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DBSCAN: Acceleration of Labeling Training Data

Fig. 5. Map view of a DBSCAN algorithm. It should be noted that 
these points on the two dimensional space is purely conceptual, and 
the actual implementation of DBSCAN utilizes a heuristic function to 
determine the distance between two points in space. The algorithm 
has been tailored so that each point corresponds to a point, and a 
personalized heuristic function determines the distance between two 
PDFs.

The presence of over 180 TB data entries in the Northern 
California Earthquake Data Center necessitates a strategy to 
accelerate the process of manually labeling and reviewing 
training and validation PDFs

Our solution leverages an algorithm called Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) to 
separate large chunks of data into groups based on shared 
statistical features, allowing for manageable human review 
in obtaining training and validation data.

For DBSCAN to accurately separate graphs with similar traits into the 
same groups, we must create a heuristic function to algorithmically 
determine the closeness of two PDF entries.
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Based on a heuristic 
function, DBSCAN 
algorithmically determines 
core points to group data 
on, with an emphasis on 
regional density.

This allows robust 
detection of outliers, an 
important consideration 
when labeling data with 
binary values.

We chose the Manhattan Distance (L1 norm), a method for calculating 
the distance between two matrices of the same size by summing the 
absolute differences of their corresponding elements.

Fig. 6. An output of the DBSCAN algorithm on data batch containing 
1000 strong motion reading entries. Based on the heuristic and the 
epsilon value (a limiting number used to define the maximum 
boundaries of a single group), the DBSCAN algorithm dynamically 
decides the number of groups as well as the number of outliers that 
can then be reviewed manually. An epsilon value ranging from 23 to 
26 has displayed optimal performance.

The DBSCAN algorithm was leveraged to separate a large 
scope of data ranging from 2022 to 2025 (47,640 data entries 
for broadband sensors, 45,298 for strong-motion sensors, and 
11,501 for short-period (geophone) sensors.

Overview
Power Spectral Density Analysis Dataset

Performance Monitoring with Machine Learning

This approach facilitates quasi-real-time performance 
monitoring, ensuring timely detection and response to 
sensor anomalies.

The Northern California Earthquake Data Center (NCEDC) 
continuously computes and archives probability density 
functions (PDFs) of PSDs across 29 networks and over 2600 
stations.

Power Spectral Density (PSD) analysis is a well-established 
technique for evaluating the performance of seismic 
sensors.

The database currently exceeds 180 TB and encompasses 
evaluations over broadband, short-period,  and 
strong-motion sensors, as well as other geophysical 
instruments.

Leveraging the comprehensive NCEDC PDF dataset, we train 
a binary classifier machine learning (ML) model to 
quantitatively characterize PDF features for the rapid 
identification of sensor anomalies.

Distribution of Classifier Readings ROC Curve: Measuring the Model’s Performance

ROC Curve: Binary Classifier Performance Metric

The separated groups were then reviewed by previews (Fig. 
6), allowing for a drastic acceleration in manual labeling of 
data entires.

Entries for the broadband sensor required the manual 
labeling of 1,904 out of 47,640 entries, a 96% decrease in the 
number of data entries required for manual review.

Strong motion and short-period (geophone) sensors required 
the labeling of 160 and 89 entries respectively, resulting in a 
99.6% and 99.2% decrease in the number of data entries 
required for manual review.

A binary classifier displays an output ranging from the 
value of 0 to 1.

It is often the case that a classifier, given an input data to 
analyze, produces a result that is close to the value of 0 or 
1, but not exactly identical.

As a result, a threshold is used to define the boundaries 
at which the neural network differentiates a positive 
result from the negative. The default threshold for 
Berkeley Seismology Laboratory’s models is 0.5, where 
any ML output below 0.5 is considered negative and 
above positive.

Fig. 7. The distribution of strong motion sensor 
ML model readings against validation data. Most 
of the analysis run by the neural network results 
in a value very close to 0.0 or 1.0, a good 
indicator of the machine’s decisiveness in its 
evaluations. A small number of values fall into 
the range between 0.2 to 0.8, which can either 
be attributed to the imperfection of the current 
machine learning model or the actual presence of 
ambiguity within the validation dataset 
presented to the model.

Trade-Off Between TP/TN and FP/FN
Alternatively, the threshold could be set to any value 
between 0 and 1 in order to change the boundaries at 
which the machine learning model decides an input is 
positive or negative.

Adjusting the threshold results in changes to the rate at 
which the model produces true positives and true 
negatives. For example, an extremely low threshold will 
naturally increase the rate of false negatives, as the 
tolerance for a positive is much lower.

The model’s performance can be measured across 
multiple thresholds in order to determine the confidence 
with which it makes its decisions, as well as the quality of 
validation data.

Fig. 8. Guidelines on the 
different shapes that classifiers 
can take on in their ROC Curves.

An ROC (Receiver Operating Characteristic) Curve is a 
graphical representation used to evaluate the 
performance of a binary classification model.

