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Abstract—Dual-domain one-way propagators implement wave propagation in heterogeneousmedia in

mixed domains (space-wavenumber domains). One-way propagators neglect wave reverberations between

heterogeneities but correctly handle the forward multiple-scattering including focusing/defocusing,

diffraction, refraction and interference of waves. The algorithm shuttles between space-domain and

wavenumber-domain using FFT, and the operations in the two domains are self-adaptive to the complexity

of the media. The method makes the best use of the operations in each domain, resulting in efficient and

accurate propagators. Due to recent progress, new versions of dual-domain methods overcame some

limitations of the classical dual-domain methods (phase-screen or split-step Fourier methods) and can

propagate large-angle waves quite accurately in media with strong velocity contrasts. These methods can

deliver superior image quality (high resolution/high fidelity) for complex subsurface structures. One-way

and one-return (De Wolf approximation) propagators can be also applied to wave-field modeling and

simulations for some geophysical problems. In the article, a historical review and theoretical analysis of the

Born, Rytov, andDeWolf approximations are given. A review on classical phase-screen or split-step Fourier

methods is also given, followed by a summary and analysis of the new dual-domain propagators. The

applications of the new propagators to seismic imaging and modeling are reviewed with several examples.

For seismic imaging, the advantages and limitations of the traditional Kirchhoff migration and time-space

domain finite-difference migration, when applied to 3-D complicated structures, are first analyzed. Then the

special features, and applications of the new dual-domain methods are presented. Three versions of GSP

(generalized screen propagators), the hybrid pseudo-screen, the wide-angle Padé-screen, and the higher-

order generalized screen propagators are discussed. Recent progress also makes it possible to use the dual-

domain propagators for modeling elastic reflections for complex structures and long-range propagations of

crustal guided waves. Examples of 2-D and 3-D imaging and modeling using GSP methods are given.

Key words: Wave propagation, scattering, seismic imaging, modeling, one-way propagation, depth

migration.

1. Introduction

Perturbation approach is one of the well-known approaches for wave propaga-

tion, scattering and imaging (see Ch. 9 of MORSE and FESHBACH, 1953; Ch. 13 of AKI

and RICHARDS, 1980; WU, 1989). Traditionally, perturbation methods are used only
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for weakly inhomogeneous media and short propagation distance. However, recent

progress in this direction has led to the development of iterative perturbation

solutions in the form of one-way marching algorithm for scattering and imaging

problems in strongly heterogeneous media. In this article, a historical review and

theoretical analysis regarding the perturbation approach, including the Born, Rytov,

and De Wolf approximations, are given in section 2. The relative strong and weak

points of the Born and Rytov approximations are analyzed. Since the Born

approximation is a weak scattering approximation, it is not suitable for large volume

or long-range numerical simulations. The Rytov approximation is a smooth

scattering approximation, which works well for long-range small-angle propagation

problems, but is not applicable to large-angle scattering and backscattering. Then the

De Wolf approximation (multiple-forescattering-single-backscattering, or ‘‘one-

return approximation’’) is introduced to overcome the limitations of the Born and

Rytov approximations in long-range forward propagation and backscattering

calculations, which can serve as the theoretical basis of the new dual-domain

propagators. A review of classical dual-domain propagators (phase-screen or split-

step Fourier method) is also given, followed by a summary and analysis of the new

dual-domain propagators, in section 3. The iterative perturbation approach has been

developed in parallel to the operator splitting approach, and has led to the

generalization of phase-screen approximation for scalar waves to the elastic wave

screen propagators (see section 3.3). Three versions of GSP (generalized screen-

propagators): the hybrid pseudo-screen, the wide-angle Padé-screen, and the higher-

order generalized screen propagators are presented in section 3.4 as examples of the

newly developed wide-angle dual-domain propagators. The applications of the new

propagators to seismic imaging are reviewed in section 4. The advantages and

limitations of the traditional Kirchhoff migration and time-space domain finite-

difference migration, when applied to imaging of 3-D complicated structures, are first

analyzed. Then the special features and applications of the new dual-domain

methods are presented. Examples of 2-D and 3-D imaging (post- and pre-stack depth

migrations) using synthetic data sets from the Marmousi model and SEG-EAEG salt

model are given. Further progress also makes it possible to use the dual-domain

propagators for modeling elastic reflections for complex structures and long-range

propagation of crustal guided waves. These applications are briefly discussed in

section 5. Conclusion is given in section 6.

2. From Born, Rytov to De Wolf

2.1 Born Approximation and Rytov Approximation: Their Strong and Weak Points

In recollection of my study and collaboration with Professor K. Aki, I would like

to briefly digress to communicate my work on elastic Born scattering when I was a

graduate student at MIT.
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When we started to work on elastic Born scattering, we were not aware of

GUBERNATIS et al.’s (1977a,b) work. We started from the basic principle and referred

to MORSE and FESHBACH (1953) for our derivation. After a few months, I showed my

derivation and part of the results to professor Aki. He was very delighted by the

elegance of the theory and the practical implications of the results. He told me that I

was very lucky to have achieved such a nice result on such a fundamental problem.

But he added, ‘‘Such a neat result on this kind of fundamental problems should have

been solved a long time ago. Somehow people neglected this spot and left some nice

thing there. You are very lucky to pick up this stuff!’’ It turned out later, however

that I was not as lucky as it appeared. When circulating our results to other

colleagues, it was pointed out that similar results have been published in the Journal

of Applied Physics (GUBERNATIS et al., 1977a,b). Of course, there were differences.

Gubernatis et al.’s results regard a uniform elastic inclusion; while ours pertain to an

arbitrarily heterogeneous body, and we had nice expressions for the velocity-type and

impedance-type heterogeneities. Nevertheless, the general form of elastic Born

scattering was published in that paper. In the beginning, I felt embarrassed and was

very disappointed, like a defeated hero. Later I recovered from that mode of debacle.

I comforted myself by looking at the event from a different perspective. I looked it as

a test of my ability and good fortune. I said to myself that I can attack such problems

and perhaps have luck in my future work. Thus I extended my work on elastic Born

scattering to more general cases and to random media, with professor Aki’s

assistance, and published two papers in Geophysics and Journal of Geophysical

Research (WU and AKI, 1985a,b), respectively. It turned out to be a prelude to my

endeavor concerning the research of seismic wave propagation and scattering.

