matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.dates as mdates
from __future__ import print_function
%matplotlib inline
import matplotlib.pyplot as plt
#plt.style.use('ggplot')
plt.rcParams['figure.figsize'] = 11, 4
sta = "IBUH01" # velocity decrease, direction change, but increase aniso coeff, but rms_coeff increase
#sta = "IBUH02" # velocoty degrease, no change direction, no change anino coeff. no increase aniso rms_coeff
#sta = "IBUH03"# Hokkaido velocoty degrease, change direction, no change anino coeff. no increase aniso rms_coeff
# Tohoku-oki velocity degrease, no change direction, no change anino coeff. no increase aniso rms_coeff
#sta = "IBUH04" # seismic data are not good
#sta = "IBUH05" # no change
#sta = "IBUH06" # velocity increase, az all direction. but why az_coeff increase? all parameters are messy
#sta = "IBUH07" # no change
#sta = "SRCH09" # velocoty degrease, no change direction, no change anino coeff. no increase aniso rms_coeff
#sta = "SRCH10" # no change
#sta = "SRCH08" # no change
#sta = "SRCH07" # no chnage
#sta = "SBSH08" # no many data
#sta = "SBSH07" # small change?
#sta = "SBSH03" # no change? no many data
#sta = "HDKH04" # iso change no azimuth change, no coeff change
#sta = "HDKH01" # large variability, unclear velocity change
#sta = "HDKH03" # no change?
#sta = "HDKH05" # no change.
#sta = "HDKH06" # no change?
#sta = "IKRH01" #
#sta = "IKRH02"#
#sta = "IKRH03"#
#IBUH01 2003-04-17T15:40:54.9600 42.55450 143.50700 72.40 4.40 0.0006361000 20030418004000 516.48 541.09 491.87 126.17 36.17 9.10 3.71 7 5 -1 0 1 15
aniso_fi = "http://ncedc.org/ftp/outgoing/taira/"+sta+".out2"
aniso_data = pd.read_csv(aniso_fi,
sep=" ",names=["sta", "time", "lat", "long", "depth", "mag", "elapse_diff", "evid", "viso", "vfast", "vslow", "azfast", "azslow", "azcoeff", "rms_coeff", "leng", "ddeg", "ns", "ne", "f1", "f2","elapse_days"],header=None)
#print (aniso_data['lat'])
aniso_data['time'] = pd.to_datetime(aniso_data['time'])
aniso_data.describe()
#print(aniso_data[aniso_data['vslow'] < 100])
#aniso_data['azslow']
statsOUT = aniso_data.describe()
statsOUT = aniso_data.describe(percentiles=[0.01, 0.05, 0.1, 0.25, 0.75, 0.9, 0.95, 0.99])
statsOUT.viso
print (statsOUT.viso['mean'], statsOUT.viso['10%'])
viso_minplot = statsOUT.viso['10%']
viso_maxplot = statsOUT.viso['90%']
viso_minplot = statsOUT.viso['5%']
viso_maxplot = statsOUT.viso['95%']
viso_minplot = statsOUT.viso['1%']
viso_maxplot = statsOUT.viso['99%']
azcoeff_minplot = statsOUT.azcoeff['5%']
azcoeff_maxplot = statsOUT.azcoeff['95%']
rms_coeff_minplot = statsOUT.rms_coeff['5%']
rms_coeff_maxplot = statsOUT.rms_coeff['95%']
azfast_minplot = statsOUT.azfast['5%']
azfast_maxplot = statsOUT.azfast['95%']
azslow_minplot = statsOUT.azslow['5%']
azslow_maxplot = statsOUT.azslow['95%']
vslow_minplot = statsOUT.vslow['5%']
vslow_maxplot = statsOUT.vslow['95%']
vfast_minplot = statsOUT.vfast['5%']
vfast_maxplot = statsOUT.vfast['95%']
#print(aniso_data.time)
fig, ax = plt.subplots()
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y/%m/%d\n%H:%M'))
#plt.plot(aniso_data.time, aniso_data.viso, "o", label = 'Viso')
plt.plot(aniso_data['time'], aniso_data['viso'], "o", label = 'Viso')
#plt.ylim(350,600)
plt.ylim(viso_minplot, viso_maxplot)
plt.xlabel("Time UTC")
plt.ylabel("Velocitu (m/s)")
plt.legend(loc="upper left")
plt.title(""+sta+" Viso")
#plt.xlim("2011-01-01 00:00:00","2018-10-01 0:00:00")
fig, ax = plt.subplots()
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y/%m/%d\n%H:%M'))
#plt.plot(aniso_data.time, aniso_data.viso, "o", label = 'Viso')
plt.plot(aniso_data['time'], aniso_data['rms_coeff'], "o", label = 'rms_coeff')
plt.ylim(rms_coeff_minplot, rms_coeff_maxplot)
plt.xlabel("Time UTC")
plt.ylabel("RMS_Coeff(%)")
plt.legend(loc="upper left")
plt.title(""+sta+" RMS_Coeff")
fig, ax = plt.subplots()
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y/%m/%d\n%H:%M'))
#plt.plot(aniso_data.time, aniso_data.viso, "o", label = 'Viso')
plt.plot(aniso_data['time'], aniso_data['azcoeff'], "o", label = 'azcoeff')
plt.ylim(azcoeff_minplot, azcoeff_maxplot)
plt.xlabel("Time UTC")
plt.ylabel("Az coeff(%)")
plt.legend(loc="upper left")
plt.title(""+sta+" AzCoeff")
fig, ax = plt.subplots()
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y/%m/%d\n%H:%M'))
#plt.plot(aniso_data.time, aniso_data.viso, "o", label = 'Viso')
plt.plot(aniso_data['time'], aniso_data['azfast'], "o", label = 'azfast')
plt.ylim(azfast_minplot, azfast_maxplot)
plt.xlabel("Time UTC")
plt.ylabel("Az fast(deg)")
plt.legend(loc="upper left")
plt.title(""+sta+" Az fast")
fig, ax = plt.subplots()
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y/%m/%d\n%H:%M'))
#plt.plot(aniso_data.time, aniso_data.viso, "o", label = 'Viso')
plt.plot(aniso_data['time'], aniso_data['azslow'], "o", label = 'azslow')
plt.ylim(azslow_minplot, azslow_maxplot)
plt.xlabel("Time UTC")
plt.ylabel("Az slow(deg)")
plt.legend(loc="upper left")
plt.title(""+sta+" Az slow")
fig, ax = plt.subplots()
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y/%m/%d\n%H:%M'))
#plt.plot(aniso_data.time, aniso_data.viso, "o", label = 'Viso')
plt.plot(aniso_data['time'], aniso_data['vfast'], "o", label = 'vfast')
plt.ylim(vfast_minplot, vfast_maxplot)
plt.xlabel("Time UTC")
plt.ylabel("v fast (m/s)")
plt.legend(loc="upper left")
plt.title(""+sta+" v fast")
fig, ax = plt.subplots()
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y/%m/%d\n%H:%M'))
#plt.plot(aniso_data.time, aniso_data.viso, "o", label = 'Viso')
plt.plot(aniso_data['time'], aniso_data['vslow'], "o", label = 'vslow')
plt.ylim(vslow_minplot, vslow_maxplot)
plt.xlabel("Time UTC")
plt.ylabel("v slow (m/s)")
plt.legend(loc="upper left")
plt.title(""+sta+" v slow")