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Rayleigh Wave Ellipticity (H/V Ratio)

Comparison of Observations with Predictions using USGS_SVM

m High H/V values are observed within the major basin environment such as Central Valley.
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m Northern California contains numerous active faults, including the Hayward Fault near the . .
San Francisco Bay Area, which is capable of generating large-magnitude (M > 6) earthquakes Communlty VeIOCIty MOdeI (CVM)
with potentially severe impacts. Accurate three-dimensional (3D) seismic velocity models,
particularly those that capture detailed uppermost crustal structure, are crucial for
predicting ground motions during such events.
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m We performed Rayleigh wave ellipticity measurements and Receiver function first peak delay | * Complex § o0d | | 1 N % .
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m Future directions of research should be inverting the seismic observations to velocity DO e Veloc s 0 Figure 9: Scatter plot between the observed and
models and incorporating them into the next version of the CVM. | Figure 7: Multi-component ambient noise cross- correlations between stations BK.SUTB and Iog T_O(HV) CVM predicted 16 sec Rayleigh wave H/V ratios.
BK.CGRV filtered between 5 and 10 s. Rayleigh waves are visible on all components (Z: vertical; R:
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right) Zoom into the Bay area. (lower left) Zoom into southern Central Valley.
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