For the sake of simplicity, we consider the scalar wave case as an example. The

scalar wave equation in inhomogeneous media can be written as

r2 þ x2

c2ð~rrÞ
� �

uð~rrÞ ¼ 0 ; ð1Þ

where x is the circular frequency,~rr is the position vector, and cð~rrÞ is wave velocity at

~rr. Define c0 as the background velocity of the medium, resulting in

ðr2 þ k2Þuð~rrÞ ¼ �k2eð~rrÞuð~rrÞ ; ð2Þ
where k ¼ x=c0 is the background wavenumber and

eð~rrÞ ¼ c20
c2ð~rrÞ � 1 ð3Þ

is the perturbation function (dimensionless force). Set

uð~rrÞ ¼ u0ð~rrÞ þ Uð~rrÞ ; ð4Þ
where u0ð~rrÞ is the unperturbed wave field or ‘‘incident wave field’’ (field in

the homogeneous background medium), and Uð~rrÞ is the scattered wave

Vol. 160, 2003 One-way and One-return Dual-domain Propagators 511



field. Substitute (4) into (2) and note that u0ð~rrÞ satisfies the homogeneous wave

equation, resulting in

uð~rrÞ ¼ u0ð~rrÞ þ k2
Z
V

d3~rr 0gð~rr;~rr 0Þeð~rr 0Þuð~rr 0Þ ; ð5Þ

where gð~rr;~rr0Þ is the Green’s function in the background medium and the integral is

over the entire volume of the medium. This is the Lippmann-Schwinger integral

equation. Since the field uð~rrÞ under the integral is the total field which is unknown,

equation (5) is not an explicit solution but an integral equation.

Born Approximation

Approximating the total field under the integral with the incident field u0ð~rr0Þ, we
obtain the Born Approximation

uð~rrÞ ¼ u0ð~rrÞ þ k2
Z
V

d3~rr 0gð~rr;~rr 0Þeð~rr 0Þu0ð~rr 0Þ ð6Þ

In general, the Born approximation is only valid when the scattered field is much

smaller than the incident field, which implies that the heterogeneities are weak and

the propagation distance is short. However, the valid regions of Born approximation

are very different for forward scattering and for backscattering. Forward-scattering

divergence or catastrophe is the weakest point of Born approximation. For

simplicity, we will use ‘‘forescattering’’ to stand for ‘‘forward scattering.’’ As can

be seen from (6), the total scattering field is the sum of scattered fields from all parts

of the scattering volume. Each contribution is independent from other contributions

since the incident field is not updated by the scattering process. In the forward

direction, the scattered fields from each part propagate with the same speed as the

incident field, so they will be coherently superposed, leading to the linear increase of

the total field. The Born approximation has no energy conservation. The energy

increase will be fastest in the forward direction, resulting in a catastrophic divergence

for long distance propagation. This can be demonstrated schematically as shown in

Figure 1a. The medium is divided into blocks each represented by a concentrated

scatterer at its center. It also can be considered as a discrete scattering medium. At

the observation point, the total field will be the sum of the incident field (without any

correction) and the scattered fields from all parts of the scattering volume. On the

contrary, backscattering behaves quite differently from forescattering. As shown in

Figure 1b, since there is no incident wave in the backward direction, the total

observed field is the sum of all the backscattered fields from all the scatterers.

However, the size of coherent stacking for backscattered waves is about k=4 because

of the two-way travel-time difference. Beyond this coherent region, all other

contributions will be cancelled out. For this reason, backscattering does not have the
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catastrophic divergence even when Born approximation is used. This can be further

explained with the spectral responses of heterogeneities to scatterings with different

scattering angles.

From the analysis of scattering characteristics, we know that the forescattering is

controlled by the d.c. component of the medium spectrum W ð0Þ, but the

backscattering is determined by the spectral component at spatial frequency 2k,
i.e., W ð2kÞ, where k is wavenumber of the wave field in the background medium (see,

WU and AKI, 1985b; WU, 1989a). The d.c. component of the medium spectrum

linearly increases with the propagation distance in general, while W ð2kÞ is usually

considerably smaller and increases much slower than W ð0Þ. The validity condition

for the Born approximation is the smallness of the scattered field compared with the

incident field. Therefore the region of validity of the Born approximation for

backscattering is much larger than that for forescattering. The other difference

Figure 1

(a) Schematic demonstration of the forward scattering catastrophe of the Born approximation.

(b) Schematic demonstration of the size of the coherent response for backscattering.
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between backscattering and forescattering is their responses to different types of

heterogeneities. The backscattering is sensitive to the impedance type of heteroge-

neities, while forescattering mainly responds to the velocity type of heterogeneities.

Velocity perturbation will produce travel time or phase change, which can

accumulate to quite large values, causing the breakdown of the Born approximation.

This kind of phase-change accumulation can be easily handled by the Rytov

transformation. This is why the Rytov approximation has decidedly better

performance than the Born approximation for forescattering and has been widely

used for long distance propagation with only forescattering or small-angle scattering

involved, such as the line-of-sight propagation of optical or radio waves (CHERNOV,

1960; TATARSKII, 1971; ISHIMARU, 1978), transmission fluctuations of seismic waves

at arrays (AKI, 1973; FLATTÉ and WU, 1988; WU and FLATTÉ, 1990), diffraction

tomography (DEVANEY, 1982, 1984; WU and TOKSÖZ, 1987), and seismic imaging

using one-way propagators (HUANG et al., 1999a,b).

Rytov Approximation

Let u0ð~rrÞ be the solution in the absence of perturbations, i.e.,

ðr2 þ k2Þu0 ¼ 0 ð7Þ
and the perturbed wave field after interaction with the heterogeneity as uð~rrÞ. We

normalize uð~rrÞ by the unperturbed field u0ð~rrÞ and express the perturbation of the field

by a complex phase perturbation function wð~rrÞ, i.e.,
uð~rrÞ=u0ð~rrÞ ¼ ewð~rrÞ : ð8Þ

This is the Rytov Transformation (see TATARSKII, 1971; or ISHIMARU, 1978, Ch. 17,

p. 349). wð~rrÞ denotes the phase- and log-amplitude deviations from the incident field:

w ¼ log u� log u0 ¼ log
A
A0

� �
þ ið/� /0Þ ; ð9Þ

where A is the amplitude and / is phase angle. Combining (2), (7) and (8) yields

2ru0 � rwþ u0r2w ¼ �u0ðrw � rwþ k2eÞ ð10Þ
The simple identity

r2ðu0wÞ ¼ wr2u0 þ 2ru0 � rwþ u0r2w

together with (7) results in

2ru0 � rwþ u0r2w ¼ ðr2 þ k2Þðu0wÞ : ð11Þ
From (10) and (11) we obtain

ðr2 þ k2Þðu0wÞ ¼ �u0ðrw � rwþ k2eÞ : ð12Þ
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The solution of (12) can be expressed as an integral equation:

u0ð~rrÞwð~rrÞ ¼
Z
V

d3~rr 0gð~rr;~rr 0Þu0ð~rr 0Þ rwð~rr 0Þ � rwð~rr 0Þ þ k2eð~rr 0Þ� �
; ð13Þ

where gð~rr;~rr 0Þ is the Green’s function for the background medium, u0ð~rr 0Þ and u0ð~rrÞ
are the incident field at~rr 0 and~rr, respectively.

