 denotes the zeroth order Bessel function.

The discretization of this equation can also be achieved by replacing the single-

source by a periodic arrangement of sources which, in this case, consists of the

original point source plus an infinite array of circular sources centered around the

point source and distributed at equal radial interval L (BOUCHON, 1981). This

physical arrangement leads to:

/ðr; z;xÞ ¼ iVSðxÞ
2

XN
n¼0

kn
mn

J0ðknrÞe�imnjzj ð13Þ

with

kn ¼
2p
L
n :

The comparison between the two geometric source arrangements resulting in

discretizations (11) and (13) is shown in Figure 3.

Once the source radiation has been decomposed, through equations (4), (11), or

(13), into a superposition of waves propagating with discrete wavenumbers, the effect
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of plane boundaries and flat layers is taken into account by using, for each horizontal

wavenumber component, the corresponding plane-wave reflection and transmission

coefficients at the medium surface and interfaces, and summing up all the

wavenumber contributions. This is best done by calculating, for each wavenumber

involved in the source radiation, the corresponding reflectivity and transmissivity

matrices of the layered medium (KENNETT, 1974; KENNETT and KERRY, 1979;

MÜLLER, 1985). The truncation of the wavenumber series is easily determined for

each frequency by a simple convergence criterion which compares the new

wavenumber contribution to the current sum of the series, and stops the calculation

when the new contribution becomes negligible.

The accuracy of the two discretization schemes (11) and (13) can be measured by

comparing synthetic seismograms obtained using these equations, as the two schemes

are independent. This is done in Figure 4, where the similitude of the results

demonstrates the accuracy of the DWN method. In most applications, the k
discretization scheme will be preferred over the kx; ky scheme because it involves only

one summation and the resulting calculation is faster. One such application is

displayed in Figure 5.

For other types of problems, other schemes of discretization may be devised. For

instance, in the case of a source in a borehole, common in exploration geophysics, it

is convenient to use, for equation (9), the expression:

/ðr; z;xÞ ¼ �VSðxÞ
4p2

Z1
�1

K0ðmrÞe�ikz dk ð14Þ

with

Figure 3

Geometries of source-receiver configurations leading to the discretization: a circular source array for the k
discretization scheme and a rectangular network for the ðkx; kyÞ discretization method. Source 1 is the

original single-source problem. The black dot shows the receiver location.
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m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2
� k2

r
; ImðmÞ < 0 ;

where ðr; zÞ are cylindrical coordinates centered at the source and z runs along

the borehole axis, k is now the vertical wavenumber (in the case of a vertical

borehole), and where K0 denotes the zeroth-order modified Bessel function of the

second kind.

Figure 4

Comparison of surface displacements obtained using the k and ðkx; kyÞ discretization schemes for an

explosion in a layer over a half-space model. The source-time function is 1
2 ½1þ tan hðt=t0Þ� with t0 ¼ 0:1 s.

First motions are up and away from the source.
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The discretization of this expression, which was introduced by CHENG and

TOKSÖZ (1981), yields:

/ðr; z;xÞ ¼ �VSðxÞ
2pL

XN
n¼�N

K0ðmnrÞe�iknz ð15Þ

with

kn ¼
2p
L
n

Figure 5

Comparison of the vertical short-period seismograms synthesized (upper trace) and observed (lower trace)

at four stations for a small earthquake in central France. The epicentral distance of each station is

indicated. The propagation model used in the calculation consists of four crustal layers overlaying a mantle

half-space. The source is a double-couple point with the mechanism of the earthquake and located at

a depth of 10 km. The slip time dependence is a ramp function with a rise time of 0.2 s (after

BOUCHON, 1982a).
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and corresponds to a periodic arrangement of point sources distributed at interval L
along the z axis.

Expression (15) is convenient to use in a borehole environment because, in this

form, cylindrical boundaries of the borehole, tubing, mud casing, and/or borehole

tool can be taken into account through propagator matrices or reflectivity/

transmissivity matrices similar to the ones in flat layer media. An example of such

a calculation is displayed in Figure 6.

Case of a Generalized and Extended Source

We now consider the case where the point source is a force with Cartesian

components ðFx; Fy ; FzÞ, and we express its radiation in a discretized form similar to

(13). We assume again that the cylindrical coordinate system is centered at the source

Figure 6

A comparison between (a) actual and (b) synthetic full waveform acoustic log microseismograms in a

limestone formation. The source is a pressure point located in a fluid-filled cylindrical borehole. Parameters

used are a ¼ 5:95 km/s, b ¼ 3:05 km/s, q ¼ 2:3 for the geological formation, and a ¼ 1:83 km/s, q ¼ 1:2

for the fluid. The borehole radius is 6.7 cm. The synthetic microseismogram is calculated by discretizing the

source radiation in the vertical wavenumber domain (after CHENG et al., 1982).
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and that the z axis is vertical. We have for the compressional and rotational

potentials:

/ðr; h; z;xÞ ¼ 1

2Lqx2
sgnðzÞFz

XN
n¼0

knJ0ðknrÞe�imnjzj

"

