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< 18km) that have a suitable eGf event to evaluate their MRFs. m Our results shows the scaled energy appear to be increases as a function | | | - ocation Han - . nﬂ/los é \BBAglGB HASEORD &ﬂ WIEEI\FI)I_S
of seismic moment, which suggests a weak non-self-similarity behavior. 0:000125 39‘5 P BUCR PMPB A\ BUCIL  "LLNL
B We are particularity interested in exploring if the moment-scaled 37.5°N 377N 0.000100 _ 3.0- MERC ( V| ¥ vl
radiated energy depends on seismic moment, i.e., if our data set 1073 r — o.oooo75§ S PACP /1 HULI BRIB
can be explained by whether self-similarity or non-self-similarity | o= N~ Koy, 2 LA 37°N 0.000050 e AyeLL @25
Scalmg' 10_4?-- """"""" e=1.0 I\i! Il’ L .9 0.000025 T - _qg) 20-
B Our results suggest a weak non-self-similarity behavior, which | H‘ ‘, l i 36.5°N 36.5°N i %
appears to be consistent with results from Kanamori and Rivera < 107> l;ugg;i=:§i'a!fjp.J’ﬂ;jﬁf:fi,ég_i;“:f"" | £ s a1
(2004, BSSA) that analyzed southern California earthquakes. S | Ilf:::'.!n-'.;" Vil IS . © .
LLI D l.'; " I 36°N ; U
m No clear spatial and depth variations is found for scaled energy 10 | R .. SR M\ AL o
j 2 3 '
from our MRF dataset. 107 B E T Mofc | | |
o . €p = = — 5 Figure 5: Map views of earthquakes with resultant (a) corner frequency and (b) | Aou g 0.0 Frmmmmmm e e o e
" Wetilso pkerfct))rn?ed aglnlt:/;l;aFul’F mlocjfhn%fforzs()%bzsﬁ;lcs O; 06 A | M S pp scaled energy. No clear spatial variations of both parameters is found. % Manshock AR 5 =0 160 150 230 220 200 320
earthquakes by inverting S Including the w O. um 10-8 L | | P 72s s s EEY: Ties Azimuth from north (deg.)
Rock earthquake. This earthquake exhibits a complex rupture 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 : . . . . , ° _ _
orocess involving three subevents with a southeast directivity M., 10-3. Figure 7: Map view of seismic station (total 14 sites) s Figure 8: MRFs for the 2022 Mw 5.06 Alum Rock earthquake as a function of azimuth from the hypocenter.
' Figure 4: Scaled energy measurements from our 235 NCal earthquakes as a function | used to perform a finite-fault modeling of the 2022 MRFs are aligned by the onset of the first pulse. Dashed lines show the end time of MRFs.
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L » TERRAScope % | e Hii M'i i .t ! H’ [ ‘ t smoothing = 100, which provides VR = 72.96%. 50
m Estimated moment magnitudes for three subevents are 4.46, 4.78, 10 I A R L R m Kanamori and Rivera (2004, W 106, LA o d it il (a) Qo Maximum slip: 41.84cm
4.67, which are equivalent to 12%, 38%, and 26% of the total BSSA) shows a similar weak | 0.1 73 ° Cs @Median slip: 12.14cm
seismic moment. non-self-similarty for southern 1077, 0.141 69 1600~
s° California earthquake data. | 0.13 o 4 40
B Seismic radiation efficiency is estimated to be 1.76, which is N 10 <0 75 160 5 120 195  30.0 0.12 65 1400 -
comparable with those of other crustal earthquakes such as the ' ' ' Focal debth (k) ' ' ' 0.11 o1 Tg g
1992 Mw 7.3 Landers and the 1994 Mw 6.7 Northridge , ~0.101 ke =3
earthquakes Figure 6: Scaled energy measurements from our 235 NCal earthquakes as a 2509 i 12007 o 30
' 10° ; ; ; ; ; ; ; function of focal depth. No clear depth-dependency is found. e 573\‘: & 2 OO c
o 1 2 3 4 5 6 71 8 = 0.081 e 5 = So S
o A thing =100 3 N
0.06 49 8 Smoo INg % . C% 50
= m = O 0.05 800 - / @
Developing Northern California Moment: RatelEuinctichiRetalyase 004 el D o
0.021 -10
s T2 ’ ' i i i i i icti A 0036 50 22 24 26 2.8 30 32 34 37 107 107 102 107  10°
Empirical Green’s Function (eGf) Analysis Systematic Search for Target-eGf Pairs Time-Domain Characteristics 820 22 24 26 28 3.0 32 3 Model roughness (1/smooth) N
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units smaller than the target EQ -> correcting path and site effects. 1. Search for possible eGf events within 3 km hypocentral distance individual MRFs, which can be measured to radiated energy and the 2022 Mw 5.06 Alum Rock earthquake. 0 2 Along_sirike distanc6e (km) 8
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Figure 1: (a) Two seismograms (raw waveforms) from the 1998 Mw 5.1 San Juan Flapsed time (5ee) S L - Er = (15 -+ 0 ,85) [ M?*(t)dt
. "cEU Russia-Chinag TT ,OOl T p
Bautlztad eirt;chqudabke c(jtatrgne't e\l?/,eKn;:(Sa‘ndtr:he nisrby ’l\: 3.1 foresﬁcoil;] (eGf efvent) " e . ¢ ac i Caliform T auak ) . Figure 3: Example of MRF in noise and signal windows. Dashed © 0.1 t ' Elastic energy -f th Hal distributs ¢ smic slip (Fig. 10). | [ -
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