Equation (13) is a nonlinear (Ricatti) equation. Assuming rw � rwj j is small with

respect to k2 ej j, we can neglect the term rw � rw and obtain a solution known as the

Rytov approximation:

wð~rrÞ ¼ k2

u0ð~rrÞ
Z
V
d3~rr 0gð~rr;~rr 0Þeð~rr 0Þu0ð~rr 0Þ: ð14Þ

Now we discuss the relation between the Rytov and Born approximations, and

their strong and weak points, respectively. By expanding ew into power series, the

scattered field can be written as

u� u0 ¼ u0ðew � 1Þ ¼ u0wþ 1
2 u

0w2 þ � � � ; ð15Þ
When w � 1, i.e., the accumulated phase change is less than one radian

(corresponding to about one sixth of the wave period), the terms of w2 and higher

terms can be neglected, and

u� u0 ¼ u0w ¼ k2
Z
V

d3~rr0gð~rr;~rr0Þeð~rr0Þu0ð~rr0Þ ð16Þ

which is the Born approximation. This indicates that when w � 1, Rytov

approximation reduces to Born approximation. In case of large phase-change

accumulation, for which Born approximation is no longer valid, Rytov approxima-

tion still holds as long as the condition rw � rwj j � k2 ej j is satisfied.
Let us look at the implication of the condition rw � rwj j � k2 ej j for the Rytov

approximation. Assume that the observed total field after the wave interacted with

the heterogeneities is nearly a plane wave:

u ¼ Aei
~kk�~rr

which could be the refracted wave in the forward direction, or the backscattered field.

Since the incident wave is

u0 ¼ A0ei
~kk0�~rr

the complex phase field w can be written as

w ¼ logðA=A0Þ þ ið~kk �~kk0Þ �~rr ð17Þ
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and

rw ¼ r logðA=A0Þ þ ið~kk �~kk0Þ ð18Þ

rw � rw ¼ r logðA=A0Þj j2� ~kk �~kk0
��� ���2þ 2ið~kk �~kk0Þ � r logðA=A0Þ : ð19Þ

Normally wave amplitudes vary much slower than the phases, so the major

contribution to rw � rw in (19) is from the phase term ~kk �~kk0
��� ���2. Therefore, the

condition for the Rytov approximation can be approximately stated as

~kk �~kk0
��� ���2¼ 4k20 sin

2 h
2
� k20 ej j ð20Þ

where h is the scattering angle. Therefore the Rytov approximation is only valid

when the scattering angle (deflection angle) is small enough to satisfy

sin
h
2
�

ffiffiffiffiffiffi
1

4
e

r
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 � c2ð~rrÞ

c2ð~rrÞ

s
: ð21Þ

This is a point-to-point analysis for the contributions from different terms (for

example, the terms in the differential equation (12)). For the integral equation (13),

one needs to estimate the integral effects of rw � rw and k2e. The heterogeneities

need to be smooth enough to guarantee the smallness of the integral of rw � rw
which is related to scattering angles, in comparison with the total scattering

contribution k2e. Regardless, the Rytov approximation is totally inappropriate for

backscattering. In the exactly backward direction, h ¼ 180� and sin h=2 ¼ 1,

inequality (21) is hardly to be satisfied. Therefore, although not explicitly specified,

the Rytov approximation is a somewhat small-angle approximation. Together with

the parabolic approximation, they formed a set of analytical tools widely used for the

forward propagation and scattering problems, such as the line-of-sight propagation

problem (e.g., FLATTÉ, 1979; ISHIMARU, 1978; TATARSKII, 1971). The Rytov

approximation is also used in modeling transmission fluctuation for seismic array

data (WU and FLATTÉ, 1990), diffraction tomography (DEVANEY, 1982, 1984; WU

and TOKSÖZ, 1987). TATARSKII (1971, Ch. 3B) discussed the relation of the Rytov

approximation and parabolic approximation.

2.2 De Wolf Approximation

We see the limitations of both the Born and Rytov approximations. Even in

weakly inhomogeneous media we need better tools for wave modeling and imaging

for long distance propagation. Higher order terms of the Born series (defined later in

this section) may help in some cases. However, for strong scattering media, Born

series will either converge very slow, or become divergent. That is because the Born

series is a global interaction series, each term of which is global in nature. The first
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term (the Born approximation) is a global response and the higher terms are just

global corrections. If it makes an undue error in the first step, it will be hard to

correct later. One solution to the divergence of the scattering series is the

renormalization procedure. Renormalization methods try to split the operations so

that the scattering series can be reordered into many sub-series. We hope some sub-

series can be summed up theoretically so that the divergent elements of the series can

be removed. De Wolf approximation splits the scattering potential into forescattering

and backscattering parts and renormalizes the incident field and Green’s function

into the forward propagated field and forward propagated Green’s function (forward

propagator), respectively (DE WOLF, 1971, 1985). The forward propagated field uf is

the sum of an infinite sub-series which includes all the multiply forescattered fields.

The forward propagator Gf is the sum of a similar sub-series which includes multiple

forescattering corrections to the Green’s function. The De Wolf approximation is

also called ‘‘one-return approximation’’ (WU, 1996; WU and HUANG, 1995; WU

et al., 2000a,b), since it is a multiple-forescattering-single-backscattering (MFSB)

approximation. It is also somewhat of a local Born approximation with both the

incident field and Green’s function (propagator) calculated by one-way forward

propagators. From previous sections we know that Born approximation works well

for backscattering locally. With the renormalized incident field and Green’s function

the local Born (MFSB) proved to work surprisingly well for many practical

applications. The key is to have good forward propagators. RINO (1988) has

obtained better approximation than MFSB in the wavenumber domain and pointed

out the error of De Wolf approximation in the calculation of backscattering

enhancement. The error (overestimation) is again due to the violation of energy

conservation law by the Born approximation. Even with forescattering correction,

the backscattered energy is still not removed from the forward propagated waves for

the local Born approximation. However, for short propagation distances in

exploration seismology, the errors in reflection amplitudes may not become a

serious problem.