�iðFx cos h þ Fy sin hÞ
XN
n¼0

kn2

mn
J1ðknrÞe�imnjzj

#

wðr; h; z;xÞ ¼ 1

2Lqx2
�iFz

XN
n¼0

kn
cn

J0ðknrÞe�icnjzj

"

þsgnðzÞðFx cos h þ Fy sin hÞ
XN
n¼0

J1ðknrÞe�icnjzj

# ð16Þ

vðr; h; z;xÞ ¼ i
Fy cos h � Fx sin h

2Lqb2

XN
n¼0

1

cn
J1ðknrÞe�icnjzj

with

cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

b2
� k2n

s
; ImðcnÞ < 0

and

sgnðzÞ ¼ 1 for z > 0; sgnðzÞ ¼ �1 for z < 0:

where q is the density, b the shear-wave velocity, and J1 is the Bessel function of the

first order.

Any type of elastic source can be represented by a combination of point forces. In

particular, a generalized point source is commonly represented in seismology by its

moment tensor mij where mxx, myy , and mzz represent three force dipoles oriented

along the Cartesian axes, while mxy ¼ myx, mxz ¼ mzx, and myz ¼ mzy are double

couples with force oriented along the first axis index and arm along the second axis

index. Expressions for the radiation from an arbitrary moment tensor source can

then be obtained by linear operations on equations (16).

Of particular interest is the radiation from a double-couple source, as such a body

source is equivalent to a point of shear dislocation. Denoting by ðsx; sy ; szÞ the

components of the unit vector in the slip direction and by ðnx; ny ; nzÞ those of the

normal to the fault, the corresponding moment tensor components are:

mij ¼ �l slipðxÞDSðsinj þ sjniÞ ð17Þ

where l is the rigidity and DS is the elementary fault surface on which slip occurs.

The simplest way to calculate the elastic radiation from an extended source is

usually to represent the source by a superposition of elementary point sources.
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Although analytical expressions of the radiation can sometimes be derived in the

frequency-wavenumber domain for particular cases, the point-source superposition

is generally more versatile. In the case of an earthquake, for instance, the fault can

be discretized into a two-dimensional array of double-couple points distributed on

the fault plane at a spacing smaller than the shortest wavelength considered in the

problem. Each point radiates with a phase delay e�ixtr, where tr denotes the time for

rupture to propagate from the hypocenter to the particular fault location. Slip

amplitude and duration may vary at each point. The summation of all the

elementary contributions is done in the frequency-wavenumber domain, and does

not affect the calculation of the reflection/transmission and reflectivity/transmis-

sivity matrices. As an example, the simulation of the ground motion produced

during the 1999 Izmit earthquake is presented in Figure 7. For this calculation, the

135 km long fault is represented by 10,800 double-couple points uniformly

distributed at a spacing of 500 m in the horizontal and vertical directions. One

important aspect of the DWN method, which is illustrated in this figure, is that

the method calculates the complete elastic wave field, including both static and

dynamic contributions.

Applications and Extensions of the Method

The DWN method has been successfully tested against analytical solutions and

other techniques (e.g., YAO and HARKRIDER, 1983; BEN-ZION and AKI, 1990) and

has been extensively used to check the accuracy of other methods like finite-

differences, finite-elements, ray methods, mode summation, or pseudo-spectral

techniques (e.g., STEPHEN et al., 1985; SAIKIA and HERRMANN, 1986; BEYDOUN and

KEHO, 1987; MAUPIN, 1996; AOI and FUJIWARA, 1999; MOCZO et al., 1999).

It has been used to study a variety of problems in elastodynamics where the

calculation of Green’s functions is required. Many of the applications have been

carried out using the numerical code of COUTANT (1990).

Applications include problems in seismic exploration (CHENG and TOKSÖZ, 1981;

CHENG et al., 1982; DIETRICH and BOUCHON, 1985a,b; SCHMITT and BOUCHON, 1985;

DIETRICH, 1988; SCHMITT, 1988b; CHENG, 1989; JEAN and BOUCHON, 1991;

MEREDITH et al., 1993; GIBSON, 1994; FALK et al., 1996; HAARTSEN and PRIDE,

1997), earthquake seismology (CAMPILLO et al., 1984, 1985; SAIKIA and HERRMANN,

1987; GARIEL et al., 1990, 1991; OU and HERRMANN, 1990; CHIN and AKI, 1991;

FUKUSHIMA et al., 1995; PLICKA and ZAHRADNIK, 1998; PLICKA et al., 1998),

microseismicity studies (BERNARD and ZOLLO, 1989; GOT and FRÉCHET, 1993;

JONGMANS and MALIN, 1995; ZOLLO et al., 1995; ZOLLO and IANNACCONE, 1996;

THEODULIDIS et al., 1996), broadband modeling of local and regional seismograms

(HERRMANN et al., 1980; EBERHART-PHILLIPS et al., 1981; BOUCHON, 1982a; CHRIS-

TOFFERSSON et al., 1988; BERTIL et al., 1989; PAUL and NICOLLIN, 1989; ROBERTS and
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Figure 7

Comparison between recorded and calculated ground motion during the 1999 Izmit, Turkey, earthquake.