As the thresholds are adjusted, different True 
Positive Rate (TPR) and False Positive Rate (FPR) are 
recorded on the graph, eventually connecting to 
create a curve.

Because a perfect classifier will have a 100% TPR and 
0% FPR, models that can approach the top left 
corner the closest are considered to have optimal 
performance.

By contrast, models that perform worse will display 
output values similar to a completely random 
classifier, which will randomly guess between 0 and 1 
at any given input. This results in a diagonal line 
across the ROC Curve, as the threshold will directly 
correlate to the rate of true positives and false 
positives.

The Area Under the Curve (AUC) is a metric used to 
measure how close the machine learning model is to 
a perfect classifier. A high AUC indicates that at a 
certain threshold, the classifier approaches the top 
left corner in close proximity.

Neural Network Parameter Configuration Neural Network Performance Metrics

The machine learning model contains an input layer corresponding to the 
number of probability data points from PDF entires, which pertain to 122 x 151 
for broadband, 114 x 131 for strong motion, and 124 x 151 for short-period.

The input is then transformed through two hidden layers of 512 nodes 
each. The hidden layers utilize a non-linearity function (ReLU) to 
abstract features of geophysical instrument readings.

The neural network displays its output throughout the single-node output layer 
representing a classification of [0, 1] derived from the sigmoid function, with 1 
representing positive diagnosis for poor performance of the sensor.

The validation set, a pre-processed dataset used to test the NN, can be used as metric to finalize the model’s capability.
The four metrics (True Positive, True Negative, False Positive, False Negative) can be used as parameters to determine 
the neural network’s performance such as precision, recall, specificity, and accuracy.

Performance Metrics Using Confusion Matrix

Confusion Matrix for Short-Period (Geophone) NN

Machine Learning Architecture: Configuration and Parameter Metrics

Fig. 2. Visual representation of the neural network architecture.

Machine Learning Model Architecture

Fig. 3. Training and Validation losses recorded for 
machine learning models tailored towards (a) 
broadband, (b) strong-motion, (c) short-period 
(geophone) respectively. Over 10 epochs, the data 
features a decrease in both training and validation 
loss overall, indicating the model’s learning 
progress. Validation accuracy is also provided for a 
more intuitive metric in how correct the machine 
is at a certain point in time.

Across 10 epochs, each machine learning 
model corresponding to broadband, 
strong motion, and short-period (also 
known as geophone) is trained on a 
pre-processed training dataset.

A validation dataset, which are a set of 
entries that the machine never learns 
from but rather tests its parameters 
against after each epoch, is used to 
quantify the learning progress of the 
neural network.

The loss function calculates the difference 
between the predicted probability (output 
from the model) and the actual truth 
(ground truth label). We selected the 
Binary Cross-Entropy loss function, which 
features high loss when the predicted 
probability is far from the true label on a 
binary scale of 0 to 1.

Training Loss and Validation Loss

Across 10 epochs, we find that each 
machine learning model obtains over 94% 
validation accuracy, indicating that it 
achieves such score on a foreign dataset it 
was not trained on.

The following metrics were calculated 
across machine learning models 
trained on the broadband, strong 
motion, and short-period datasets:

Accuracy: The overall proportion of 
correct predictions made by the 
model. It is a general measure of 
model performance.

Across the Three ML Models

Fig. 4. Confusion Matrix calculating the 
TP, TN, FP, and FN over the validation 
dataset for short-period (geophone) 
neural network’s decisions.

Fig. 1. Machine learning model computations for broadband sensor 
data: (a) the standard, expected broadband sensor PDF, resulting in a 
computed value of 0.0, and (b) the broadband sensor reading with an 
anomaly, yielding a computed value of 0.804. A value closer to 1 
indicates that the model has detected an irregularity.

Model Parameter Configuration Equations
Rectified Linear Unit (ReLU): ƒ(x) = max(0, x)

Sigmoid: σ(x) = 1

1 + e^-x 

Binary Cross-Entropy Loss (BCELoss): L(y, ŷ) = -[y × log(ŷ) + (1 - y) × log(1 - ŷ)]

Accuracy: TP + TN
TP + TN + FP + FN

Precision: TP
TP + FP

Recall: TP
TP + FN

Specificity: TN
TN + FP

F1 Score: 2 × Precision × Recall
Precision + Recall

Precision: Proportion of correct 
positive predictions made by the 
model. It is useful when you want to 
minimize false positives.
Recall: How well the model can 
identify positive cases. Useful when 
negatives are costly.
Specificity: How well the model can 
identify negative cases. Useful when 
positives are costly.
F1 Score: A balance between 
precision and recall. It is a general 
measure of model performance.

Precision: 0.9970059880239
Recall: 0.9823008849557
F1 Score: 0.9895988112927
Specificity: 0.9820359281437
Accuracy: 0.9895209580838

Broadband Statistics

DBSCAN Heuristic