In the appendix, we give a brief derivation of De Wolf approximation using

formal operator algebra (DE WOLF, 1985). In this section, we will adopt an

intuitive approach of derivation to discerns the physical meaning of the

approximation. De Wolf approximation bears similarity to the Twersky approx-

imation for discrete scatterers (TWERSKY, 1964; ISHIMARU, 1978). The Twersky

approximation includes all the multiple scattering except the reverberations

between pairs of scatterers, which excludes the paths which connect the two

neighboring scatterers more than once. The Twersky approximation has less

restrictions and therefore a wider range of applications than the De Wolf

approximation. The latter needs to define the split of forward and back scatterings.

We define the scattering to the forward hemisphere as forescattering and its

complement as backscattering.
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The Lippmann-Schwinger equation (5) can be written symbolically as

u ¼ u0 þ G0eu ; ð22Þ
where e is a diagonal operator in space domain, and G0 is a nondiagonal integral

operator. If the reference medium is homogeneous, G0 will be the volume integral

with the Green’s function g0ð~rr;~rr0Þ as the kernel. Formally (22) can be expanded into

an infinite scattering series (Born series)

u ¼ u0 þ G0eu0 þ G0eG0eu0 þ � � � : ð23Þ
If we split the scattering potential into the forescattering and backscattering parts

e ¼ ef þ eb ð24Þ
and substitute it into (23), we can have all combinations of multiple forescattering

and backscattering. We neglect the multiple backscattering (reverberations), i.e.,

drop all the terms containing two or more backscattering potentials, resulting in a

multiple scattering series which contains terms with only one eb.
The general term will look like

G0ef G0ef � � �G0ebG0ef � � �G0ef u0 : ð25Þ
The multiple forescattering on the left side of eb can be written as

Gm
f ¼ ½G0ef �mG0 ð26Þ

and on its right side,

unf ¼ ½G0ef �nu0 : ð27Þ
Collecting all the terms of Gm

f and unf respectively, we have

GM
f ¼

XM
m¼0

½G0ef �mG0

uNf ¼
XN
n¼0

½G0ef �nu0 :

ð28Þ

Let M and N go to infinite, then the renormalized Gf (forward propagator) and uf
(forescattering corrected incident field) are:

Gf ¼
X1
m¼0

½G0ef �mG0

uf ¼
X1
n¼0

½G0ef �nu0
ð29Þ

and De Wolf approximation becomes

u ¼ uf þ Gf ebuf : ð30Þ
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The observed total field u in (30) is different for different observation geometries. For

transmission problems, the backscattering potential has no effect under the De Wolf

approximation,

utransmission ¼ uf : ð31Þ
On the other hand, for reflection measurement, that is, when the observations are at

the same level as or behind the source with respect to the propagation direction, there

is no uf in the total field (30),

ureflection ¼ Gf ebuf : ð32Þ
Write it into integral form, (30) becomes

uð~rrÞ ¼ uf ð~rrÞ þ
Z
V

d3~rr0gf ð~rr;~rr0Þebð~rr0Þuf ð~rr0Þ : ð33Þ

Note that both the incident field and the Green’s function have been renormalized by

the multiple forescattering process through the multiple interactions with the

forward-scattering potential ef .

3. Dual-domain One-way Propagators for Scalar, Acoustic and Elastic Waves

3.1 Classical Scalar-wave Dual-domain Propagators

The first use of a dual-domain propagator can be traced back to CHANDRA-

SEKHAR’s work (1952) on the calculations of amplitude fluctuations of light

(scintillations) passing through the atmosphere using the thin-phase-screen. The

field fluctuation outside the extended medium containing irregularities in refrac-

tive index, can be calculated as if produced by a thin phase-changing screen

(CHANDRASEKHAR, 1952; BRAMLEY, 1954, 1977). The early use of phase-screen is a

single screen for the whole inhomogeneous layer (atmosphere for light or ionosphere

for radio waves). The interaction with heterogeneities is concentrated at the screen: a

phase-changing operation in the space domain; the propagation is in the wavenum-

ber domain. The formulation is simple with an exponential transformation and is

similar to the Rytov transformation. However, in the phase-screen approximation,

the phase-function is real, not complex as in the Rytov transformation. Therefore the

phase-screen only imposes phase modulation to waves passing through it. Although

simple, it has advantages over the formulation using Born approximation (BOOKER

and GORDON, 1950), since for strong fluctuation the accumulated phase error by

Born approximation may become significant. The approach also has been used for

wave propagation through a single turning point (MERCIER, 1962; SALPETER, 1967;

FLATTÉ, 1979, ch. 11) and for strong fluctuation theory (see e.g., ISHIMARU, 1978,

ch. 20). Later the method was extended to multi-screen to accommodate long-range
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propagation (HERMANN and BRADLEY, 1971; BROWN, 1973; FLECK et al., 1976; FEIT

and FLECK, 1978; RINO, 1978, 1982; KNEPP, 1983; MARTIN and FLATTÉ, 1988). The

interaction between the heterogeneities and wavefield is through phase screens at

each step along the propagation path. It is widely used for laser propagation through

the atmosphere and later through optical fibers. Random media are modeled through

a series of random phase-screens (ibid).

The method was introduced to ocean acoustics by HARDIN and TAPPERT (1973),

TAPPERT (1974), FLATTÉ and TAPPERT (1975), and MCDANIEL (1975), and was called

split-step Fourier method as a purely numerical method for solving parabolic wave

equations.

The original phase-screen propagator is derived from the parabolic wave

equation, and the free propagator suffered the parabolic approximation. A ‘‘wide-

angle’’ split-step propagator has been obtained, based on the symmetric splitting of

the square-root operator (FLECK et al., 1976; FEIT and FLECK, 1978; THOMSON and

CHAPMAN, 1983), in which the free propagator is an accurate one. The accuracy of

this improved one-way propagator has been analyzed in those papers and more

recently by HUANG and FEHLER (1998). The other approach to improve the phase-

screen propagator was to match its travel time with the ray equation (TOLSTOY et al.,

1985; BERMAN et al., 1989). BERMAN et al. (1989) changed the phase correction term

of the screen into log n, where n is the refraction index of the medium. However, all

the improvement is kept in the realm of classical phase-screen correction.