(Top) Map of the surface rupture of the earthquake (solid line). The symbols indicate the location of the

epicenter (star) and of the recording stations (triangles). (Middle) Ground velocity recorded (a) and

calculated (b) at ARC. (Bottom) Displacement and velocity recorded (c) and calculated (d) at SKR. The

numerical values indicated give the peak amplitudes of the observed/calculated velocity/displacement. All

the traces start at the origin time of the rupture. The N-S component was inoperative at SKR. The fault is a

vertically dipping strike-slip fault which follows the surface breaks shown on the map and extends from the

surface down to 20 km. Rupture starts at the hypocenter, located at a depth of 17 km, and propagates

toward the west at 3 km/s and toward the east at 4.7 km/s. Slip varies along the fault strike according to

surface observations. Slip duration everywhere is 3 s. The lower than observed, peak values at SKR

indicate a larger fault slip at depth near this station than the one observed at the surface.
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CHRISTOFFERSSON, 1990; FUKUYAMA et al., 1991; PEDERSEN and CAMPILLO, 1991;

TOKSÖZ et al., 1990; CAMPILLO and PAUL, 1992; TAKEO, 1992; CAMPILLO and

ARCHULETA, 1993; STEIDL et al., 1996; SAIKIA and HELMBERGER, 1997; SINGH et al.,

1997, 1999a,b; TSELENTIS and ZAHRADNIK, 2000), moment tensor inversion (CRUSEM

and CARISTAN, 1992; NISHIMURA et al., 2000; SINGH et al., 2000; TEYSSONEYRE et al.,

2001), scattering (ZENG et al., 1991; ZENG, 1993; MOINET and DIETRICH, 1998), fault

zone effects (BEN-ZION, 1998), ground motion near earthquakes (AKI et al., 1978;

BOUCHON, 1980a,b, 1982b; CAMPILLO, 1983; BERNARD and MADARIAGA, 1984;

MENDEZ and LUCO, 1988; CAMPILLO et al., 1989; GARIEL and CAMPILLO, 1989; BARD

et al., 1992; TAKEO and ITO, 1997; TAKEO and KANAMORI, 1997; PEYRAT et al., 2001),

earthquake fault tomography (TAKEO, 1987, 1988; FUKUYAMA and MIKUMO, 1993;

TAKEO et al., 1993; COTTON and CAMPILLO, 1994, 1995a,b; SEKIGUCHI et al., 1996,

2000; COTTON et al., 1996; IDE et al., 1996; MENDOZA and FUKUYAMA, 1996; IDE and

TAKEO, 1996, 1997; COURBOULEX et al., 1997; NAKAYAMA and TAKEO, 1997;

OGLESBY and ARCHULETA, 1997; HERNANDEZ et al., 1999; REBOLLAR et al., 1999;

QUINTANAR et al., 1999), stress calculations (COTTON and COUTANT, 1997; BELARD-

INELLI et al., 1999) and volcanology (CHOUET, 1981, 1982, 1985; AKI, 1984; CHOUET

and JULIAN, 1985; TAKEO, 1990; NISHIMURA and HAMAGUCHI, 1993; GOLDSTEIN and

CHOUET, 1994; UHIRA et al., 1994; NISHIMURA, 1995; NISHIMURA et al., 1995).

The DWNmethod has been extended to include anisotropic media (MANDAL and

MITCHELL, 1986; MANDAL and TOKSÖZ, 1990, 1991; MANDAL, 1991) and two-phase

media (BOUTIN et al., 1987; SCHMITT, 1988a, 1990; SCHMITT et al., 1988a, 1988b).

The discrete wavenumber formalism has also been extended to model wave

propagation in 2-D or 3-D media through formulations based on boundary integral

equations (BOUCHON, 1985; CAMPILLO and BOUCHON, 1985; CAMPILLO, 1987; PAUL

and CAMPILLO, 1988; COUTANT, 1989; GAFFET and BOUCHON, 1989, 1991; BOUCHON

et al., 1989, 1996; AXILROD and FERGUSON, 1990; CAMPILLO et al., 1993; CHAZALON

et al., 1993; GAFFET et al., 1994; GIBSON and CAMPILLO, 1994; HAARTSEN et al.,

1994; GAFFET, 1995; KARABULUT and FERGUSON, 1996; TAKENAKA et al., 1996;

SHAPIRO et al., 1996), boundary elements (KAWASE, 1988; KAWASE and AKI, 1989,

1990; KIM and PAPAGEORGIOU, 1993; BOUCHON and COUTANT, 1994; DONG et al.,

1995; PAPAGEORGIOU and PEI, 1998; ZHANG et al., 1998; FU and WU, 2001), or

generalized reflection/transmission matrices (CHEN, 1990, 1995, 1996). Hybrid

methods of calculation, combining the method with finite-difference or finite-element

methods, have also been developed to study the propagation of seismic waves in

complex geological structures (ZAHRADNIK, 1995; ZAHRADNIK and MOCZO, 1996;

MOCZO et al., 1997; RIEPL et al., 2000).
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