Dual-domain one-way propagation methods were introduced to exploration

seismology early in the 90s, with methods such as the split-step Fourier method

(STOFFA et al., 1990; LEE et al., 1991), or the phase-screen method (WU and HUANG,

1992; LIU and WU, 1994) as alternatives to the time-space finite-difference solutions.

These methods operate in the frequency domain and use the dual-domain

implementation with operations shuttling between space and wavenumber domains

by Fast Fourier Transform. Free propagation is accomplished in the wavenumber

domain through a homogeneous medium which has some reference velocity. This

reference velocity can vary with depth. Wave-medium interaction is done in the space

domain that accounts for the effects of the heterogeneity to the wavefront. These

methods have no grid dispersion and are unconditionally stable.

3.2 Wide-angle Dual-domain Propagators

The abovementioned phase-screen or split-step methods can be viewed as

classical dual-domain propagator methods. These methods are accurate only for

small-angle waves and cannot correctly handle large-angle waves. This severely limits

its practical applications. Recently, significant progress has been made in improving

the large-angle accuracy of the dual-domain methods and in extending them to

acoustic and elastic waves (WU, 1994, 1996; WU and XIE, 1994; RISTOW and RUHL,

1994; WU and HUANG, 1995; HUANG and WU, 1996; HUANG and FEHLER, 1998,
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2000; WU and JIN, 1997; XIE and WU, 1998, 1999, 2000; JIN and WU, 1999a,b; JIN

et al., 1998, 1999, 2000; HUANG et al., 1999a,b; DE HOOP et al., 2000; LE ROUSSEAU

and DE HOOP, 2000). Various modifications and extensions have been introduced to

improve the wide-angle response of the dual-domain propagators with different

names for the propagators. Approximate propagators based on the use of local Born

and local Rytov approximations (local Born and local Rytov propagators) have been

developed by HUANG et al., (1999a,b) and HUANG and FEHLER (2000a) (see also the

early work of WU and HUANG, 1995). Fourier finite-difference methods developed by

RISTOW and RUHL (1994), HUANG and FEHLER (2000b) and other authors are hybrid

methods, which adopt the finite-difference calculations for wide-angle corrections to

the phase-screen propagators. Generalized screen methods including pseudo-screen,

complex screen, windowed screen, Padé-screen, and higher-order generalized screens

have been developed and applied to synthetic and field data (WU, 1994; WU and

HUANG, 1995; WU and JIN, 1997; JIN and WU, 1999a,b; JIN et al., 1999, 2000; XIE

and WU, 1998, 1999, 2000; DE HOOP et al., 2000; LE ROUSSEAU and DE HOOP, 2000).

Based on the De Wolf approximation, WU (1994) derived an elastic one-way

propagator, the complex-screen propagator. In the limiting case (null shear rigidity)

he derived a new one-way propagator for scalar waves (WU, 1994, x5). For small

angles it reduces to the classical phase-screen (‘‘wide-angle’’ of FEIT and FLECK,

1978). But for large angles it keeps the form of the local Born approximation, which

has better accuracy than the phase-screen solution. The new propagator is named

‘‘generalized phase-screen propagator’’. Along this direction, DE HOOP et al., (2000)

formulated a new type of acoustic one-way propagator based on the Hamilton path-

integral and pseudo-differential operator theory. Wu’s new propagator coincides

with the first-order expansion of the new class of propagators identified as

generalized screen propagators (GSP). The first-order approximation ‘‘generalized

phase-screen propagator’’ was renamed as ‘‘pseudo-screen propagator’’ (see next

section). The original form of pseudo-screen propagator has a singularity in the

wavenumber domain and numerical instability. The problems were solved by the

introduction of the Taylor expansion around the singularity in the extended local

Born Fourier method and by the use of the Rytov approximation in the extended

local Rytov Fourier method (HUANG et al., 1999a,b). JIN et al., (1998, 1999) solved

the problems by using the Padé expansion and implementing the wide-angle

corrections with an implicit finite-difference algorithm. For further development of

the new propagators see the examples in the next section.

3.3 Acoustic and Elastic Screen Propagators

Dual-domain methods have also been developed for modeling elastic wave

propagation in heterogeneous media (WU, 1994, 1996; WILD and HUDSON, 1998;

WILD et al., 2000) and for modeling primary reflections (XIE and WU, 1995, 1999,

2000; WU, 1996; WILD and HUDSON, 1998; WU and WU, 1998, 1999). Methods for
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wave propagation using dual-domain propagators for regional seismic waves in

complicated Crustal structures (half-space screen propagators) have been developed

and tested by comparing the results to finite difference solutions (WU et al., 2000a,b).

Dual-domain propagators for modeling acoustic wave reflections were developed in

similar time (WU and HUANG, 1995; WU et al., 1995; DE HOOP et al., 2000).

3.4 Examples of Wide-angle Dual-domain Propagators

As we have discussed, there are many different versions of dual-domain

propagators (DDP). Here we examine some generalized screen propagators (GSP)

as examples. Different versions of GSP with various approximations can be derived

through different approaches. The early derivation used the local Born approxima-

tion and the De Wolf approximation (WU, 1994, 1996). Later the one-way wave

propagation with GSP was more rigorously cast into a Hamilton (phase space) path-

integral formulation (DE HOOP et al., 2000), which forms a mathematical basis for

accuracy analysis and further development of screen propagators. However, for the

path integral in exact form, the vertical slowness symbol is hard to solve and the

implementation would be very involved even if we could find the exact form.

Therefore different approximations must be invoked for practical use of the method.

In the following, we discuss three versions of GSP from the viewpoint of

path-integral formulation and the approximation of vertical slowness symbol:

pseudo-screen approach, generalized screen series expansion, and Padé expansion

approach.

Pseudo-screen propagator starts with the weak scattering assumption, so that the

vertical slowness symbol can be decomposed into background and perturbation

parts. The perturbation part can be derived with a local Born approximation.

However, the Born approximation is basically a low-frequency approximation, and

has severe phase errors for strong contrast and high-frequencies, especially for large-

angle waves. In order to have better phase accuracy, which is important for imaging

(migration), some high-frequency asymptotic phase-matching has been applied to the

local Born solution. Even zero-order matching leads to a solution better than the

classic phase-screen method (spit-step Fourier method). The term ‘‘pseudo-screen’’

first appeared in WU and DE HOOP (1996) and HUANG and WU (1996) to distinguish

the new form of screen propagator from the classic phase-screen propagator. Phase-

screen has operations only in the space domain so that the phase correction is

accurate only for small-angle waves; while pseudo-screen has operations in both

the space and wavenumber domains to improve the accuracy for large-angle waves.

The operations of pseudo-screen for heterogeneity correction have deviated from the

function of a physical ‘‘screen’’; and the phase-delay is angle-dependent. That is why

the correction is termed ‘‘pseudo-screen.’’ The asymptotic phase-matching method

used by JIN et al., (1998, 1999) in the hybrid pseudo-screen propagator with

a wavenumber filter in the form of continued fraction expansion can improve the
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large-angle wave response significantly. In the method, the wide-angle correction is

implemented with an implicit finite-difference scheme and the expansion coefficients

are optimized by phase-matching.

Generalized screen series expansion expands the perturbation part of the vertical

slowness symbol into a series (DE HOOP et al., 2000) in terms of both the smallness

parameter and the smoothness parameter of the perturbations. The first-order term

in smallness is in parallel with the local Born solution. Higher-order terms can

improve the wide-angle performance but involve more calculations. LE ROUSSEAU

et al., (2000) extended the scalar GSP to transversely isotropic media with a vertical

symmetry axis.

Wide-angle Padé-screen propagator starts with a smooth approximation for the

vertical slowness symbol in the very beginning. The approach does not require the

weak perturbation assumption and therefore can handle strong contrast media more

naturally. However, the approximation applied corresponds to the local homoge-

neity approximation in the traditional way of expanding the square-root operator.

Large errors may exist around sharp boundaries. The expansion of the symbol in

terms of h–f series can be found in FISHMAN and MCCOY (1984). Retaining only the

leading term leads to a simple form of cHFð0Þ ¼ fa2ðXT Þ � a2Tg1=2 which is the principal

part of the symbol (DE HOOP et al., 2000), where c is the vertical slowness, aðXT Þ is
the local slowness (inverse velocity) at a transverse position XT and aT is the

horizontal slowness. After the smooth approximation (h–f asymptotics), the

vertical slowness symbol is expanded into a Padé series and a finite-difference

(FD) scheme is used to implement the wide-angle corrections (XIE and WU, 1998; XIE

et al., 2000).

As we pointed out, the FD implementation of wide-angle corrections in this

approach makes the method resembling the Fourier finite-difference method (RISTOW

and HUHL, 1994; HUANG and FEHLER, 2000b). They are both based on the local

homogeneity approximation. In HUANG and FEHLER (2000b) the coefficients of the

first Padé expansion are globally optimized.

4. Imaging Using Dual-domain Propagators

Two milestones in the development of seismic imaging were the introduction of

the one-way (parabolic) wave equation finite-difference algorithm (CLEARBOUT,

1970, 1976) and the introduction of the Kirchhoff integral method (SCHNEIDER,

1978). Both approaches have been widely used in the industry. The application of the

dual-domain technique emerged in exploration seismology only in the beginning of

the 90s and is relatively new to the industry. I will give first a brief overview of the

abovementioned two approaches and their limitations, followed by a summary of the

features of the newly developed dual-domain propagators.
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4.1 Limitations of the Kirchhoff Migration Method

The widely used Ray-Kirchhoff imaging (depth migration) method (or simply

‘‘Kirchhoff migration’’) is a ray-theory based method. The method uses the

Kirchhoff integral with a ray-theory approximated Green function. The process

consists of ray-tracing from both the source and receiver down to the imaging point

and then the pickup and stack of the wavelets from all the seismic traces according to

the corresponding travel times. This approach has been successfully used in areas

with relatively simple structures. However, it has two fundamental limitations which

cause problems in applications to complicated regions, especially in 3-D cases.

One limitation of the Kirchhoff method is its high-frequency approximation (ray

approximation) of the Green’s function. The Fresnel radius of a ray can be viewed as

more or less the distance from the center of the ray within which the wave field has

less than 180 degrees of phase difference. The Fresnel radius increases with

propagation distance and hence increases with depth leading to low resolution

(lateral resolution) and poor image quality for deep targets in complex region. In

contrast, wave equation migration methods are based on the wave theory which

includes all the frequency-dependent properties of the wave field. The decrease in

resolution and image quality of wave-theory based methods with depth is

significantly less severe than that of ray-theory based methods.

The other limitation of the Kirchhoff method is the low fidelity of the amplitude

information carried in the imaging process and for the final image. It is difficult to

obtain amplitude information for rays propagating through complex structures

because of the presence of ray caustics, multiple arrivals, and interference. Wave

equation migration methods maintain the true amplitude information and thus

provide high-fidelity images.

Other problems with the ray-theory based Kirchhoff method include the

difficulties in dealing with multiple arrival interference, caustics, chaotic rays,

sensitivity to velocity structures especially those with irregular sharp interfaces, and

the calculation and storage of large travel-time tables for 3-D imaging.

The fundamental limitations of the Kirchhoff method severely limit its applica-

tions for the high resolution/high fidelity imaging in complicated regions. Neverthe-

less it will remain to be quite useful and convenient for some industrial

applications because of its flexibility in target-oriented imaging and straightforward

implementation.

4.2 Space-domain One-way Wave Finite-difference Migration

The time-space (t-x) domain finite-difference algorithm is a one-way wave-

equation based method that has many advantages over the ray-Kirchhoff method.

Since the introduction of the method by Clearbout by the end of 60s and the

beginning of 70s (CLAERBOUT, 1970, 1976, 1985) many improvements have been

made in various aspects. The method keeps the basic features of wave-theory based
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imaging, and overcomes the fundamental limitations of ray-theory based methods. In

addition, it has abundantly faster speed of computation compared to full-wave

equation methods.

Despite its success, the t-x domain finite difference approach also has certain

intrinsic difficulties, especially for 3-D imaging. One is the grid dispersion problem

which originates from the rectangular discretization of space that results in different

propagation speeds for waves of different angles. This dispersion will cause errors

and artifacts for imaging. Suppression of these artifacts usually leads to severe

attenuation of large-angle waves which are important for imaging steep structures.

Other problems with the t-x finite-difference approach include the numerical

anisotropy for 3-D geometry and difficulty in formulating a midpoint-offset domain

approach for more efficient migration. Because of these problems, the Kirchhoff

method has dominated the exploration industry for a long period despite its

fundamental limitations.

4.3 Features of Dual-domain Propagators (DDP)

The dual-domain propagators, which are wide-angle one-way propagators,

neglect wave reverberations between heterogeneities but correctly handle the forward

multiple-scattering including focusing/defocusing, diffraction, refraction and inter-

ference of waves. Due to recent progress, new versions of dual-domain methods can

propagate large-angle waves quite accurately in strong contrast media, resulting in

superior image quality for complex geological regions.

Dual-domain methods are self-adaptive to the complexity of the medium. In

homogeneous regions, the algorithm will automatically perform wavenumber domain

operations that are accurate up to 90�; while in heterogeneous regions properly

weighted space-domain operations will be added according to the strength of the

heterogeneities. The adaptive phase-space (dual-domain) manipulationmakes the best

use of the operations of each domain, resulting in efficient and accurate propagators.

The wide-angle capability of these new propagators can be seen from the

propagating wave fronts in strongly perturbed media. Figure 2 exhibits comparisons

of wavefronts calculated using different propagators. The reference velocity used in

calculating wave propagation in each case was chosen to be a factor of two different

from the real velocity, so we can investigate how well the propagators correct for the

difference between the chosen reference velocity and the medium velocity. Figure 2a

shows the wavefront calculated using the Split-Step Fourier (SSF) (phase-screen)

method. Figure 2b presents the result using the hybrid pseudo-screen propagator,

and Figure 1c is that by a traditional 65-degree finite-difference method implemented

in the frequency-space domain. We observe that the SSF wavefront is only accurate

for small-angle waves. While the F-X finite difference responded better for large-

angle waves; the dispersion and artifacts are quite conspicuous. In contrast, the dual-

domain Hybrid Pseudo-Screen Propagator performs quite well for large-angle waves.
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Figure 2

Impulse responses of three different migration operators: (a) phase-screen propagator; (b) hybrid pseudo-

screen propagator; (c) 65 degree finite-difference propagator.
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The amplitude-preserving feature of the new dual-domain propagators is

demonstrated in Figure 3. Events with a dip angle up to 60� can be migrated with

little distortion of amplitude. Even for the structures dipping up to 70�, only the

deepest portion of the migrated image has significant distortion. In the lower panel of

Figure 3, it is also shown that the amplitude is preserved even in the case of strong

lateral velocity variations (100% perturbations).

The efficiency of the dual-domain wave-theory based methods is no longer a weak

point in the 3-D case compared with the ray-theory based methods, such as

Kirchhoff migration. For 2-D imaging, the dual-domain methods are generally a few

times slower than the Kirchhoff method. However, for 3-D imaging, the situation is

different: While the time for ray-tracing required in Kirchhoff migration increase as

N4 (N is the number of points in one dimension), the time for dual-domain methods

increases as only 2N2 log2 N . When N is large in the 3-D case, the dual-domain

methods are not necessarily slower than the ray methods. Further, the dual-domain

methods can be formulated in the midpoint-offset coordinate system without

difficulty (JIN and WU, 1999b), while a finite difference solution for this system has

not been found. For marine data, the number of offsets is considerably smaller than

the number of sources; thus there is a gain in efficiency when using an offset-domain

migration formulation with dual-domain propagators.

4.4 Examples of GSP Migrations Applied to Different Data Sets

We present migration examples for 2-D and 3-D models to demonstrate the

features and excellent performance of this approach. The first example is the 2-D

prestack depth migration for the A-A0 profile of the SEG-EAEG salt model. The

profile crosses many of the difficult structural elements in the model including steep,

irregular shallow salt flanks, abrupt dip changes where the faults are located, strong

velocity contrasts between the salt body and the surrounding medium (3–4 time

differences). These pose an immense challenge to the conventional imaging methods.

Figure 4 shows the imaging results of prestack depth migration using our Padé-

screen propagator method (XIE and WU, 2000). We see that not only the salt body

but also the subsalt structures were imaged clearly. The lateral and vertical

resolutions are excellent.

The next example is the 2-D prestack migration image for the Marmousi model

using the offset-domain pseudo-screen propagator (for theory see JIN and WU, 1999).

The model contains very complicated geological features, especially shallow steep

faults and an underlying high velocity lateral salt body intrusion. In addition, the

model contains salt structure related traps and a reservoir structure beneath this

complex geology. Figure 5c shows the result of ProMAX prestack Kirchhoff depth

migration using finite-difference eikonal traveltimes. As expected, the multiple

arrivals generated by this model cause the mislocation of reflections in complicated

regions. Figure 5a is the image by 70� explicit finite-difference migration. Figure 5b
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Figure 3

Amplitude preserving property of the wide-angle dual-domain migration methods. Top: Migration input

and output for events with different dip-angles; Bottom: Traces showing the detailed amplitude and

waveform information for the cases of no lateral variation and with strong lateral variation.
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Figure 4

Prestack depth migration for A-A¢ profile of the SEG-EAGE salt model using the wide-angle Padé-screen:

Top: Reflection model; Middle: Image by phase-screen; Bottom: Image by Padé-screen.
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shows the result of offset-domain pseudo-screen depth migration. Forty-eight offset

sections with full offset range between 200 m and 2550 m were used in the test. The

superiority of the image quality is apparent and it can delineate faults and reservoirs

well enough to identify the major features.

Figure 5

Prestack depth migration of Marmousi data set: (a) Offset-domain pseudo-screen migration. Forty-eight

offset sections are used. (b) Image by 70 degree explicit finite-difference shot record migration. (c) Image by

Kirchhoff migration.
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Figure 6 provides an example of poststack 3-D migration for the C3 subset of the

SEG-EAEG salt model. The synthetic data were generated by ARCO for a

decimated model of 250 � 250 with a 40 m spacing using a finite-difference

Figure 6

Comparison between images from different methods for the C3 subset of 3-D SEG Salt model. On the left

is a vertical slice at line 90 and on the right is a horizontal slice at depth 126. Panels A, B and C are velocity

models, images from the split-step Fourier method and images from the GSP migration, respectively.
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exploding reflector algorithm. Figure 6a presents a vertical profile (on the left) and a

horizontal slice at depth grid 126 (on the right). In Figures 6b are shown the vertical

cut (on the left) and horizontal slice (on the right) of the 3-D images reconstructed by

split-step Fourier migration. Figures 6c are the reconstructed images by the hybrid

pseudo-screen migration. We can see clearly the improved image quality of the GSP

migration over the split-step Fourier migration, especially the improvements of

resolution, image sharpness, fault delineation and noise reduction for subsalt

structures.

Figure 7 shows a horizontal slice of the 3-D SEG salt model (top panels) and the

images obtained from prestack migration of a subset of a portion of the numerical

dataset, applying the wide-angle Padé-screen method (bottom panel) compared with

the split-step Fourier method (middle panel). The data set is a common-source gather

with a total of 45 shots. It can be seen clearly that the new wide-angle dual-domain

method performs substantially better in imaging the faults and defining the sharp

structural boundaries.

5. Modeling and Simulation Using Dual-domain Propagators

Because of the super wide-angle capacity of the new dual-domain propagators,

they can be applied to modeling the wave propagation in complex media such as

heterogeneous crustal waveguides (WU et al., 2000a,b), random media (FEHLER and

HUANG, 2000), and other cases where forward scattering dominates. Combining the

multi-forward scattering and single-backscattering approximations, the dual-domain

propagators can be used to model the primary reflections in complex elastic media

(WU, 1994, 1996; XIE and WU, 1995, 1996, 1998, 1999; WILD and HUDSON, 1998;

WILD et al., 2000; WU and WU, 1998, 1999). Figure 8 illustrates an example of

synthetic reflection seismograms using the thin-slab operator for the elastic French

Model (top panel). The dark model has �20% perturbations relative to the

surrounding medium for both P - and S-wave velocities. In the figure, the solid

reference lines were calculated using a full-wave finite-difference algorithm. The

dotted lines are the results of the thin-slab approximation, which is a dual-domain

one-return propagator. Direct arrivals are not shown in the figure. It can be seen that

the thin-slab operator can accurately calculate the backscattered waves extending to

quite large angles.

6. Conclusions

Wide-angle dual-domain propagators, including the generalized screen propaga-

tors (GSP) have adaptive phase-space manipulations. In homogeneous regions the

wavenumber-domain operation dominates; while in heterogeneous regions, it turns
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Figure 7

Comparison of 3-D prestack migration images using different methods. The horizontal slice is located at

Z ¼ 2100 m. From top to bottom are velocity model, migration image using the phase-screen method, and

image using the wide-angle Padé-screen method, respectively.
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into weighted mixed domain operations. The weight is proportional to the strength

of heterogeneity and space-domain operation may dominate. In summary, the wide-

angle dual-domain propagators have the following features: High-resolution and

High-fidelity: imaging based on wave theory; High-speed: one-way approximation +

FFT implementation; Super-wide-angle performance: dual-domain adaptability to

heterogeneities; Reduced grid-dispersion: hybrid FT-FD; Midpoint-offset domain

imaging capability: high efficiency; Dual-domain information available at each

step: convenient for imaging velocity analysis and AVA (amplitude versus angle)

analysis.

Figure 8

Synthetic reflection seismograms calculated by the thin-slab approximation (dotted lines) compared with

those by finite-difference calculation (solid lines) for an elastic French model with an explosion source.
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Appendix

Renormalization of Scattering Series and the De Wolf Approximation

The Lippmann-Schwinger equation

u ¼ u0 þ k2
Z
V

d3~rr0g0ð~rr;~rr0Þeð~rr0Þuð~rr0Þ ; ðA:1Þ

where eð~rr0Þ is the equivalent body force for scattering or scattering potential as

identified in the scattering theory, can be written symbolically as

u ¼ u0 þ G0eu ðA:2Þ
where e is a diagonal operator in space domain, and G0 is a nondiagonal integral

operator. If the reference medium is homogeneous, G0 will be the volume integral

with the Green’s function g0ð~rr;~rr0Þ as the kernel. A formal ‘‘solution’’ of (A.2) is

u ¼ ½1� G0e��1u0 : ðA:3Þ
If we expand (A.3) into a series by iteration, it will become an infinite scattering series

which is the familiar Born series. The Born series may converge very slowly or

become divergent for strong scattering. Now let us split the operations (the

interaction between the medium and the wave) so that we can resort the scattering

series and sum up certain sub-series theoretically to remove the divergent elements in

the Born series. This is the intent of renormalization. Here we split the scattering

potential operator into a forescattering and a backscattering operator: e ¼ ef þ eb,
such that G0ef and G0eb correspond to the forescattered and backscattered Born

solutions, respectively. It can be seen from straightforward operator algebra that
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u ¼ ½1� Gf eb��1uf ðA:4Þ
with

uf ¼ ½1� G0ef ��1u0

Gf ¼ ½1� G0ef ��1G0

or in the form of

u ¼ uf þ Gf ebu ðA:5Þ
with

uf ¼ u0 þ G0ef uf
Gf ¼ G0 þ G0ef Gf :

In explicit form, (A.5) can be written as

uð~rrÞ ¼ uf ð~rrÞ þ
Z
V

d3~rr0gf ð~rr;~rr0Þebð~rr0Þuð~rr0Þ : ðA:6Þ

Equation (A.6) thus expresses uð~rrÞ in terms of a renormalized forward propagated

field uf , and a scattered component due to a medium with scattering potential eb, and
an effective forward propagator gf ð~rr;~rr0Þ instead of the background Green’s function

g0. Equation (A.6) can be solved with an iterative procedure. The first iteration will

be the De Wolf approximation (33).
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WU, R.-S. and FLATTÉ S. M. (1990), Transmission Fluctuations across an Array and Heterogeneities in the

Crust and Upper Mantle, Pure Appl. Geophys. 132, 175–196.

WU, R.-S. and HUANG, L.-J. (1992), Scattered Field Calculation in Heterogeneous Media Using Phase-

screen Propagator, Expanded Abstracts of the Technical Program, SEG 62nd Annual Meeting, 1289–

1292.

WU, R.-S. and HUANG, L.-J. (1995), Reflected wave modeling in heterogeneous acoustic media using the

De Wolf approximation, Mathematical Methods in Geophysical Imaging III, SPIE 2571, 176–186.

WU, R.-S., HUANG, L.-J., and XIE, X.-B. (1995), Backscattered Wave Calculation Using the De Wolf

Approximation and a Phase-screen Propagator, Expanded Abstracts, SEG 65th Annual Meeting, 1293–

1296.

WU, R.-S. and JIN, S. (1997),Windowed GSP (Generalized Screen Propagators) Migration Applied to SEG-

EAEG Salt Model Data, Expanded abstracts, SEG 67th Annual Meeting, 1746–1749.

WU, R.-S., JIN, S., and XIE, X.-B. (2000a), Seismic Wave Propagation and Scattering in Heterogeneous

Crustal Waveguides Using Screen Propagators: I SH Waves, Bull. Seismol. Soc. Am. 90, 401–413.

WU, R.-S., JIN, S., and XIE, X.-B. (2000b), Energy Partition and Attenuation of Lg Waves by Numerical

Simulations Using Screen Propagators, Phys. Earth and Planet. Inter. 120, 227–244.
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